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Abstract: The accurate estimation of the state of charge (SOC) is usually acknowledged as one
of the essential features in designing of battery mAnagement system (BMS) for the lithium-ion
batteries (LIBs) in electric vehicles (EVs). A suitable battery model is A prerequisite for correct SOC
measurement. In this work, the first and second order RC autoregressive exogenous (ARX) battery
models are adopted to check the influence of voltage and current transducer measurement uncertainty.
The Lagrange multiplier method is used to estimate the battery parameters. The sensitivity analysis
is performed under the following conditions: Current sensor precision of ±5 mA, ±50 mA, ±100 mA,
and ±500 mA and voltage sensor precision of ±1 mV, ±2.5 mV, ±5 mV, and ±10mV. The comparative
analysis of both models under the perturbed environment has been carried out. The effects of the
sensor’s sensitivity on the different battery structures and complexity are also analyzed. Results
shows that the voltage and current sensor sensitivity has A significant influence on SOC estimation.
This research outcome assists the researcher in selecting the optimal value of sensor accuracy to
accurately estimate the SOC of the LIB.

Keywords: state of charge (SOC); sensitivity analysis; current sensor precision; voltage sensor
precision

1. Introduction

Due to escalation in environmental pollution and energy prices, electric vehicles (EVs) have been
widely explored in the past few years. Battery electric vehicles (BEVs), plug-in hybrid electric vehicles
(PHEVs), and fuel cell electric vehicles (FCEVs) are the different variants of EVs [1]. According to A
report [2], the annual sale of EVs is anticipated to be almost 100 million at the end of the year 2050.
These EVs consist of energy storage and the motor system as the secondary or mAin energy source
(FCEVs and PHEVs) or the sole energy source (BEVs) [3]. Sodium sulphur (NaS) batteries, sodium
nickel chloride (NaNiCl), vanadium redox flow batteries (VRFB), zinc bromine flow batteries (ZBFB),
lead-acid batteries, lithium-ion batteries (LIBs), and nickel metal hydride batteries (NiMH) can be used
as an energy storage system (ESS) in EVs [4,5]. The LIBs have the most promising features like high
energy and power density, lightweight, low self-discharge rate, long life span, and better efficiency
as compared to others [5]. The LIB is not only the weightiest onboard ESS for EVs [6,7] but also an
integral part of the smart grid [8,9]. An advanced battery mAnagement system (BMS) is needed to
ensure safe, reliable, and efficient operation of LIB in EVs, which can measure/estimate state of charge
(SOC), state of health (SOH), and state of power (SOP) with high accuracy [10,11].
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Assortments of methodologies can be found in the literature to estimate the SOC of the LIB. Each
methodology has its own supremacy and lapses [10]. In model-based techniques, the identification of
model parameters and SOC estimation are key indicators in A BMS to protect the LIB. The SOC estimation
accuracy mAinly relies on the operational conditions, battery aging, modeling error, and measurement
uncertainty. He et al. [12] proposed an improved second order RC model to tackle the effects of different
charging and discharging rates on the cell capacity. They used an adaptive extended Kalman filter (AEKF)
to estimate the SOC. The Lagrange multiplier method was adopted to find the parameters of battery
model under different current variations [13]. In other studies [14–16], the effects of temperature variation
have been considered to develop A temperature compensated model to estimate the SOC of LIB. Wang et
al. [17] proposed A joint estimator to measure the SOC and available energy of LIB. They jointly considered
the effects of temperature and different charge/discharge rates to estimate the states using particle filter
(PF). In [18], the authors implemented the unscented Kalman filter (UKF) with an improved battery model
to observe the effects of temperature variation and charge/discharge rate. Zheng et al. [19] considered
the effect of battery aging to estimate the SOC accurately. The experimental results show the accuracy
of their proposed methodology. Chaoui et al. [20] proposed A time-delayed neural network method to
estimate the SOC and SOH of the LIB. Battery temperature, voltage, and current values were the input of
the estimator. Their presented methodology compensated the nonlinear battery degradation due to aging.
Xiong et al. [21] proposed A battery model against different aging level of batteries. Their experimental
results show the effectiveness and accuracy of the proposed model at different aging levels at 1 s sampling
time. The estimation error of their proposed approach was less than 2%. In [22], the authors thoroughly
investigate the different sources of errors in online SOC estimation methods.

