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Abstract: The detection probability is an important parameter in multisensor multitarget tracking. 

The existing multisensor multi-Bernoulli (MS-MeMBer) filter and multisensor cardinalized 

probability hypothesis density (MS-CPHD) filter require that detection probability is a priori. 

However, in reality, the value of the detection probability is constantly changing due to the influence 

of sensors, targets, and other environmental characteristics. Therefore, to alleviate the performance 

deterioration caused by the mismatch of the detection probability, this paper applies the inverse 

gamma Gaussian mixture (IGGM) distribution to both the MS-MeMBer filter and the MS-CPHD 

filter. Specifically, the feature used for detection is assumed to obey the inverse gamma distribution 

and is statistically independent of the target’s spatial position. The feature is then integrated into the 

target state to iteratively estimate the target detection probability as well as the motion state. The 

experimental results demonstrate that the proposed methods can achieve a better filtering 

performance in scenarios with unknown and changing detection probability. It is also shown that 

the distribution of the sensors has a vital influence on the filtering accuracy, and the filters perform 

better when sensors are dispersed in the monitoring area. 

Keywords: multisensor multi-Bernoulli filter; multisensor cardinalized probability hypothesis 

density filter; detection probability; inverse gamma Gaussian mixture 

 

1. Introduction 

The objective of multitarget tracking is to jointly estimate the number and state of multiple targets 

from sensor observations. Recently, the tracking algorithm based on random finite set (RFS) has 

gained increasing attention in the field of multitarget tracking [1–3]. Unlike traditional multitarget 

tracking algorithms, such as multiple hypotheses tracking (MHT) [4] and joint probabilistic data 

association (JPDA) [5], this method directly avoids the data association step. Specifically, by treating 

target states and sensor measurements as RFSs, the target tracking problem is transformed into a set-

valued estimation problem under the Bayesian framework. On the basis of the finite set statistics 

(FISST) [6], a probability hypothesis density (PHD) filter has been proposed in [7]. The PHD filter uses 

the moment approximation and propagates the first-order moment of the multitarget probability 

density, which is assumed to be Poisson-distributed. However, the cardinality variance estimated by 

the PHD filter grows with the number of the targets. As an improvement to the PHD filter, the 

cardinalized PHD (CPHD) filter [8] jointly propagates the first-order moment and the cardinality 

distribution. Unlike the above RFS filters based on the moment approximation, the multitarget multi-

Bernoulli (MeMBer) filter proposed in [6] directly approximates the multitarget posterior with multi-

Bernoulli components, and thus more density information is preserved in the Bayesian recursion. 

However, the first-order Tayler linear approximation in the updating process introduces a cardinality 

estimation bias [9], and thus a cardinalized MeMBer (CBMeMBer) filter is proposed in [10] to 

eliminate this bias. The limit of the multi-Bernoulli filter is that it can only accommodate target states. 
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Therefore, the δ-generalized labeled multi-Bernoulli (δ-GLMB) filter which can output target tracks 

has been developed [11], and two approximations of the δ-GLMB filter, labeled the multi-Bernoulli 

(LMB) filter and the marginalized δ-GLMB filter, have been designed to reduce the computational 

cost [12,13]. Nevertheless, when the track estimation is not needed, the multi-Bernoulli filter and the 

CPHD/PHD filters have been shown to be more efficient compared with the labeled RFS filters; thus, 

they have been widely used [14–16]. 

A number of RFS tracking methods have also been studied in the multisensor field [17–22]. 

Mahler [17] derived a generalized PHD (G-PHD) filter for the case of two sensors, and Delande et al. 

[18] extended it to scenarios with an arbitrary number of sensors. To avoid the combinatorial 

computational complexity of the G-PHD filter, the iterated corrector PHD (IC-PHD) filter was 

proposed in [19]. The parallel-combination approximate multisensory (PCAM) PHD filter [20] is a 

theoretical approximation of multisensor PHD filters and is independent of the sensor order. In [21], 

the multisensor CPHD (MS-CPHD) filter was introduced, and the multisensor MeMBer (MS-

MeMBer) filter was proposed in [22]. Based on the labeled RFS, the centralized multisensor δ-GLMB 

(MS-δ-GLMB) with extended association maps was introduced in [23]. 

The detection probability is usually considered as a known parameter in general tracking 

algorithms. Whereas in real scenarios, the detection probability is affected by sensors, targets, the 

environment, and the features used for detection [24]. For instance, Mahler et al. [25] proposed 

CPHD/PHD filters that can accommodate parameter mismatch in the clutter rate and detection profile 

in which the detection probability is obtained by the Beta Gaussian mixture (BGM) model. 

Subsequently, a multitarget multi-Bernoulli filter [26,27] was proposed to adaptively learn the 

nonhomogeneous clutter intensity and detection probability. Meanwhile, a multitarget tracker based 

on the labeled RFS was proposed in [28], which can estimate the clutter rate and detection profile. All 

these filters assume that the detection probability is Beta-distributed and calculate the detection 

probability through the accumulation of observation effects in the BGM model. However, the filtering 

performance deteriorates when the detection probability is low, and poor model initialization 

parameters can adversely affect the filtering performance. For this reason, the inverse gamma 

Gaussian mixture (IGGM) model is used in CPHD/PHD filters [29]. Specifically, the feature used for 

detection is an inverse gamma distribution, and by combining the feature into the target motion state, 

the performance loss caused by the mismatch of the detection probability parameters is reduced. 

