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Abstract: This paper presents and discusses the careful modeling of a Zero Biased Diode, including
low-frequency noise sources, providing a global model compatible with both wire bonding and
flip-chip attachment techniques. The model is intended to cover from DC up to W-band behavior,
and is based on DC, capacitance versus voltage, as well as scattering and power sweep harmonics
measurements. Intensive use of 3D EM (ElectroMagnetic) simulation tools, such as HFSSTM, was done
to support Zero Biased Diode parasitics modeling and microstrip board modeling. Measurements
are compared with simulations and discussed. The models will provide useful support for detector
designs in the W-band.
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1. Introduction

Schottky diodes play an important role in several functions, such as rectification [1,2], mixing [3,4],
and detection in all the range of microwave frequencies, up to the W-band and beyond [4].

In general, modeling of the diodes is a critical task in the design process of circuits operating at
high frequencies [3,4]. Antimony (Sb) heterostructure backward diodes offer better noise performance
with easier matching to 50 Ohm [5] compared to GaAs Schottky diodes, but may not always be
easily accessible or available as discrete components [6]. Series 9161 diodes (Keysight HSCH and
MACOM-Metelics MZBD) models are frequently used for hybrid detectors below the W-band [7–9],
though also in the W-band [10–13]. Zero-bias Schottky diodes from ACST (Advanced Compound
Semiconductor Technologies GmbH) (https://acst.de/) operating as power sensors have been reported
in [14]. Zero Bias Diodes Schottky diodes from Virginia Diode Inc. (VDI) were used for W-band
detection in [6,15]. Available manufacturer information (https://www.vadiodes.com/images/pdfs/Spec_
Sheet_for_VDI_W_Band_ZBD.pdf) is limited and, in the absence of diode models developed by the
designers themselves, commercially available models could be required.

Usually, the device modeling is accomplished by discriminating between the modeling of the
intrinsic component (characterized by quasi-static I-V and C-V measurements) and the extrinsic
elements (characterized by 3D Electro-Magnetic (EM) tools, along with the measurement of the
Scattering parameters at some specific bias points). In [16], modeling techniques are presented to
extract a Schottky diode model analytically using additional fabricated structures (such as short and
open circuits) for the de-embedding of parasitic capacitances and other effects. Unfortunately, it is not
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always possible to have such customized cal kit (calibration kit) structures available. Previous efforts
in Schottky diode modeling of Single Anode (SA) VDI devices were presented in [17]. In this paper,
ZBD (Zero Bias Diode) devices from VDI have been carefully modeled, considering two different
diode-mounting techniques to attach them to the final circuit assembly: wire bonding and flip-chip
(also known as controlled collapse chip connection). From DC measurements, the intrinsic nonlinear
current source, along with the parasitic resistor can be obtained. Scattering measurements of the ZBD
provide data which can be used to identify the parasitic and extrinsic elements up to the W-band;
in this sense, in Section 2, the modeling of ZBDs for wire bonding assembling is presented. In Section 3,
the modified model oriented to the flip-chip attachment technique, obtained from the previously
extracted diode model, is shown; low-frequency noise sources are included in the complete diode
model in Section 4. Finally, some conclusions are drawn in Section 5.

2. Nonlinear Zero Bias Diode Modelling

Modeling of the ZBD was based on the procedures presented in [16,17]. Firstly, a 3D model of
the passive parts for EM simulation (HFSSTM) was built based on microphotographs (Figure 1) and
physical measurements of the critical dimensions, performed with a Scanning Electron Microscope
(SEM) available in the Laboratory of Science and Engineering of Materials of the University of Cantabria
(LADICIM).
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Figure 2. Diode equivalent circuit model. 

Figure 1. (a) General View of the ZBD using SEM (Dice about 600 × 250 µm; anode finger length about
100 µm). (b) Detail of the anode finger of the ZBD (diameter about 9 µm). Reference scale is at the
bottom of the figures.

