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Abstract: The precise error performance analysis is challenging for non-orthogonal multiple access
(NOMA) systems due to nonlinear successive interference cancellation (SIC) processing among
NOMA users. In this paper, the pairwise error probability (PEP) performance of different users is
investigated for relay NOMA simultaneous wireless information and power transfer (SWIPT) systems.
By employing the order statistics theory, we obtain the ordered probability density function of the
cascaded channel through Source-to-Relay-to-User links. Then we derive the analytical closed-form
PEP expressions for NOMA users. To obtain the approximate closed-form PEP, we explore the finite
series representation of the power of the modified Bessel function to replace the integrand terms.
Monte Carlo simulation results show that the approximate analytical PEP of each user is basically in
agreement with the simulated PEP. Furthermore, on the basis of the closed-form PEP, the influence of
relevant system parameters on the error performance is examined via numerical simulations, which
manifests that the choice of power allocation coefficients should be balanced between the users’
channel conditions and the demanded quality of service.

Keywords: pairwise error probability (PEP); non-orthogonal multiple access (NOMA); relay
communications; order statistics

1. Introduction

Compared to the current fourth generation (4G) wireless networks, the fifth generation (5G)
networks are expected to support massive connectivity of devices so as to satisfy the growth of internet
of things. The channel multiple access schemes determine the number of users to share the wireless
resources, which mainly include orthogonal multiple access (OMA) and non-orthogonal multiple
access (NOMA) [1]. It is difficult for OMA to meet the spectral efficiency requirements of 5G services.
Power-domain NOMA and code-domain NOMA are two categories of NOMA schemes. For the
former, multiple users are allocated with different power levels at the same time and channel frequency.
Specifically, higher power is assigned to the users with worse channel gains; and lower power is
allocated to the ones with better channel gains. In terms of compatibility with existing OMA schemes,
power-domain NOMA is more promising.

Cooperative communication adopts relay strategies to improve system reliability,
amplify-and-forward (AF) and decode-and-forward (DF) are two common types of processing
protocols by the relay terminals [2]. A prior study [3] derived the outage probability and diversity
multiplexing trade-off curve for an uplink cooperative system with DF protocol. Cooperative
NOMA transmission has been proposed to enhance the overall performance of communication
systems, as well as reducing the transmit power [4]. The status of recent research in power-domain
NOMA-based cooperative networks are surveyed in [5]. In order to prolong the lifetime of energy
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constrained relay systems, NOMA can be integrated with simultaneous wireless information and
power transfer (SWIPT) [6,7].

For AF relay systems, data detection at the destination only requires the information of the
cascaded channel through the source-to-relay-to-destination link. Therefore, the estimation algorithms
of the cascaded channel are proposed in [8,9]. Additionally, the statistical properties of the cascaded
relay fading channels are investigated in [10], where the cascaded channel is modeled as a double
Gaussian channel, i.e., a product of two complex Gaussian channels.

There have been numerous studies that focus on the performance analysis of cooperative NOMA
systems [11–13]. One prior study [11] derived the exact and asymptotic outage probabilities for
NOMA AF systems. The authors in [12] studied NOMA-based downlink AF relaying network under
Nakagami-m fading and derived the closed-form expressions of the outage probability, with imperfect
channel state information taken into account. In [13], a two-stage relay selection scheme was proposed
and a closed-form expression of the outage probability was derived. Almost all the previous literature
concentrated on evaluating the outage probability. There are few reports about the error performance
analysis for cooperative NOMA systems. In [14], the error rate was analyzed in non-cooperative
NOMA systems over Nakagami-m fading channels.

To the best of our knowledge, there is no closed-form solution for the pairwise error probability
(PEP) expressions of NOMA users based on order statistics of the cascaded channel for relay NOMA
communication systems in the literature. In this paper, we mainly analyze the PEP performance
of NOMA systems with multiple AF relay–user pairs. Our specific contributions of this paper are
summarized as follows:

• We derive the approximate closed-form PEP expressions of the first and the kth users over
Rayleigh fading channels, respectively. In particular, the ordered probability density function
(PDF) of the cascaded channel is utilized to solve the integrals. Simulation results reveal the
consistency between the derived closed-form PEP expressions and their corresponding Monte
Carlo simulations.