In the field of multisensor and multitarget tracking, the MS-CPHD filter and MS-MeMBer filter 

are two important methods, and the ways they are generalized to handle scenarios with an unknown 

and time varying detection of probability are similar. Therefore, in this paper, we propose IGGM-MS-

CPHD/MeMBer filters for the unknown and varying detection probability case. Initially, we 

incorporated the detection feature into the target motion state. On the basis of the augmented state, 

the IGGM model was applied to both the MS-CPHD filter and the MS-MeMBer filter to iteratively 

estimate the detection probability and motion parameters. Then the estimated detection probability 

was updated to the next step for further filtering. The simulation results show that compared to GM-

based MS-CPHD/MeMBer filters, the proposed filters achieve a better performance when the 

detection probability is unknown and dynamically changing and when sensors are dispersed in the 

observation area. 

This paper is organized as follows: Section 2 gives a review of the MS-CPHD/MeMBer filters and 

the IGGM model, the proposed IGGM-MS-CPHD/MeMBer filters are derived in Section 3, the 

simulation results are presented in Section 4, and the conclusions are given in Section 5. 

2. Background 

In this section, we present the basic materials for the MS-CPHD/MeMBer filters and the IGGM 

model. 

2.1. Multisensor Measurement Partitioning 

Measurement partitioning means that the measurement set is divided into a finite number of 

mutually disjoint subsets. The MS-CPHD/MeMBer filters have high computational complexity since 
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all measurement partitioning forms are required for calculating the accurate solution. To improve the 

efficiency, Nannuru et al. [21] proposed a greedy measurement partitioning algorithm that obtains a 

finite number of partitioning hypotheses to derive an approximate solution of the MS-CPHD filter. 

Subsequently, Sancan et al. applied this partitioning algorithm to the MS-MeMBer filter in [22]. The 

objective of the greedy measurement partitioning algorithm is to recombine the multisensor 

observations and obtain several measurement partitioning hypotheses. Assume that 1:s

k
Z  = { 1

k
Z , 2

k
Z

,…, s

k
Z } is the observation set generated by all the s sensors at time k, where j

k
Z  is the measurement 

set generated by the jth sensor. Then by using the greedy measurement partitioning algorithm, 1:s

k
Z  

can be reconstructed as 1: 1 2 | | 1

1: 1: 1:
{ , ,..., , }s

k s s s

−= = PP W W W VZ , where P is the measurement partitioning 

hypothesis. 
1:

j

s
W  denotes the measurements generated by target j from all sensors at time k, V is the 

clutter measurements from all sensors, and the divided parts follow Equations (1)–(3): 

1: 1:
,1 | | 1ji

s s
i j=    −W W P , (1) 

1:
,1 | | 1i

s
i=   −W V P , (2) 

1 2 | 1 1:

1: 1: 1:

s

s s s k

− =|PW W W V Z . (3) 

Define Q to be the set composed of the measurement partitioning hypothesis P, 

1:
1:

{( , )| }j
s

ji

l s
T i l= 

W
z W  is a mapping function, and i

l
z  is the lth measurement in the observation set 

generated by sensor i. 

2.2. The MS-CPHD Filter 

The prediction process of the MS-CPHD filter is the same as that of the single-sensor CPHD filter 

in [8]. Define x as the state vector of the target. Assume that the first-order moment of the multitarget 

posterior at time k−1 is 
1| 1

( )
k k

D
− −

x  and the cardinality distribution is 
1| 1

( )
k k

p n
− −

, then the predicted 

PHD function is given by 

| 1 | 1 1| 1
( ) ( ) ( | ), ( )

k k sv k k k k k
D f D b

− − − −
= +x x x x , (4) 

and the predicted cardinality distribution follows 

1| 1 1| 1

| 1 , 1| 1
0

1| 1

, ,1
( ) ( ) ( )

,1

j l j
n

k k sv k k svl

k k b k j k k l
j l j

k k

D D
p n p n j C p l

D

 
−


− − − −

− − −
= =

− −

−
= − 

, 
(5) 

where ( )
k

b x  and 
,

( )
b k

p n j−  are the first-order moment and cardinality distribution of the newborn 

targets at time k, respectively. 
| 1

( |)
k k

f
−

x  is the transfer function. The combination coefficient follows 

!/ ( !( )!)l

j
C l j l j= − , and ( )

sv
p x  is the survival probability of the target with state x at time k. 