2.1. DC Measurements and Nonlinear Model

For modeling purposes, as a starting point, the diode equivalent circuit presented in Figure 2 is
here considered. In this circuit, the main non-linearities (Id Current Source and Cj Capacitance), as well
as parasitic elements due to metallization (Rs) and packaging (Cpp, Cp, and Lf), can be observed.
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Using a specific high-accuracy voltage-controlled current source to ensure both protection of the
device during the test process and accurate current/voltage measurements in the low current level
region (below 1 mA), the static I/V characteristic of the ZBD was measured (Figure 3). By means of
proprietary extraction software, the value of the thermionic-field emission model parameters [18] for
the nonlinear current source (1) were obtained (Table 1).

I(Vd, T) = Ise
(

q(Vd − Id Rs)
ηKT ) (1)
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Figure 3. I-V measured current for the ZBD Schottky diode under testing.

Table 1. Extracted value of parameters in Equation (1).

Parameter Value

Is (A) 2.78 × 10−5

η 1.37
α =

q
ηkT

(1/V)
28.6

Rs (Ω) 6.48

2.2. Low-Frequency Model

At lower microwave frequencies, the equivalent circuit of the unbiased, or negatively biased,
diode can be reduced to a “π” electrical network of capacitances, as depicted in Figure 4.
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The above “π” network accounts for the total capacitance CT, as well as the small-value parasitic
capacitances to the ground (if considered), Cm1 and Cm2, where CT is the sum of the junction capacitance
Cj and the parasitic capacitances Cpp, as shown in Equation (2).

CT = C j(V) + Cpp =
C j0√
1− Vd

φbi

+ Cpp (2)

An accurate estimation of the total capacitance can be extracted from the measured value of the
S21 scattering parameter (Figure 5) when a negative bias, Vd, is applied to the diode. Parameter S21

essentially depends on the total capacitance, CT (the junction capacitance Cj at Vd = 0 V, Cj0, junction
potential, φbi, and the parasitic capacitance Cpp). Scattering parameters of the diode were measured
from 2 GHz up to 50 GHz; however, for capacitance extraction purposes, only the frequency range of
3–10 GHz was used, considering the equivalent circuit in Figure 4. By varying the negative Vd voltage
applied to the diode, and performing the measurement of the scattering parameters of the diode at
each voltage, it was possible to extract the values of the CT capacitance as a function of this voltage.
In Figure 6, the extracted Capacitance versus Voltage (C-V) plot is presented. In Table 2, the values of
the elements of the circuit in Figure 2, as well as the parameters of Equation (2), are presented.
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In principle, the results obtained in the extraction from the S-parameters offer more accurate
estimations of nonlinear and parasitic capacitances of this diode, compared to other extraction methods
based on low-frequency impedance measurements. This also avoids other potential problems of
low-frequency measurements, such as uncertainty in the de-embedding of the parasitic effects of probes.

Table 2. Value of parameters of Equation (2).

Parameter Value

CT (fF) 26
Cj0 (fF) 10
Cpp (fF) 16
φbi (V) 0.16
Cm1 (fF) 50
Cm2 (fF) 50

2.3. Modified ZBD Model Up to W-Band

At high frequencies, from 75 GHz up to 110 GHz, additional parasitic effects arise which
affect the behavior of the diode; thus, it is critical to evaluate and model them. This is really a
complex task due to the difficulties involved in the de-embedding process of the access elements,
such as coplanar-to-microstrip (CPW-M) transitions and bonding wires used in the circuit assembly to
implement the input and output connections. This is the reason why, although the diode is usually
considered as a one-port element, with the cathode or the anode grounded, we are going to perform
measurements being anode and cathode the electric ports, considering the diode as a two-port electrical
network, allowing to identify the effect of grounding.

Firstly, modeling of the coplanar to microstrip (CPW-M) transitions was performed, as reported
in [17]. Once the model of the CPW-M transition was obtained, the modeling of the ZBD, when using
the wire bonding attachment technique, was possible from the measurements performed at the coplanar
probe station using a LRRM (Line-Reflect-Reflect-Match) calibration. A de-embedding procedure
in Keysight ADS™ [19] was performed considering the previously obtained model of the CPW-M
transition along with the gold bonding wire model.