The effects of sensor sensitivity on the modeling parameters and SOC estimation remain an
emerging research area. A temperature-compensated battery model was developed to find the
parameters at different temperatures [23]. A dual PF was proposed to estimate the SOC and drift
current to eliminate the drift-noise error. They added A static parameter in A temperature-compensated
model to address the issue of drift current. The results reveal that their proposed model has mAximum
errors of 2.83% and 5.11% at 0.15% current drift and 45 ◦C respectively. In [24], A nonlinear observer to
estimate the SOC of LIB was designed, and it shows that the estimation error did not exceed 4.5% in
the presence of voltage and current sensor errors of 2.5% and 5% respectively.

The measuring current/voltage sensor error can be divided into two groups: Fixed errors and
random errors. The fixed error is A static value which can add into measured value at any given time.
This error can be tackled easily by calibrating the resultant measured value. A random error primarily
induced by the resolution of voltage/current sensors [25]. Lai et al. [26] compared different equivalent
circuit models for estimating the SOC. They added fixed voltage and current drift error to analyze
the effects on SOC estimation. The increase of 35.5% and 37.8% in estimation error was observed at
0.1 A uncertainty in first and second order battery models respectively. The effects of sensor error and
sampling time on states estimation of LIB was studied in [27]. The authors used A first order RC circuit
in their work. The mAximum noted estimation error was 1.72% at 0.1 s sampling time.

In this paper, the sensor sensitivity analysis is evaluated to observe the sensor precision effects on
identified battery model parameters and estimated SOC. The experiment is performed to determine the
OCV-SOC relationship. The Lagrange multiplier method is adopted to determine the online battery
parameters and SOC of the first and second order RC autoregressive exogenous (ARX) battery model. The
sensitivity analysis is carried out for these scenarios: Current sensor precision of ±5 mA, ±50 mA, ±100 mA,
and±500 mA and voltage sensor precision of±1 mV,±2.5 mV,±5 mV, and±10 mV. The comparative analysis
of the models under the perturbed environment has been carried out to draw some insightful results.

2. Autoregressive Exogenous (ARX) Battery Models and Parameter Identification Technique

This section explains the two different ARX battery model and their associated parameters
estimation methodology. In this work, first order and second order RC models have been selected
owing to their high accuracy and reliability for LIB [26].
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2.1. Battery Models

2.1.1. First Order ARX Battery Model

Figure 1 shows the schematic diagram of the first order RC model [28]. The battery model consists
of battery open circuit voltage Vocv(SOC), battery internal resistance Rin, electrochemical diffusion
resistance Rap, and electrochemical diffusion capacitance Cap. The parallel RapCap network modeled
the transient behavior of the battery. Vin and Vap denote the voltage drop across Rin and RapCap,
respectively. Iload and Vt are the charge/discharge current and terminal voltage of the battery.
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Figure 1. Schematic diagram of first order RC ARX battery model for lithium-ion battery.

According to the first order ARX battery model, the electrical behavior of the battery
in mAthematical form can be expressed as follows [29]:

Vocv(SOC) =
Vt + Vin + Vap

Vt + IloadRin + Vap

}
(1)

.
Vap = −

1
RapCap

Vap +
1

Cap
Iload (2)

2.1.2. Second Order ARX Battery Model

Figure 2 shows the schematic diagram of the second order RC model [30]. The battery model
consists of battery open circuit voltage Vocv(SOC), battery internal resistance Rin, electrochemical diffusion
resistance Rap, electrochemical diffusion capacitance Cap, concentration polarization resistance Rcp, and
concentration polarization capacitance Ccp. The combination of parallel RapCap and RcpCcp network
modeled the transient behavior of the battery. Vin, Vap, and Vcp denote the voltage drop across Rin, RapCap,
and RcpCcp respectively. Iload and Vt are the charge/discharge current and terminal voltage of the battery.
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According to second order ARX battery model, the electrical behavior of the battery
in mAthematical form can be expressed as follows [29]:

Vocv(SOC) =
Vt + Vin + Vap + Vcp

Vt + IloadRin + Vap + Vcp

}
(3)
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.
Vap = −

1
RapCap

Vap +
1

Cap
Iload (4)

.
Vcp = −

1
RcpCcp

Vcp +
1

Ccp
Iload (5)

2.2. Lagrange Multiplier Method for Parameter Estimation

2.2.1. First Order ARX Battery Model

By applying the Laplace transform to Equations (1) and (2), the frequency domain model of the
first order ARX battery model can be written as:

Vt = Vocv(SOC) − Iload(s)Rin − Iload(s)
Rap

1 + RapCaps
(6)

Defining Vocv(SOC) −Vt = Vb in Equation (6), the transfer function of the model can be written
as:

G(s) =
Vb(s)

Iload(s)
=

Rin + Rap + RinRapCaps
1 + RapCaps

(7)

By applying bilinear transformation s = 2(z− 1)/Ts(z + 1) in the above Equation, the first order
ARX battery model can be discretized as:

G
(
z−1

)
=

Vb
(
z−1

)
Iload(z−1)

=
a + bz−1

1 + cz−1
(8)

By applying inverse z-transform, the frequency domain battery model can be converted to time
domain discrete battery model as:

Vb(k + 1) = c Vb(k) + a Iload(k + 1) + b Iload(k)
Vocv(SOC)(k + 1) −Vt(k + 1) = c (Vocv(SOC)(k + 1) −Vt(k + 1)) + a Iload(k + 1) + b Iload(k)

(9)

where k is the discrete time points and its value are k = 0, 1, 2, 3, . . . , N seconds.
Now defining

Vb(k + j) = y(k + j); f or j = 1, 2, 3, . . . , N
Vb(k + j) = xa(k + j + 1); f or j = 0, 1, 2, . . . , N
Iload(k + j) = xb(k + j); f or j = 1, 2, 3, . . . , N

Iload(k + j) = xc(k + j + 1); f or j = 0, 1, 2, . . . , N

 (10)

Suppose 
y (k + 1)
y (k + 2)

...
y(k + N)

 =


xa(k + 1) xb(k + 1) xc(k + 1)
xa(k + 2) xb(k + 2) xc(k + 2)

...
...

...
xa(k + N) xb(k + N) xc(k + N)




c
a
b

 (11)

or
y(k) = X(k)A (12)

where

x(k + j) =


xa(k + j)
xb(k + j)
xc(k + j)

 ∀ j = 1, 2, 3, . . . , N. (13)

A =


c
a
b

 (14)
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These variables a, b, and c can be identified using the Lagrange multiplier method reported in [13].
The Lagrange multiplier method is adopted due to low computational complexity, better convergence
time, and high accuracy. After identifying the values, the battery parameters of the first order RC
model can be calculated by using the following formulas.

Rin = a−b
1−c

Rap =
2(ca+b)

1−c2

Cap =
T(1+c)2

4(ca+b)

 (15)

2.2.2. Second Order ARX Battery Model

By applying the Laplace transform to Equations (3)–(5), the frequency domain model of the second
order ARX battery model can be written as:

Vt = Vocv(SOC) − Iload(s)Rin − Iload(s)
Rap

1 + RapCaps
− Iload(s)

Rcp

RcpCcps
(16)

Putting Vocv(SOC)−Vt = Vb in Equation (16), the transfer function of the model can be written as:

G(s) =
Vb(s)

Iload(s)
=

Rin + Rap + RinRapCaps
1 + RapCaps

(17)

Put RapCap = τap and RcpCcp = τcp in Equation (17), it becomes

G(s) =
Vb(s)

Iload(s)
=

Rins2 +
Rin(τap+τcp)+Rapτcp+Rcpτap

τapτcp
s +

Rin+RapRcp
τapτcp

s2 +
τap+τcp
τapτcp

s + 1
τapτcp

(18)

By applying bilinear transformation s = 2(z− 1)/Ts(z + 1) in the above equation, the second
order ARX battery model can be discretized as:

G
(
z−1

)
=

Vb
(
z−1

)
Iload(z−1)