The updated PHD equation of the MS-CPHD filter is 

1:

| | 1
|

0
11| 1

( )
( ) ( )

( )
j
s

s
jk k
d

jjk k

D
q

r
  

−

 ==−

 
= +   

 
 

P

P W
P Q

x
x x

x
, (6) 

where 

( )

1:

1:

| | 1
(| |)

1

0 | | 1
(| | 1)

1

( )

( )

j
s

j
s

j

j

K M d

K M d







−

 =

−
−

 =

 
  
 

=

 

 

P
P

P W
P Q

P
P

P W
P Q

, (7) 
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1:

1:

| | 1
(| | 1)

1

| | 1
(| | 1)

1

( )

( )

j
s

j
s

j

j

K M d

K M d







−
−

=

−
−

 =

=
 
  
 



 

P
P

P W

P U
U

U W
U Q

, (8) 

1: 1:

1:

1: 1:

( , ) ( , )

| 1
( , ) ( , )

( ) ( | ) ( )

( )

( ) ( ) ( | ) ( )

j j
s s

j
s

j j
s s

i i i

d i l d
i l T i T

i i i

k k d i l d
i l T i T

p g q

r p g q d


  

−
  

 
 
  
 

=
 
 
  
 

 

 

W W

W W

W

x z x x

x

x x x x xz

. (9) 

The normalized function for the predicted PHD 
| 1

( )
k k

D
−

x  is 
| 1

( )
k k

r
−

x . Assume 
P

 as the 

weight of the measurement partitioning hypothesis P in the set Q, and the all-clutter partitioning 

hypothesis has an associated weight 
0

 . 
1:
j
s

d
W

 denotes the weight of 
1:

j

s
W  in hypothesis P, and U is 

also a measurement partitioning hypothesis. ( )i

d
p x  is the detection probability of the target with state 

x by sensor i, and ( ) 1 ( )i i

d d
q p= −x x . ( | )i

i l
g z x  is the measurement likelihood of sensor i. The 

probability that the target with state x is not detected by any sensor is given by 
| 1

1

( ) ( )
s

j

k k d
j

r q d
−

=

=  x x x . 

( | | )

1

(0)i i

s
m

i
i

K C −

=

=
P

P
. ( )( )n

i
C   and ( ) ( )n

i
M  are the nth-order derivatives of the probability generating 

functions (PGFs) of the clutter cardinality distribution and the predicted cardinality distribution, 

respectively. 

After the updating process, the posterior cardinality distribution is 

1:

1:

| | 1
| | 1

1
| | 1

| | 1 | | 1
(| | 1)

1

!

( | | 1)!

( ) ( )

( )

j
s

j
s

n

j
n

k k k k

j

n
K d

n

p n p n

K M d





−
− +

 =
 +

− −
−

 =

 
  − + 

=

 

 

P
P

P W
P Q
P

P
P

P W
P Q

P
. (10) 

2.3. The MS-MeMBer Filter 

Since no observation information is required in the prediction process, the predicted density of 

the MS-MeMBer filter is the same as that of the MeMBer/CBMeMBer filters [9,10]. Suppose that at 

time k–1, the multitarget density is a multi-Bernoulli of the form 

1| 1( ) ( )

1| 1 1| 1 1| 1 1
{( , )} k kMi i

k k k k k k i
r p − −

− − − − − − =
= , (11) 

where 
1| 1k k

M
− −

 is the component number. Then the predicted multitarget density is also a multi-

Bernoulli and is formed by the union of surviving sets 1| 1( ) ( )

, | 1 , | 1 1
{( , )} k kMi i

S k k S k k i
r p − −

− − =
 and newborn sets 

,( ) ( )

, , 1
{( , )} b kMi i

b k b k i
r p

=
, i.e., 

,| -1 -1| -1( ) ( ) ( ) ( ) ( ) ( )

| 1 | 1 1 , | 1 , | 1 1 , , 1
{( , )} ={( , )} {( , )} b kk k k k

MM Mi i i i i i

k k k k i S k k S k k i b k b k i
r p r p r p

− − = − − = =
, (12) 

where ( )ir  in Equation (12) is the existence probability of target i, and ( )( )ip  is the corresponding 

density function. The surviving multi-Bernoulli components are given by Equations (13) and (14): 

( ) ( ) ( )

, | 1 1| 1 1| 1
,i i i

S k k k k k k sv
r r p 

− − − − −
= , (13) 
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( )

| 1 1| 1( )

, | 1 ( )

1| 1

( | ),
( )

,

i

k k k k svi

S k k i

k k sv

f p
p

p





− − −

−

− −

=
x

x . (14) 

As the updated multitarget posterior density 
|k k

  no longer has the original form, an 

approximate multi-Bernoulli distribution 
| 1

( , ) ( , )

|| |
1

{( , )}ˆ
k kM

j j

k k k k
j

k k
r p

−

 =

=
P P

P Q
 with an equal PHD function is 

derived in [16], where 

( ) ( )

| 1 | 1

1:( , ) ( ) ( ) ( )
| | 1 | 1 | 1

1:

,
= 

1 ,

j j

k k k k j

sj j j j
k k k k k k k k

j

s

r p

r r r p








− −

− − −


 

= − +


 

PP

P

W

W

, (15) 

( )

| 1
1:( )

| 1( , )

| ( )

| 1 1:
1:( )

| 1 1:

( ) ( )

,
( )

( ) ( | )

( ) ( | )

j
jk k
sj

k kj

k k j j
jk k s
sj j

k k s

p

p
p

p f

p f d





−

−

−

−


= 


= 


 
 