In Figure 7, the reflection and transmission coefficients from the equivalent circuit simulation are
compared with the experimental measurements in two frequency ranges (2–50 GHz and 75–110 GHz)
for the unbiased diode (Vd = 0 V). From these results, it can be concluded that the degree of agreement
between both results is excellent. Therefore, the modeling procedure proposed provides a model that
can simulate the behavior of ZBD from the DC up to 110 GHz.
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Figure 7. Modelled and measured [S]-parameters of the unbiased diode (0 V) after the de-embedding
in the wire bonding configuration.

An increase in the series resistance value was observed in the W-band measurements; this singular
behavior can be associated with the skin effect above 50 GHz, the bonding wires, and probably
some other measurement uncertainties. The study of the extent of this effect becomes difficult in
this frequency band as measurements are limited by calibration accuracy, as well as some possible
inaccuracies in the determination of other equivalent circuit parameters, such as finger inductance and
parasitic capacitances. Nevertheless, the increase in resistance in the W-band was consistently found
when fitting measurements of several devices, as previously reported in the literature [20].

2.4. Large Signal Model Extraction and Validation

The final topology of the proposed diode’s large signal model is shown in Figure 8 [6].
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Figure 8. Equivalent circuit model of the diode, including the extrinsic elements.

In Table 3, the values of the model parameters obtained from the different measurements performed
using the extraction procedures [16,17] are presented. In this model, Cp represents the finger-to-pad
capacitance between the anode contact finger and the underlying active GaAs. The bonding resistance,
R is fixed to 0 Ohm at “low frequencies”, while its value equals to 3 Ohm in the W-band.

In order to validate the large-signal model of the diode, output power versus input power
measurements were compared with harmonic balance simulations performed in Keysight ADS™ [19].
In Figure 9, comparisons between measurements and simulations, when a signal of 1 GHz is applied
to the device, are depicted. In this graph, a reasonable global agreement between measurements and
simulation results can be seen at the fundamental frequency and the second and third order harmonics.
If we focus on the highest input power level, simulations tend to overestimate the first harmonic,
while the second is more accurate as the power is higher. The third harmonic is well-estimated in
values, but with slight differences in the slope. This could be due to several reasons: the source
current mode was originally intended to simulate the nonlinear current source in DC conditions;
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however, the large-signal behavior depends on the model’s ability to predict harmonics, something
that, in general, is difficult to guarantee as it requires a more elaborate development of the nonlinear
current source model. Furthermore, the influence of nonlinear capacitance should be considered,
which could require a more accurate characterization at the highest power levels.

Table 3. Extracted values of the parameters for the ZBD model.

Parameter Symbol Value Parameter Symbol Value

Saturation Current
(A) Isat 28 × 10−6 Parasitic Finger

Capacitance (fF) Cp 1

Ideality Factor η 1.4 Pad-to-Pad Capacitance
(fF) Cpp 16

α =
q
ηkT (1/V) α 28.6 Bonding Inductance

(pH) L1 73

Junction Capacitance
(Vd = 0 V) (fF)

Cj0 10 Bonding Inductance
(pH) L2 42

Series Resistance (Ω) Rs 6.5 Pad Capacitance (fF) C1 88

Junction Potential (V) φbi 0.16 Pad Capacitance (fF) C2 51

Finger Inductance
(pH)

Lf 50 Bonding Resistance (Ω) R 0 (Low Frequency)
3 (W Band)
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Figure 9. Simulated (continuous line) and measured output power versus input power. (Circles: f0,
Inverted Triangle: 2f0, Cross: 3f0).

3. Diode Modelling Oriented to Flip-Chip Attachment Technique

The previous model is a basic general-purpose model, but particularly considering W-band
applications, it was necessary to achieve a better approximation for the most commonly used
attachment technique of the ZBD to the circuit assembly, while being well-based on the previously
presented model extraction. Therefore, a new circuit was assembled by attaching a ZBD using the
flip-chip technique, as shown in Figure 10. This attachment technique is the most critical in terms of
the location of the diode, in order to achieve a symmetrical structure and to avoid destroying the finger
of the diode by placing it in contact with the CPW-M transition. Please note that, to attach the flip-chip
into a circuit, the chip must be inverted to bring the solder dots (made of H20E silver epoxy) down
onto the connectors on the circuit board; then, the solder is re-melted (120 ◦C for 15 min) to produce an
electrical connection, leaving a small space between the diode and the underlying mounting.
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Figure 10. Photo of the ZBD in the flip-chip assembly.