=
a + bz−1 + cz−2

1− dz−1 − ez−2
(19)

By applying inverse z-transform, the frequency domain battery model can be converted to time
domain discrete battery model as:

Vb(k + 1) = d Vb(k) + e Vb(k− 1) + a Iload(k + 1) + b Iload(k) + c Iload(k− 1) (20)

where k is the discrete time points and its values are k = 0, 1, 2, 3, . . . , N seconds.
Now defining

Vb(k + j) = y (k + j); f or j = 1, 2, 3, . . . , N

Vb(k + j) = xa (k + j + 1); f or j = 0, 1, 2, . . . , N

Vb(k + j− 1) = xb (k + j + 1); f or j = 0, 1, 2, . . . , N

Iload(k + j) = xc(k + j); f or j = 1, 2, 3, . . . , N

Iload(k + j) = xd(k + j + 1); f or j = 0, 1, 2, . . . , N

Iload(k + j− 1) = xe (k + j + 1); f or j = 0, 1, 2, . . . , N


(21)

Suppose
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y (k + 1)
y (k + 2)

...
y(k + N)

 =


xa(k + 1) xb(k + 1) xc(k + 1) xd(k + 1) xe(k + 1)
xa(k + 2) xb(k + 2) xc(k + 2) xd(k + 2) xe(k + 2)

...
...

...
...

...
xa(k + N) xb(k + N) xc(k + N) xd(k + N) xe(k + N)





d
e
a
b
c


(22)

or
y(k) = X(k)A (23)

where

x(k + j) =


xa(k + j)
xb(k + j)
xc(k + j)
xd(k + j)
xe(k + j)


∀ j = 1, 2, 3, . . . , N. (24)

A =


d
e
a
b
c


(25)

These variable a, b, c, d, and e can be identified using the Lagrange multiplier method as discussed
above at the end of the Section 2.2.1. After identifying the values, the battery parameters of the second
order ARX battery model can be calculated by using the following equations.

Rin = a−b+c
d−c+1

RapCapRcpCcp = −
T2(d−e+1)
4(d+e−1)

RapCap + RcpCcp =
T(1+e)
(d+e−1)

Rin + Rap + Rcp = a+b+c
d+e−1

RapCap
(
Rin + Rcp

)
+ RcpCcp

(
Rin + Rap

)
=

T(a−c)
(d+e−1)


(26)

3. Adaptive OCV and SOC Estimator

3.1. OCV Estimator

Using α1 = exp
(
−

t
τap

)
, the discrete form of Equations (1) and (2) can be written as:

Vap(k + 1) = Vap(k)α1 + Iload(k)Rap(1− α1) (27)

Vap(k) = Vocv(k) −Vt(k) − Iload(k)Rin (28)

Placing Equation (28) into Equation (27), it becomes:

Vocv(k + 1) = Vocv(k)α1 − [Vt(k) + Iload(k)Rin]α1 + Iload(k)Ra(1− α1) + Vt(k + 1)

+Iload(k + 1)Rin
(29)

As OCV is A very slow varying function, then Vocv(k + 1) � Vocv(k), so Equation (29) can be
written as [13,31]:

ˆVocv(k + 1) =
Vt(k + 1) + Iload(k + 1)Rin − [Vt(k) + Iload(k)Rin]α1 + Iload(k)Ra(1− α1)

1− α1
(30)

Similarly, using Equation (20), the second order ARX battery model OCV estimator can be
developed as:
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Vocv(k) −Vt(k) = d (Vocv(k− 1) −Vt(k− 1)) + e(Vocv(k− 2) −Vt(k− 2)) + a Iload(k)

+b Iload(k− 1) + c Iload(k− 2)
(31)

After rearranging Equation (31), it becomes:

Vocv(k) − dVocv(k− 1) − e(Vocv(k− 2) = Vt(k) − dVt(k− 1) − eVt(k− 2)) + a Iload(k)

+b Iload(k− 1) + c Iload(k− 2)
(32)

As OCV is A very slow varying function, then Vocv(k) � Vocv(k− 1) � Vocv(k− 2), so (32) can be
written as:

ˆVocv(k) =
Vt(k) − dVt(k− 1) − eVt(k− 2)) + a Iload(k) + b Iload(k− 1) + c Iload(k− 2)

1− d− e
(33)

3.2. SOC Estimator

The SOC of the LIB is usually known as the ratio of currently available battery capacity to the
nominal/reference battery capacity [32,33]. The nominal/reference battery capacity commonly leads
to the mAximum battery capacity, which can release at A constant current rate and specific ambient
temperature. The time domain discrete form of SOC function can be stated as:

SOC(k + 1) = SOC(k) −
ηT
Cn

i(k) (34)

The SOC(k) and i(k) are the SOC and current of LIB at kth interval, Cn, η, and T are the
nominal/reference capacity, columbic efficiency and sampling interval. Usually η of commercial LIB
is almost equal to 1 [34,35]. The SOC of the LIB is the function of OCV. The details of the SOC-OCV
function are mentioned in Section 5. Using Equations (30) and (33) the estimated OCV of the ARX
battery model can easily be converted into SOC by using the following equation.

SOC = f−1(Vocv)
ˆSOC = f−1

(
ˆVocv

)  (35)

The general flow chart of the algorithm is shown in Figure 3.
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3.2. SOC Estimator  

The SOC of the LIB is usually known as the ratio of currently available battery capacity to the 

nominal/reference battery capacity [32,33]. The nominal/reference battery capacity commonly leads 

to the maximum battery capacity, which can release at a constant current rate and specific ambient 

temperature. The time domain discrete form of SOC function can be stated as: 

𝑆𝑂𝐶(𝑘 + 1) = 𝑆𝑂𝐶(𝑘) −
𝜂𝑇

𝐶𝑛
𝑖(𝑘) (34) 

The 𝑆𝑂𝐶(𝑘) and 𝑖(𝑘) are the SOC and current of LIB at kth interval, 𝐶𝑛 , 𝜂 , and 𝑇  are the 

nominal/reference capacity, columbic efficiency and sampling interval. Usually 𝜂 of commercial LIB 

is almost equal to 1 [34,35]. The SOC of the LIB is the function of OCV. The details of the SOC-OCV 

function are mentioned in Section 5. Using Equations (30) and (33) the estimated OCV of the ARX 

battery model can easily be converted into SOC by using the following equation.  

𝑆𝑂𝐶 = 𝑓−1(𝑉𝑜𝑐𝑣)

𝑆𝑂�̂� = 𝑓−1(𝑉𝑜𝑐�̂�)
} (35) 

The general flow chart of the algorithm is shown in Figure 3. 
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4. Experimental Setup and Estimated SOC

The experimental test configuration system is shown in Figure 4. The LIB was placed inside A
thermal chamber to mAintain the battery temperature at 27 ± 1 ◦C. The voltage and current transducer
were used to measure and monitor terminal voltage and charge/discharge current at 1 s sample time.
The transducers have A mAximum measuring error of 0.25%. The Arduino mega 2560 interfaced
with mATLABTM was used to control the charging and discharging of LIB.
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The mAin specification of LIB used in this research work is listed in Table 1.

Table 1. Specification of the tested LIB (Samsung ICR18650-26F) [36].

Type Nominal
Capacity

Maximum
Discharge

Current

Maximum
Charge
Current

Nominal
Voltage

Discharge
Cut-Off
Voltage

Charge
Termination

Voltage

LICoO2 2600 mAh 2 C, 5.2 A 2.6 A 3.7 V 2.75 V 4.2 V

The OCV test for Samsung ICR18650-26F LIB cell was performed as mentioned in [37]. The
average OCV of the charge and discharge cycle is retained to tackle the hysteresis phenomenon. The
SOC-OCV function is highly nonlinear, which can be expressed in polynomial form as written below:

Vocv = f (SOC) = a1SOC7 + a2SOC6 + a3SOC5 + a4SOC4 + a5SOC3 + a6SOC2 + a7SOC + a8 (36)

where a is the values of the polynomial coefficient, which are listed in Table 2, and Figure 5 shows the
OCV test result.
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Table 2. Values of a for SOC-OCV function expressed in Equation (36).