P

x x
W

x
x W x

W
x W x x

. (16) 

In Equation (16), the probability that the target with state x is not detected by any sensor is given 

by 
1

( ) (1 ( ))
s

i

d
i

p
=

= −x x . Define 
1:

( | )j

s
f W x  to be the multisensor likelihood for the single target with 

state x: 

1: 1:

1:
( , ) ( , )

( ) ( | )
( | ) (1 ( ))

( )
j j
s s

i i
j id i l
s di

i l T i Tl

p g
f p

c  

− 
W

x x
W x x

W

z

z
. (17) 

( )c  is the density function of the clutter. The weight of the measurement partitioning hypothesis 

P in set Q is 

| 1

1:

| 1

1:

1

1

[1]

[1]

k k

j
s

k k

j
s

M j

j

M j

j

K

K






−

−

=

=




 

P W

P

U W
U Q

, (18) 

where 

1:

( ) ( ) ( )

| 1 | 1 | 1 1:

( ) ( )

| 1 | 1 1: 1:

1 ,
[ ]

( ) ( ) ( | )
j
s

j j j j

k k k k k k sj

j j j j

k k k k s s

r r p u
u

r u p f d




− − −

− −

 − + =


  
W

W

x x W x x W
. (19) 

2.4. The IGGM Model 

The CPHD/PHD filters for scenarios with an unknown detection probability were proposed in 

[18]. This method assumes that the detection probability is Beta-distributed, and the detection 

probability is calculated through the accumulation of observation effects. However, the filtering 

performance decreases significantly when the detection probability is low. In practice, the target 

detection probability depends on the features used for detection. For example, the gray-scale 

characteristics and structures of the infrared target [30] need to be considered, and, in radar detection, 

the signal-to-noise ratio (SNR) and the amplitude are crucial for determining the target detection 

probability [31–33]. Generally, these features are usually non-negative and non-Gaussian. In addition, 

the stronger the SNR and echo amplitude the higher the target detection probability. Therefore, the 

IGGM model and its analytical form of CPHD/PHD filters were proposed in [29]. In the IGGM model, 

it is assumed that the single-target state x contains the kinematic state x  and also the feature a used 

for detection, i.e., T[ , ]a=x x . Then the measurement state can be denoted as T[ , ]h=z z , where z  is 
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the position measurement and h is the feature measurement. In a short time, rather than the target’s 

position, the SNR and echo amplitude are mainly dependent on the radar reflection cross section (RCS) 

and the target’s shape. Thus it can be assumed that the feature a is statistically independent of the 

kinematic state x , and the detection probability is determined by the feature a, i.e., 
, ,

( , ) ( )
d k d k

p a p a=x . 

The probability density of the inverse gamma distribution ( ; , )IG x u v  is 

1( ; , ) exp( )
( )

u
uv v

IG x u v x
u x

− −= −


, (20) 

where variable x > 0, shape parameter u > 0, and scale parameter v > 0. ( )  denotes the gamma 

function. The mode of the inverse gamma distribution is / 1v u+ , and the mean value is / 1v u− . 

Accordingly, the probability density of the gamma distribution follows  

1( ; , ) exp( )
( )

u
uv

G x u v x vx
u

−= −


, (21) 

where x > 0, u > 0, and v > 0. In Equation (21), the mode and mean values are ( 1) /u v−  and /u v , 

respectively. 

Assume that at time k–1, feature a obeys the inverse gamma distribution with 

1| 1 1 1
( ) ( ; , )

k k k k
f a IG a u v
− − − −

= , (22) 

the Markov transfer density 
| 1

( | ')
k k

L a a
−

 with feature 'a  is determined as follows: 

| 1 | 1 1| 1
( ) ( | ') ( ') '

k k k k k k
f a L a a f a da

− − − −
=  , (23) 

| 1 | 1 | 1
( ) ( ; , )

k k k k k k
f a IG a u v

− − −
= , (24) 

| 1 1
(0 1)

k k u k u
u k u k

− −
=   , (25) 

1
| 1 | 1

1

( 1)
1

k
k k k k

k

v
v u

u
−

− −

−

= −
−

, (26) 

and the measurement likelihood ( | )
k

g h a  obeys the gamma distribution, i.e., 

( | ) ( ; , )
k

g h a G h
a


= . (27) 

Thus, feature a is also an inverse gamma distribution after the prediction and update step: 

| | |
( ) ( ) ( ; , )

k k z k k k k
f a A h IG a u v  , (28) 

where  

| 1

|

1| 1 |

| 1 |

( )
( )

( ) ( )

k k

k k

u

k k k k
z u

k k k k

v u
A h h

u v






−

−−

−


=
 

, (29) 

| | 1k k k k
u u

−
= + , (30) 

| | 1k k k k
v v h

−
= + . (31) 

The larger the parameter   is the greater the influence the measurement h has on the estimation. 