• We attempt to substitute Kp
1 (x), namely, the pth power of modified Bessel function K1(x), with

an approximately equivalent finite series representation since the presence of the power of the
modified Bessel function of the second kind, Kp

1 (x), makes the integrals about the PEP of NOMA
users intractable. In existing literature, there is no appropriate finite series representation of Kp

1 (x).
Therefore, we derive an effective and simplified series representation of Kp

1 (x) based on the series
representation of K1(x) in [15]. The major difficulty lies in that a smaller x value will result in a
significant truncation error between the approximated K̃p

1 (x) and the actual Kp
1 (x) once the choice

of the finite order is improper. To some extent, the effectiveness of the derived closed-form PEP
expression is dependent on the accurate representation of finite series of Kp

1 (x).
• The impacts of some related parameters, such as power allocation coefficients of NOMA users

and power splitting factor related to energy harvesting, can be evaluated through the simulations
by using the approximate closed-form PEP expressions.

The rest of the paper is organized as follows. First, the system model is given in Section 2
for the considered cooperative NOMA system. The analytical PEP expression of the first user is
derived in Section 3. In Section 4, we present the approximate finite series representation of Kp

1 (x).
The closed-form PEP of the kth successive interference cancellation (SIC) useris derived in Section 5.
The numerical and simulation results are provided for analytical confirmation in Section 6. Finally, the
paper is concluded in Section 7.

2. System Model

We consider a downlink relay NOMA system with K users assisted by K relays as depicted in
Figure 1, where all are equipped with a single antenna. NOMA technique enables various users to
manipulate individual information under the conditions of identical time and frequency resources.



Electronics 2019, 8, 695 3 of 16

The base station (BS) broadcasts the superimposed information to K users with the help of respective
relays, which are equipped with the function of simultaneous wireless information and power transfer
(SWIPT). We adopt a half-duplex amplify-and-forward (AF) relay with no direct link due to severe
obstruction or shadow. Considering energy harvesting, the power splitter (PS) scheme at the relay is
adopted, which can split the receiver signal power into two parts comprising of energy harvesting and
information processing [16].
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Figure 1. System diagram of the proposed non-orthogonal multiple access (NOMA) relay with
simultaneous wireless information and power transfer (SWIPT) system.

At the BS with known power allocation coefficient αk of the kth user, the superimposition signal
of NOMA users is transmitted, which is denoted as

s =
K

∑
k=1

√
αkPtxk, (1)

where Pt is the total power at the BS. xk is the data symbol of the kth user. Moreover, α1 > α2 > · · · > αK
and ∑K

k=1 αk = 1.
The users accomplish signal reception through two time slots. In the first time slot, BS broadcasts

the signal to the relay, thus the received signal at the relay is

yk
R = hk

Rs + nr, (2)

where hk
R ∼ CN(0, λr) represents the channel coefficients from the source to relay. nr ∼ CN(0, σ2

nr )

indicates the additive white Gaussian noise at the relay.
After power splitting at the relay, the signals about energy harvesting and information forwarding

are written as, respectively
yE,k

R =
√

ρ(hk
Rs + nr), (3)

yI,k
R =

√
1− ρ(hk

Rs + nr) + nc, (4)

where ρ ∈ (0, 1) is a PS factor, and nc ∼ CN(0, σ2
nc) is the conversion noise from RF to baseband.

In the second time slot, with the relay operating the AF protocol and forwarding the information
signal, the received signal of the kth user can be written as

yk
U = GAhk

UyI,k
R + nk = G′Ahk

Rhk
Us + G′Ahk

Unr + GAhk
Unc + nk, (5)

where G′A = GA
√

1− ρ, and hk
U ∼ CN(0, λk) represents the channel coefficients from the relay to

users. Moreover, nk ∼ CN(0, σ2
nc) is the additive white Gaussian noise at the destination. Assume

λr = λk = λ and σ2
nr = σ2

nc = σ2
nk

= σ2
n . It can be observed that the knowledge of individual channels
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hk
R and hk

U is not required for data detection. As a result, the cascade channel hk
Rhk

U is considered in the
following analysis. The amplification factor GA is denoted as

GA =

√
Pr

(1− ρ)
∣∣hk

R

∣∣2Pt + (2− ρ)σ2
n

, (6)

where Pr = ηρPt

∣∣∣hk
R

∣∣∣2 is the harvested power at the relay in the second time slot. η ∼ (0, 1] denotes
energy conversion efficiency.