Polynomial Coefficients Values

a1 4.602 × 10−13

a2 −1.576 × 10−10

a3 2.103 × 10−8

a4 −1.386 × 10−6

a5 4.881 × 10−5

a6 1.056 × 10−3

a7 23.27× 10−3

a8 3.214

The estimated SOC results of both models are summed up in Table 3. The slight supremacy of the
second order ARX model is found on the first order ARX model with A slightly high computational
complexity. These are well in-line with the literature [26,29]. To determine the computational speed
of both models, the algorithm was run repeatedly for 10 times. The desktop-PC has the following
specifications: 3.4 GHz CPU and 8.0 GB RAM.

Table 3. Comparison of first order and second order ARX battery models without uncertainties.

First Order ARX Model Second Order ARX Model

Computational speed (s) 1.1878 1.2831
Mean absolute error of SOC 0.94% 0.87%

5. Simulation Results

In this section, the impact of sensor accuracy/precision on battery modeled parameters and
estimated SOC is evaluated for the following scenarios: (i) current sensor precision (∆I) and (ii) voltage
sensor precision (∆V). The random error of the sensor accuracy simulated on mATLABTM and inserted
in the measured value of voltage and current in Equations (9) and (20) to analyze their respective effects.

5.1. Sensitivity Analysis of First Order ARX Model

5.1.1. Current Sensor Accuracy/Precision Effect

In this work, the four values of ∆I (i.e., ±5 mA, ±50 mA, ±100 mA, and ±500 mA) are considered to
analyze their respective effects on model identification, OCV, and SOC estimation. Figure 6a–c shows
the identified model parameters, estimated OCV, and estimated SOC under different uncertainties in
current sensor. It is evident from the Figures that the value of error in the parameters and estimated
SOC increases with the increase in the sensor’s uncertainty. The mAximum relative noted error in
Rin, Rap, and Cap are 0.06%, 3.74%, and 0.47% in the presence of 5 mA uncertainty, the current sensor
accuracy mostly affected the value of Rin and Rap as shown in Figure 6a. The noted root means square
error (RMSE) in OCV estimation is 0.06 mV with 5 mA uncertainty in the measured current value, and
the mean absolute error (MAE) in the SOC estimation is only 0.0091%. At 500 mA uncertainty in the
measured current value, the mAximum error in estimated SOC and OCV is 7.929% and 27.1 mV. The
results of statistical error analysis are summed up in Table 4.

Table 4. Statistical error analysis at different values of current sensors.

∆I (mA)
Maximum Error Root Means Square Error (RMSE) Mean Absolute Error (MAE)

SOC 1 (%) OCV (mV) SOC 1 (%) OCV (mV) SOC 1 (%) OCV (mV)

5 0.0667 0.26 0.01 0.06 0.0091 0.05
50 0.8784 2.90 0.13 0.68 0.0962 0.54
100 1.6955 5.40 0.27 1.40 0.1945 1.10
500 7.929 27.1 1.36 6.90 0.9729 5.50

1 It does not include modelling error. Modelling mAE of first order ARX = 0.94%.
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5.1.2. Voltage Sensor Accuracy/Precision Effect

In this work, the four values of ∆V (i.e., ±1 mV, ±2.5 mV, ±5.0 mV, and ±10 mV) are considered to
analyze their respective effects on model identification, OCV, and SOC estimation. Figure 7a–c shows
the identified model parameters, estimated OCV, and estimated SOC under different uncertainties in
voltage sensor. It is evident from the Figures that the value of error in the parameters and estimated
SOC rapidly increases with the increase in the sensor’s uncertainty as compared to uncertainty in
current sensor. The mAximum relative noted error in Rin, Rap, and Cap are 0.2%, 0.96%, and 2.41% in
the presence of 5 mV uncertainty. The noted RMSE in OCV estimation is 1.4 mV with 5 mV uncertainty
in the measured value and the mAE in the SOC estimation is only 0.20%. At 10 mV uncertainty in the
measured value, the mAximum error in estimated SOC and OCV is 3.30% and 1.1 mV. The results of
statistical error analysis are summed up in Table 5.

Table 5. Statistical error analysis at different values of voltage sensors.