Assume that the single-target kinematic states x , the Markov transfer density 
| 1

( | ')
k k

L
−

x x  with 

state 'x , and the measurement likelihood function ( | )
k

g z x  at time k–1 are all Gaussian, 

1| 1 1 1
( ) ( ; , )

k k k k
f N
− − − −

=x x m P , (32) 

| 1 1 1
( | ') ( ; ', )

k k k k
L N

− − −
=x x x xF Q , (33) 
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( | ) ( ; , )
k k k

g N=z x z xH R , (34) 

where ( ; , )N m P   denotes a Gaussian density with mean m and covariance P. 
1k−

F   is the state 

transition matrix, 
1k−

Q   is the process noise covariance, 
k

H   is the observation matrix, and kR  

denotes the observation noise covariance. Then the form of the kinematic state x  remains unchanged 

after the prediction and update step: 

1| | 1 | 1
( ) ( ; , )

k k k k k k
f N
− − −

=x x m P , (35) 

|
( ) ( ) ( ; , )

k k z k k
f q N x z x m P , (36) 

where 

| 1 1 1k k k k− − −
=m F m , (37) 

| 1 1 1 1 1

T

k k k k k k− − − − −
= +P F P F Q , (38) 

| 1 | 1
( ) ( ; , )T

z k k k k k k k
q N

− −
= +z z m R H P H , (39) 

| 1 | 1
( ) ( )

k k k k k k k− −
= + −z zm m K H m , (40) 

| 1 | 1k k k k k k k− −
= −P P K H P , (41) 

1

| 1 | 1
[ ]T

k k k k k k k k k

−

− −
= +K P H R H P H . (42) 

3. Multisensor Filters Based on IGGM Model 

The prior density and the likelihood function of the feature a obey the inverse gamma distribution 

and gamma distribution, respectively, which are a pair of conjugate distributions. Thus, we can derive 

the analytical forms of the MS-CPHD/MeMBer filters which estimate the detection probability based 

on the IGGM model. 

3.1. The IGGM-MS-CPHD Filter 

3.1.1. Prediction 

Assume that at time k–1 the posterior PHD has the IGGM form 

1| 1
( ) ( ) ( ) ( ) ( )

1| 1 1| 1 1| 1 1| 1 1| 1 1| 1
1

( ) ( ; , ) ( ; , )
k kJ

i i i i i

k k k k k k k k k k k k
i

D w N IG a u v
− −

− − − − − − − − − − − −
=

= x x m P . (43) 

The PHD of the birth RFS at time k is  

,

( ) ( ) ( ) ( ) ( )

, , , , , ,
1

( ) ( ; , ) ( ; , )
b kJ

i i i i i

b k b k b k b k b k b k
i

D w N IG a u v
=

=x x m P , (44) 

and the survival probability of the target with state x is constant, i.e., ( )
sv sv

 =x . ( )

1| 1

i

k k
w

− −
 and ( )

,

i

b k
w  

are the weights of the target state. 
1| 1k k

J
− −

 and 
,b k

J  are component numbers. Then the predicted PHD 

also comprises IGGM with 

1| 1

,

( ) ( ) ( ) ( ) ( )

| -1 1| 1 | 1 | 1 | 1 | 1
1

( ) ( ) ( ) ( ) ( )

, , , , ,
1

( ) ( ; , ) ( ; , )

( ; , ) ( ; , )

k k

b k

J
i i i i i

k k sv k k k k k k k k k k
i

J

i i i i i

b k b k b k b k b k
i

D p w N IG a u v

w N IG a u v

− −

− − − − − −
=

=

=

+





x x

x

m P

m P

, 
(45) 

where ( )

| 1

i

k k
u

−
, ( )

| 1

i

k k
v

−
, ( )

| 1

i

k k−
m , and ( )

| 1

i

k k−
P  are given in Equations (25), (26), (37), and (38). 
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3.1.2. Update 

Suppose that at time k the predicted PHD of the multitarget is  

| 1
( ) ( ) ( ) ( ) ( )

| 1 | 1 | 1 | 1 | 1 | 1
1

( ) ( ; , ) ( ; , )
k kJ

i i i i i

k k k k k k k k k k k k
i

D w N IG a u v
−

− − − − − −
=

= x x m P , (46) 

where 
| 1 1| 1 ,k k k k b k

J J J
− − −
= + . Then the form of the multitarget PHD remains unchanged after the update 

step: 

| 1

| 1

1: 1: 1: 1: 1:

( ) ( ) ( ) ( ) ( )

| 0 | 1 | 1 | 1 | 1 | 1
1 1

| | 1
( , ) ( , ) ( , ) ( , ) ( , )

| | | | |
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s s s s s

J s
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w N IG a u v


−

−

− − − − −
= =

−

 = =

=  


P

W W W W W

P Q

x x

x

m P

m P

, 
(47) 

where the updated weight is 

1:

1: 1:

( , ) ( )

| | 1
( , ) ( , )

( ) ( ) ( ) ( )
j
s

j j
s s

i i u u u v

k k k k d z l z l d
u l T v T

w w p a q A h q a
−

  

=  
W W

W
z . 