Considering the fixed-gain amplification factor, GA can be rewritten as

GA =

√
ηρλPt

(1− ρ)λPt + (2− ρ)σ2
n

. (7)

For each receiver, successive interference cancellation (SIC) is utilized to remove the interference
and implement the accurate signal detection. Specifically, for the kth user, the manipulation of SIC is to
successively detect the signals x1, · · · , xk−1 and subtract them from the received signal. The signals of
the remaining users are treated as interference.

3. PEP Derivation of the First User

The SIC process is not required for the first user. Plugging (1) into (5), the received signal of the
first user can be formulated as

y1
U = G′A

(√
α1Ptx1 +

K

∑
k=2

√
αkPtxk

)
h1

Rh1
U + G′Ah1

Unr + GAh1
Unc + n1, (8)

where ∑K
k=2
√

αkPtxk is viewed as the interference component during the process of detecting the first
user. The conditional pairwise error probability (PEP) of the first user can be expressed as

Pr(x1 → x̌1|h1
Rh1

U) = Pr(
∣∣∣y1

U − G′A
√

α1Pth1
Rh1

U x̌1

∣∣∣2 ≤ ∣∣∣y1
U − G′A

√
α1Pth1

Rh1
U x1

∣∣∣2), (9)

where x1 → x̌1 denotes the event in which x1 is erroneously detected into the symbol x̌1.
Inserting (8) into (9), (9) can be rewritten as

Pr(x1 → x̌1|h1
Rh1

U)

= Pr

(
2Re

{
h1

Rh1
U∆̌1n∗to

}
≤ −

∣∣∣h1
Rh1

U

∣∣∣2 G′A

[√
α1Pt|∆̌1|2 + 2Re

{
∆̌1

K

∑
k=2

√
αkPtx∗k

}])
, (10)

where n∗to = G′Ah1
U
∗n∗r + GAh1

U
∗n∗c + n∗1 , ∆̌1 = x1 − x̌1, x1 6= x̌1. Moreover, 2Re

{
h1

Rh1
U∆̌1n∗to

}
∼ N

(
0, 2σ2

n |h1
Rh1

U |2|∆̌1|2(1 + |G′A|2|h1
U |2 + |GA|2|h1

U |2)
)

, which further turns Equation (10) into

Pr(x1 → x̌1|ω1) = Q
(

ω1ξ1

µ1

)
, (11)

where ω1 = |h1
Rh1

U | is the amplitude of the cascaded channel. Q(·) denotes the Q-function. ξ1 and µ1

are given by

ξ1 = G′A

[√
α1Pt|∆̌1|2 + 2Re

{
∆̌1

K

∑
k=2

√
αkPtx∗k

}]
, (12)

µ1 =
√

2σn|∆̌1|
√

1 + (2− ρ)|GA|2|h1
U |2. (13)
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Without taking the instantaneous channel into account, µ1 can be further written as

µ1 =
√

2σn|∆̌1|
√

1 + (2− ρ)|GA|2λ. (14)

Generally, the ordered PDF of the cascaded channel ωk = |hk
Rhk

U | regarding the kth user is
represented as [17]

fk(ωk) = Ak f (ωk)[F(ωk)]
k−1[1− F(ωk)]

K−k, (15)

where f (ωk) and F(ωk) represent the PDF and cumulative distribution function (CDF) of ωk, and

Ak =
K!

(k− 1)!(K− k)!
. (16)

Assume that all the separate channels undergo Rayleigh fading, which means ωk is the amplitude
of the product of two complex Gaussian random variables [18], so the PDF and CDF of ωk are
expressed as

f (ωk) =
4ωk
λrλk

K0

(
2ωk√
λrλk

)
, (17)

F(ωk) = 1− 2ωk√
λrλk

K1

(
2ωk√
λrλk

)
, (18)

where K0(·) and K1(·) are the modified Bessel function of the second kind with zero order and first
order, respectively.