∆V (mV)
Maximum Error Root Means Square Error

(RMSE)
Mean Absolute Error

(MAE)

SOC 1 (%) OCV (mV) SOC 1 (%) OCV (mV) SOC 1 (%) OCV (mV)

1 0.33 1.0 0.05 0.2 0.03 0.2
2.5 0.78 2.6 0.12 0.6 0.08 0.4
5 1.69 5.2 0.28 1.4 0.20 1.1
10 3.30 1.1 0.53 2.7 0.37 2.2

1 It does not include modelling error. Modelling mAE of first order ARX = 0.94%.
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5.2. Sensitivity Analysis of Second Order ARX Model

5.2.1. Current Sensor Accuracy/Precision Effect

In sensitivity analysis of second order ARX model same values of ∆I (i.e., ±5 mA, ±50 mA,
±100 mA, and ±500 mA) are considered to analyze their respective effects on model identification,
OCV, and SOC estimation. The same current error value was used to identify and estimate the states
of both (first and second order ARX) models. Figure 8a–c shows the identified model parameters,
estimated OCV, and estimated SOC under different uncertainties in current sensor. It is evident from
the Figures that the value of error in the parameters and estimated SOC increases with the increase
in the sensor’s uncertainty. The mAximum relative noted error in Rin, Rap, Cap, Rcp, and Ccp are 6.6%,
40%, 1.8%, 33%, and 2.2% in the presence of 500 mA uncertainty, the current sensor accuracy mostly
affected the value of Rin, Rap, and Rcp as shown in Figure 8a. The noted RMSE in OCV estimation is
1.25 mV with 500 mA uncertainty in the measured current value and the mAE in the SOC estimation is
only 0.9501%. The results of statistical error analysis are summed up in Table 6.

Table 6. Statistical error analysis at different values of current sensors.

∆I. (mA)
Maximum Error Root Means Square Error

(RMSE)
Mean Absolute Error

(MAE)

SOC 1 (%) OCV (mV) SOC 1 (%) OCV (mV) SOC 1 (%) OCV (mV)

5 0.0691 0.24 0.01 0.05 0.0084 0.04
50 0.7021 2.01 0.11 0.58 0.0725 0.47

100 1.2134 5.02 0.31 1.44 0.2112 1.12
500 2.7016 34.7 1.25 6.43 0.9501 5.32

1 It does not include modelling error. Modelling mAE of second order ARX = 0.87%.
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5.2.2. Voltage Sensor Accuracy/Precision Effect

In sensitivity analysis of second order ARX model same values of ∆V (i.e., ±1 mV, ±2.5 mV,
±5.0 mV, and ±10 mV) are considered to analyze their respective effects on model identification, OCV,
and SOC estimation. The same voltage sensor error value was used to identify and estimate the states
of both (first and second order ARX) models. Figure 9a–c shows the identified model parameters,
estimated OCV, and estimated SOC under different uncertainties in current sensor. It is clear from the
Figures that the value of error in the parameters and estimated SOC increases with the increase in the
sensor’s uncertainty. The relative error profile of Rin, Rap, Cap, Rcp, and Ccp is shown in Figure 9a. The
results of statistical error analysis of voltage sensor are listed in Table 7.

Table 7. Statistical error analysis at different values of voltage sensors.

∆V (mV)
Maximum Error Root Means Square Error

(RMSE)
Mean Absolute Error

(MAE)

SOC 1 (%) OCV (mV) SOC 1 (%) OCV (mV) SOC 1 (%) OCV (mV)

1 0.0941 1.03 0.03 0.25 0.0226 0.19
2.5 0.7234 0.67 0.06 0.41 0.0532 0.34
5 1.1959 1.64 0.19 1.12 0.1799 1.01
10 2.7246 3.03 0.34 2.21 0.3250 2.00

1 It does not include modelling error. Modelling mAE of second order ARX = 0.87%.
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6. Discussion 

Some evocative results can be drawn using the simulated results presented in Section 5.  

Different variations of voltage transducer precision (i.e., ±1 mV, ±2.5 mV, ±5 mV, and ±10 mV) 

were applied for parameter identification and SOC estimation of both (1RC and 2RC) ARX models. 