(48) 

| 1
( )( ) ( )

| 1 | 1 | 1
1

=
k kJ

ji i

k k k k k k
j

w w w
−

− − −
=

  gives the normalized weight. The updated Gaussian function and inverse 

gamma function are determined by Equations (49) and (50): 

1: 1:

1:

( , ) ( , ) ( ) ( )

| | | 1 | 1
( , )

( ; , ) ( ; , ) ( | )
j j
s s

j
s

i i i i u

k k k k k k k k u l
u l T

N N g
− −



 
W

W Wx x z xm P m P , 
(49) 

1: 1:

1:

( , ) ( , ) ( ) ( )

| | | 1 | 1
( , )

( ; , ) ( ; , ) ( | )
j j
s s

j
s

i i i i u

k k k k k k k k u l
u l T

IG a u v IG a u v g h a
− −



 
W

W W . 
(50) 

Moreover, the updated cardinality is given in Equation (10) with 

| 1
( ) ( )

| 1 | 1
1 1

(1 ( ))
k kJ s

jn n

k k d k k
n j

w p a
−

− −
= =

= −  , (51) 

| 1

1:

1:

1:

1:

( ) ( )

| 1 | 1
1 ( , )

( )

| 1
( , )

( , )

( ) ( )

( ) ( )

( ) ( )

k k

j
s

j
s

j
s

j
s

J
n i n i

k k d k k z l
n i l T

i i n

z l d k k
i T

i i

l z l
i l T

w p a q

A h q a

d
c A h

−

− −
= 

−
 



 
 
 
 

 
 
 

=

 





W

W

W

W

z

z
, 

(52) 

where, in Equations (51) and (52), the predicted feature a is estimated by the mean value, i.e., 
( ) ( ) ( )

| 1 | 1 | 1
( 1)n n n

k k k k k k
a v u

− − −
= − . ( )c  is the spatial density function of the clutter. 

3.2. The IGGM-MS-MeMBer Filter 

3.2.1. Prediction 

Assume that at time k–1 the multitarget posterior has an IGGM form with ( )

1| 1

i

k k
J

− −
 

components: 

( )
1| 1

( ) ( ) ( ) ( ) ( ) ( )

1| 1 , 1| 1 , 1| 1 , 1| 1 , 1| 1 , 1| 1
1

( ) ( ; , ) ( ; , )

i
k kJ

i i i i i i

k k n k k n k k n k k n k k n k k
n

p w N IG a u v
− −

− − − − − − − − − − − −
=

= x x m P . (53) 

The survival probability of the target 
, ,

( )
sv k sv k
 =x  is constant, and the density function of the 

newborn target is 
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,
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1
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p w N IG a u v
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=x x m P , (54) 

where ( )

, 1| 1

i

n k k
w

− −
 and ( )

, ,

i

b n k
w  are the weights of the target state. Then the predicted density of each 

Bernoulli component also has the IGGM form, which can be obtained from Equations (13), (14), (53), 

and (54): 

( ) ( )

, | 1 1| 1

i i

S k k k k sv
r r 

− − −
= , (55) 

( )
1| 1

( ) ( ) ( ) ( ) ( ) ( )
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i
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i i i i i i

S k k n k k n k k n k k n k k n k k
n

p w N IG a u v
− −

− − − − − − −
=

= x x m P , (56) 

where ( )

, | 1

i

n k k−
m , ( )

, | 1

i

n k k−
P , ( )

, | 1

i

n k k
u

−
, and ( )

, | 1

i

n k k
v

−
 are respectively shown in Equations (37), (38), (25), and 

(26). 

3.2.2. Update 

Suppose that at time k the predicted density of each Bernoulli component is  

( )
| 1

( ) ( ) ( ) ( ) ( ) ( )

| 1 , | 1 , | 1 , | 1 , | 1 , | 1
1

( ) ( ; , ) ( ; , )

i
k kJ

i i i i i i

k k n k k n k k n k k n k k n k k
n

p w N IG a u v
−

− − − − − −
=

=x x m P , (57) 

where ( ) ( ) ( )

| 1 1| 1 ,

i i i

k k k k b k
J J J

− − −
= + . Then this IGGM form remains unchanged after the update step, with 

( )
| 1

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

| , | , | , | , | , |
1

( ) ( ; , ) ( ; , )

i
k kJ

i i i i i i
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−

=
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( )
| 1

( )
| 1

( ) ( ) ( )

| 1 , | 1 , | 1
1
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| ( ) ( ) ( ) ( )

| 1 | 1 , | 1 , | 1
1
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( )

= 

1 ( )

i
k k

i
k k

J
i i i

k k n k k n k k
in

i sJ
k k i i i i

k k k k n k k n k k
n

i

s

r a w

r
r r a w









−

−

− − −
=

− − − −
=



 

= 
− +


  




P P

P

W

W

, (59) 

where the Gaussian component, the inverse gamma component, and the updated weight after the 

update process are given as follows: 

1:

( ) ( )

, | 1 , | 1 1:
( , ) ( , ) ( ) ( )

, , , | 1 , | 1 , 1:

( , )

( ; , )

( ; , ) ( ; , ) ( | )

− −

− −



 = 


   




W

x W

x x z x W
i
s

i i i

n k k n k k s
i i i i j i

n k n k n k k n k k j k l s

j l T

N

N N g
P P

m P

m P m P , (60) 

1:

( ) ( )

, | 1 , | 1 1:
( , ) ( , ) ( ) ( )