As performed for the previously presented modeling procedure, CPW-M transitions were used,
and their model was used in the optimization in Keysight ADSTM, in order to obtain an equivalent
circuit model consisting only of the intrinsic and parasitic elements of the diode. A comparison between
experimental measurements and the model (described below) simulation results is shown in Figure 11,
showing a better match at the lower frequencies of the W-band.
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Figure 11. Comparison between S-parameter measurements and modeling simulation of the unbiased
ZBD (0 V) for the flip-chip assembly in the W-band.

Flip-Chip Zero Bias Diode Complete Model

The resulting equivalent circuit model is presented in Figure 12. Comparing this equivalent circuit
with the previous model (Figure 8), the main difference is that some capacitances have been added to
account for some newly existing parasitic effects. In the flip-chip assembly, the diode was attached
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to the carrier upside down, compared to the conventional mode with bonding wires. Therefore,
capacitances C2 in Figure 8 are identified in Figure 12 as CPAD1 and CPAD2, being connected to a new
capacitance, CGNDs, which represents a new, slightly capacitive coupling effect between the microstrip
reference plane of the diode bulk and the ground plane of the total circuit assembly. An additional
capacitive coupling effect is thus originated, CCOUPLING, which is related to the capacitive coupling
between the CPW-M transitions since, in this assembly, both transitions are placed closer than in the
previous one. The LIN-CIN-RIN and ROUT-COUT-LOUT electrical networks simulate the microstrip line
effect at the connection between the diode and the CPW-M transition; besides, RIN and ROUT also
include the losses related to the H20E conductive silver epoxy used to attach the diode. It should be
emphasized that fitting in Figure 7 covers the range from 2 to 110 GHz, de-embedding the effect of the
wire bonding, while Figure 11 covers a frequency range from 75 to 110 GHz, comparing measurements
and simulations without de-embedding. The upside-down positioning of the diode causes some
uncertainty in the parasitic capacitances with the ground, but at the same time, other parasitic elements
must be maintained for coherence with grounded-microstrip ZBD model (Figure 8). Those restrictions
limit the capability for a perfect impedance matching.
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Figure 12. Equivalent circuit model for the ZBD in flip-chip assembly.

The resulting model parameters extracted for this second diode assembly technique are listed in
Table 4.

Table 4. Results of the parameter extraction of the total capacitance of ZBD.

Parameter Symbol Value

Saturation Current (A) Isat 28 × 10−6

Ideality Factor η 1.4
q/ηkT (1/V) α 28.6

Junction Capacitance (Vd = 0 V) (fF) Cj0 10
Series Resistance (Ω) RS 6.5
Junction Potential (V) φbi 0.16

Finger Inductance (pH) Lf 50
Parasitic Capacitance (fF) CP 1

Pad-to-Pad Capacitance (fF) CPP 16
Input Inductance (pH) LIN 59

Output Inductance (pH) LOUT 48
Input Capacitance (fF) CIN 3.4

Output Capacitance (fF) COUT 0.3
Input Resistance (Ω) RIN 2.3

Output Resistance (Ω) ROUT 2.3
Coupling Capacitance (fF) CCOUPLING 18
PAD IN Capacitance (fF) CPAD1 39

PAD OUT Capacitance (fF) CPAD2 203
Ground Capacitance (fF) CGNDs 11
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4. Including Low-Frequency Noise in the Zero-Bias Model