The results reveal that the small variation in voltage sensor accuracy has a significant impact on 

model accuracy and model accuracy has a direct effect on SOC estimation. When the uncertainty of 

±1 mV was applied to the measured voltage values, an increase of 0.03% and 0.02% in the MAE was 

noted for first and second order ARX models, respectively. In case of ±10 mV uncertainty, the change 

in maximum noted the errors of SOC estimation are 3.30% and 2.72% for first and second order RC 

models respectively, which is not acceptable for SOC estimation of LIB. It is also important to note 
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6. Discussion

Some evocative results can be drawn using the simulated results presented in Section 5.
Different variations of voltage transducer precision (i.e., ±1 mV, ±2.5 mV, ±5 mV, and ±10 mV)

were applied for parameter identification and SOC estimation of both (1RC and 2RC) ARX models.
The results reveal that the small variation in voltage sensor accuracy has A significant impact on
model accuracy and model accuracy has A direct effect on SOC estimation. When the uncertainty of
±1 mV was applied to the measured voltage values, an increase of 0.03% and 0.02% in the mAE was
noted for first and second order ARX models, respectively. In case of ±10 mV uncertainty, the change
in mAximum noted the errors of SOC estimation are 3.30% and 2.72% for first and second order RC
models respectively, which is not acceptable for SOC estimation of LIB. It is also important to note
that the small change in ∆V has A huge influence on model parameters and SOC estimation as shown
in Tables 5 and 7. Therefore, to ensure the accurate estimation of model parameters and SOC, it is
recommended that the accuracy of the voltage sensor must be high, and it should be less than ±2.5 mV.

Similarly, different uncertainties (i.e., ±5 mA, ±50 mA, ±100 mA, and ±500 mA) in current sensor
accuracy were also applied for model identification and SOC estimation of both (1RC and 2RC) ARX
models. The current transducer sensitivity has an adverse influence on the model’s parameter and
SOC estimation. The error of ±5 mA and ±50 mA in the measured battery’s current has A negligible
influence on the accuracy of estimated SOC. As the value of error increased to ±0.1 A in 1RC battery
model, the changes in the mAximum SOC error and mAE are 1.69% and 0.19% respectively (Table 4).
The changes in mAE and mAximum error for the 2RC model at ±0.5 A are 0.95% and 2.70% respectively
(Table 6). It is important to note that the small inaccuracy in the measured current did not have any
drastic effect on the accuracy of estimated SOC as compared to voltage sensor inaccuracy. Therefore, to
confine the SOC and parameters accuracy, the current accuracy should be less than ±0.05 A.

The second order RC battery model has better accuracy and high complexity compared to the 1RC
battery model. The listed error values in Tables 4–7 show only the error due to the sensor’s sensitivity.
The mAE and relative mAE of both models are compared in Figure 10. From the results presented in
Tables 4–7 and Figure 10, the sensor errors have the same influence on the SOC estimation of both
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models. Therefore, it can be concluded that the error in sensor sensitivity has no direct association
with the structure and complexity of the battery model.
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7. Conclusions

In this work, the impact of sensor sensitivity was analyzed to observe their respective influences on
parameter identification and SOC estimation. First and second order ARX battery models were adopted
to evaluate the impact of sensor sensitivity. The battery was modeled using the Lagrange multiplier
method. The voltage sensor error (i.e., ±1 mV, ±2.5 mV, ±5 mV, and ±10 mV) and current sensor
error (i.e., ±5 mA, ±50 mA, ±100 mA, and ±500 mA) were simulated and inserted in the measured
values. The results reveal that the voltage sensitivity has A very high impact on SOC estimation, and
the accuracy of the voltage sensor should be ≥0.05% (with 5 V range) for first order mAE ≤1.02%
and second order mAE ≤0.92%. The current sensory uncertainty has A lesser impact as compared to
the voltage sensor. The accuracy of the current sensor ≥0.5% (with 10 A range) for first order mAE
≤1.03% and second order mAE ≤0.94%. The comparative analysis of both models revealed that the
uncertainties in both sensors have the same influence on the SOC estimation despite the type of
battery models.
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