, , , | 1 , | 1 , 1:
( , )

( ; , )

( ; , ) ( ; , ) ( | )
i

s

i i i

n k k n k k s
i i ji i i

n k n k n k k n k k j k l s
j l T

IG a u v

IG a u v IG a u v g h a

− −

− −


 =


   




W

W

W
P P

, (61) 
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. (62) 

( ) ( ) ( )

, | 1 , | 1 , | 1
( 1)i i i

n k k n k k n k k
a u v

− − −
= −  is the mean value of the feature a, and the clutter density function is 

( ) ( ) ( )
z

c c A h= z z . The detection probability of sensor j is determined by 

1 1 2

1 2 2

(exp(( ) / ) )
( )

(2 exp( ( ) / ) )
j th th
d

th th

a F a F
p a

a F a F

  

  

  − − 
= 

 − − − − 
, (63) 

where 
th

F  is the gate, 
th

F  −1

1 1
 = (2-exp(- / )) , and 

2 1
exp( / )

th
F = − . 

4. Simulation Results and Analysis 

In this section, we explain the two simulation experiments we carried out to verify the proposed 

IGGM-MS-CPHD/MeMBer filters. First, the proposed filters were compared with the GM-MS-

CPHD/MeMBer filters. Then, we analyzed the performance of the proposed algorithms under 

different sensor distributions. The optimal subpattern assignment (OSPA) distance [34] was used as 

the error metric: 

1/( ) ( ) ( ) ( ( ))

1

1
( , ) ( (min ( , ) ( ))

n

m
p p pc c i i

p
i

d d c n m
n




=

= + −X Y X Y , (64) 

where order p = 1 and truncation threshold c = 100. 
1

= { ,..., }
m

x xX  and
1

= { ,..., }
n

y yY . ( )( , )cd x y  = 

min( ( , ), )d x y c  denote the distance between vector x and y cutting off at threshold c. Пn is the set of 

permutations on {1, 2, …, n}. 

4.1. System Model 

Figure 1 shows a two-dimensional scene with six targets in a uniform linear motion. Figure 2 

shows the detection probability of targets and their detection feature a. In this paper, the amplitude 

of the target echo signal was taken as the detection feature. Each feature obeyed the sinusoidal 

distribution with a period of 40 s. The observation process lasted for 100 frames and the sampling 

period was Δt = 1 s. 
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Figure 1. Truth trajectories of the target. 

 

Figure 2. Target detection probability and the feature a. 

The target state x contains the kinematics state x  and the detection feature a, where 
k

x  = 

, , , ,
[ , , , ]

x k x k y k y k
p p p p T  denotes the position and velocity. The measurement z also consists of the position 

measurement z  and the feature measurement h, i.e., [ , ]Th=z z , and [ , ]T

k k
r =z  is the range and 

bearing information. In Equation (33), the state transition matrix and the process noise covariance 

matrix are respectively 
3 2

2

2

1 1 3 2

2

0 0
3 2

1 0 0
0 00 1 0 0 2

0 0 1
0 0

0 0 0 1 3 2

0 0
2

k k v

t t

t t
t

t t t

t
t


− −

  
 
 

    
   
 = =  
    
       

 
  

F Q ,                (65) 

where the standard deviation of the process noise is 
v

  = 8 m/s2. 

For the nonlinear observation model, the extended Kalman filter (EKF) method [35] was used. 

The observation matrix and the measurement noise covariance matrix of sensor i are given as follows: 
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= =   
−     

 
+ +  

H R .         (66) 

The measurement noise in range and bearing are 
r

  = 30 m and   = 1°, respectively. 

, | 1 , | 1

i

x k k x k k x
p p 

− −
= +  and 

, | 1 , | 1

i

y k k y k k y
p p 

− −
= + , where [ , ]i i T

x y
   is the coordinate offset of the sensor i 

with respect to the fusion center. 

In the simulation, the target survival probability 
,sv k

  was set to 0.99. As shown in Table 1, the 

birth model was set according to the target initial states. For the detection feature a in the prediction 

process, we set the transfer parameter ku to 0.7, and the parameter in measurement likelihood was set 

to   = 3. In Equation (63), we set 
th

F  to 5.5, 1  to 4, and 2  to 2. We assumed that the clutter 

measurements generated by the sensors were Poisson with the uniform spatial distribution ( )c z  and 

mean clutter rate 
c
 , i.e., ( )

k
 z  = ( ) ( ; , ) ( | )

c k k k
c IG a u v g h a da  z . 

Table 1. The target initial states. 

Target State x  u v Survival time (s) 

1 [6000, −80, 6000, −80]T 51 400 [1 70] 

2 [6000, −100, 6000, −15]T 51 400 [10 70] 

3 [−6000, −15, 6000, −100]T 41 360 [15 80] 

4 [−6000, 110, 6000, −75]T 41 360 [20 100] 

5 [0, −50, −6000, 75]T 51 500 [30 100] 

6 [0, 70, −6000, 60]T 51 500 [40 100] 

For efficiency purposes, the pruning and merging methods in [10] and [29] were adopted in this 

paper. For the greedy measurement partitioning algorithm, the maximum number of the 

measurement subsets Wmax was set to 4, and the maximum number of partitioning hypotheses Pmax 

was set to 4. In the GM-MS-CPHD/MeMBer filters, the detection probability 
d

p  was fixed at 0.9. 