For a complete evaluation of diode performance, which is of significant use in detectors,
a knowledge of low-frequency noise behavior becomes quite relevant—not only as proof of technology
quality, but also to establish the noise floor, which limits the dynamic range. Thus, this ensures a
stable response in a dynamic mode of operation. In this sense, a set-up was developed to measure
and model low-frequency noise sources present in the ZBD, following [9]. The set-up diagram is
shown in Figure 13, and the corresponding photo is shown in Figure 14. In this case, the diode was
mounted in the conventional way (grounded, not Flip-Chip) inside a shielded box to avoid unwanted
interference in the measurements. In this low-frequency range, a distinction between the flip-chip and
wire bonding is not relevant.
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Figure 13. Setup to evaluate low-frequency noise under different DC biases.
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quality, but also to establish the noise floor, which limits the dynamic range. Thus, this ensures a 
stable response in a dynamic mode of operation. In this sense, a set-up was developed to measure 
and model low-frequency noise sources present in the ZBD, following [9]. The set-up diagram is 
shown in Figure 13, and the corresponding photo is shown in Figure 14. In this case, the diode was 
mounted in the conventional way (grounded, not Flip-Chip) inside a shielded box to avoid unwanted 
interference in the measurements. In this low-frequency range, a distinction between the flip-chip 
and wire bonding is not relevant. 

 
Figure 13. Setup to evaluate low-frequency noise under different DC biases. 

 
Figure 14. Photo of the measurement setup for low-frequency noise, corresponding to the diagram in
Figure 13.

The main low-frequency noise contributions expected in the current spectral density (CSD) were:
thermal noise associated with the series resistance Rs, shot noise, and flicker noise. The equations
governing the different noise sources are given in Equations (3)–(5) (where K is the Boltzmann constant,
f is the low frequency, q is electron charge, Is is the saturation current, and Idiode is the actual current,
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whereas Kf, af, and bf are parameters to be determined). Noise sources were placed in the circuital
model of the diode, as shown in Figure 15.

〈CSDthermal〉 = i2nRs
=

4KT
Rs

(3)

〈CSDshot〉 = i2nshot = 2q(Idiode + 2Is) (4)

〈CSD f licker〉 = i2n1/ f
= k f

Ia f

f b f
(5)
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Figure 15. Insertion of noise sources in the diode model.

The low-frequency noise spectrum measured with the set-up in Figures 13 and 14 is shown in
Figure 16, including the system noise floor (NF trace) and measurements for the four different current
bias points: 0.05 mA, 0.1 mA, 0.15 mA, and 0.2 mA. The set-up was also simulated considering all the
noise contributions and Flicker noise parameters in Equation (5), which were optimized to fit with the
measurements at these four bias currents. In Table 5, the optimized parameters are listed.
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Figure 16. Low-frequency noise spectrum measurements of the set-up, shown in Figure 13,
and simulations using the model in Figure 15.

Table 5. Low-frequency noise parameters.

Parameter Value

kf 1.08 × 10−7

af 2.48
bf 1.04
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5. Conclusions

In this paper, two models for Zero-Biased Diodes (VDI) considering wire-bonded or flip-chip
techniques have been presented, with particular emphasis on the flip-chip model in the W-band.
Equivalent circuit models were complemented with the extraction of low-frequency noise sources
(Flicker) and its incorporation in the proposed models, allowing for a more complete prediction of the
response of the diodes, for example, in detectors. The obtained models were validated under different
operating conditions, and power prediction abilities of the model were probed performing nonlinear
harmonic measurements ranging the appropriate power levels, in comparison with harmonic balance
simulations in commercial software (Keysight ADS™).

Comparisons up to the W-band between measured and simulated scattering parameters using the
complete model and showing a good agreement were performed, probing the validity of the extraction
methods applied using both wire bonding and flip-chip attachment techniques.

Finally, low-frequency noise measurements and simulations were performed to validate the noise
model added to the previously extracted diode model, which showed an adequate level of agreement.

As a general remark in “normal” operations, Zero Bias diodes are expected to be self-biased
by the input RF power, as it happens in the measurements shown in Figure 9, where input power
was swept. In Figure 3, ZBD diodes were biased for DC fitting, and scattering parameters were also
measured in low microwave frequencies under a DC bias to fit the capacitance model (Figures 5 and 6).
For low-frequency noise measurements also, the DC bias was applied to put into the evidence bias
dependence of the Flicker noise parameters. We considered that those measurements would cover the
usual scenarios for ZBD operations. A combined application of W-band power and DC bias to the
Zero Bias diodes was avoided, keeping in mind the fragility of the diode because of its low-threshold
voltage, where voltages applied any higher than the safe one would totally or partially damage it,
leading to unreal measurements of the device’s high-frequency behavior.
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