4.2. Simulation 1 

This section verifies the performance of the proposed IGGM-MS-CPHD/MeMBer filters in 

scenarios where the detection probability is unknown and dynamically changing. As shown in Figure 

1, the sensors were located at [0 km, 0 km], [10 km, 10 km], [−10 km, 10 km], [−10 km, −10 km], and 

[10km, −10km], respectively. We took Sensor 1 as the fusion center, and the scopes of the sensors are 

shown in Table 2. 

Table 2. The scopes of the sensors. 

Sensor Range r Bearing θ 

1 0–10 km 0–360° 

2 0–25 km 180–270° 

3 0–25 km 270–360° 

4 0–25 km 0–90° 

5 0–25 km 90–180° 
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The average clutter intensity 
c
  was set to 10, with shape parameter 

k
u  set to 31 and scale 

parameter 
k

v  set to 280. Figure 3 shows the observation results of the sensors, in which the black 

dots represent the measurements. 

 

Figure 3. Measurement of the sensors. 

Specifically, we compared the traditional GM-MS-CPHD/MeMBer filters with the IGGM-MS-

CPHD/MeMBer filters derived in this paper. The average OSPA and the cardinality estimation of the 

four algorithms with 100 Monte Carlo runs are shown in Figures 4 and 5. It can be seen that at the 

beginning of the filtering process the four filters achieve similar filtering performance. The detection 

probability of Target 1 was lower than 0.4 at about 30 s, while the parameter was fixed at pd = 0.9. As 

the detection probability decreases the filtering performance of the GM-MS-CPHD/MeMBer filters 

begins to deteriorate with a cardinality estimation bias. In contrast, the proposed IGGM-MS-

CPHD/MeMBer filters have lower OSPA distances and obtain a smaller deviation of the estimated 

cardinality. 

 

Figure 4. Optimal subpattern assignment (OSPA) distance. 
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Figure 5. Estimation of the cardinality. 

Table 3 shows the average single-step running time of the four algorithms with 100 Monte Carlo 

simulations. It can be seen that the proposed IGGM-MS-CPHD/MeMBer filters have a higher 

computational cost, and the IGGM-MS-CPHD filter demands the longest time. 

Table 3. Average single-step running time. 

IGGM-MS-CPHD IGGM-MS-MeMBer GM-MS-CPHD GM-MS-MeMBer 

180 ms 75 ms 127 ms 58 ms 

The filtering performances under different clutter intensities are shown in Figures 6 and 7. We 

observed that a higher clutter intensity leads to a larger OSPA distance and more computational cost. 

By comparison, the IGGM-MS-MeMBer filter is the most efficient method. 

 

Figure 6. OSPA distances for different clutter intensities. 

 

Figure 7. Average running times for different clutter intensities. 



Electronics 2019, 8, 741 15 of 17 

 

4.3. Simulation 2 

This section analyzes the performance of IGGM-MS-CPHD/MeMBer filters under different 

sensor distributions. Suppose that there are four sensors in the two-dimensional space for observation. 

All sensors have the same scope with bearing  (0–360°) and range r (0–25 km), and the other 

parameters are the same as those in Simulation 1. Three distributions of sensors are given as follows: 

• Case 1: assume that the four sensors are located at [−10 km, 10 km], [−10 km, −10 km], [10 km, 

−10 km], and [10 km, 10 km], respectively; 

• Case 2: assume that the four sensors are located at [−10 km, 0 km], [0 km, −10 km], [10 km, 0 

km], and [0 km, 10 km], respectively; 

• Case 3: assume that the four sensors are located at [−9 km, −10 km], [−3 km, −10 km], [3 km, 

−10 km], and [9 km, −10 km], respectively. 

The performance of IGGM-MS-CPHD/MeMBer filters under different sensor distributions is 

shown in Figure 8. It can be seen that the distribution of sensors has an important effect on the filtering 

errors, while the running time is barely affected by the sensor distributions. We observed that the 

proposed IGGM-MS-CPHD/MeMBer filters and the GM-MS-CPHD/MeMBer filters can achieve a 

better filtering accuracy when the sensors are dispersed in the monitoring area (e.g., Cases 1 and 2). 

 

Figure 8. Performance under different sensor distributions. 

5. Conclusions 

In this paper, a multisensor CPHD filter and a multisensor MeMBer filter were derived for the 

unknown and varying detection probability case. By using the IGGM model, the proposed filters can 

estimate the unknown and changing detection probability. The simulation results show that the 

proposed methods have improved filtering performances as well as higher computational costs with 

unknown and dynamically changing detection probability. We also conclude that the distribution of 

sensors has an important influence on the filtering accuracy, and the filters perform better when the 

sensors are dispersed in the monitoring area. Future work will explore the multisensor multitarget 

filter, which can estimate the clutter intensity and the detection probability adaptively, and refine the 

proposed algorithms in this paper to output target tracks. 
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