Consequently, with λr = λk = λ assumed, the ordered PDF of the first user is given by

f1(ω1) = A1
4ω1

λ2 K0
(2ω

λ

)(2ω1

λ
K1
(2ω1

λ

))K−1
. (19)

It follows that the exact PEP of the first user is solved as

Pr(x1 → x̌1) =
∫ ∞

0
f1(ω1)Q(

ω1ξ1

µ1
)dω1

x=2ω1/λ
= K

∫ ∞

0
xKK0(x)K1(x)K−1Q(ax)dx,

(20)

where A1 = K, a = λξ1/(2µ1).

Proposition 1. The approximate closed-form PEP of the first user can be represented as

Pr(x1 → x̌1) ≈
1
2
− a√

2π
exp

(
K2

4a2

) Q

∑
q=0

Cqa−(q+1)Γ(q + 1)D−(q+1)

(
K
a

)
, (21)

where Γ(·) is the gamma function, Dv(z) denotes a parabolic Cylinder function, and

Cq =


1, q = 0
1
q

q
∑

z=1
(Kz− q + z)

Q′

∑
`=z

Λ(1, `, z)Cq−z, q ≥ 1.
(22)
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Proof of Proposition 1. Equation (20) can be further formulated as

Pr(x1 → x̌1) =K
∫ ∞

0
xKK0(x)K1(x)K−1Q(ax)dx

=
−1
2

∫ ∞

0
erfc

(
a√
2

x
)

d
(

xKKK
1 (x)

)
=− 1

2

[
erfc

(
a√
2

x
)

xKKK
1 (x)

∣∣∣∣∣
∞

0

−
∫ ∞

0
xKKK

1 (x)d
(

erfc
(

a√
2

x
))]

=
1
2
− a√

2π

∫ ∞

0
xKKK

1 (x) exp
(
− a2

2
x2
)

dx.

(23)

In (23), Q(ax) is replaced by
1
2

erfc
(

ax/
√

2
)

. It can be easily derived that
(
xKKK

1 (x)
)′

=

−KxKK0(x)K1(x)K−1. Moreover, the first term on the right side of the third equal sign can
be computed as 

lim
x→∞

erfc
(

a√
2

x
)
= 0

lim
x→∞

xKKK
1 (x) = lim

x→∞
xK
(√

π

2x
e−x
)K

= 0,
(24)


lim
x→0

erfc
(

a√
2

x
)
= 1

lim
x→0

xKKK
1 (x) = lim

x→0
xKx−K = 1.

(25)

In the above limit derivations, we exploit the asymptotic expressions of K1(x), namely K1(x) ≈

x−1 when x → 0, while K1(x) ≈
√

π

2x
e−x when x → ∞ [19].

Therefore, based on Equation (34) in Section 4, K1(x)K can be further expressed as

KK
1 (x) ≈ e−Kx

xK

Q

∑
q=0

Cqxq, (26)

where Cq is given by (33) in the next section. It is worth noting that Cq can be stored as a vector with
constants in advance.

Subsequently, plugging (26) into (23) yields

Pr(x1 → x̌1) ≈
1
2
− a√

2π

Q

∑
q=0

Cq

∫ ∞

0
xq exp

(
−Kx− a2

2
x2
)

dx

=
1
2
− a√

2π
exp

(
K2

4a2

) Q

∑
q=0

Cqa−(q+1)Γ(q + 1)D−(q+1)

(
K
a

)
,

(27)

where the last equation is obtained according to ([20], Equation (3.462.1)).

4. Approximate Finite Series Representation of Kp
1 (x)

In order to facilitate the integral in (23), it is essential to explore the equivalent series representation
of Kp

1 (x). According to [15] (Equation (24)), the series representation of K1(x) can be given by

K1(x) =
e−x

x

∞

∑
q=0

∞

∑
`=q

Λ(1, `, q)xq, (28)
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with the coefficients being

Λ(1, `, q) =
(−1)q+1Γ(`− 1

2
)L(`, q)

22−qΓ(`+
3
2
)`!

, (29)

where L(`, q) denotes the Lah numbers ([15], Equation (8)), namely, L(`, q) = (`−1
q−1)

`!
q!

, for `, q > 0.

The other values can be taken as: L(0, 0) = 1; for ` > 0, L(`, 0) = 0 and L(`, 1) = `!.
Let aq = ∑∞

`=q Λ(1, `, q), (28) can be simplified by

K1(x) =
e−x

x

∞

∑
q=0

aqxq. (30)

Hence, it is straightforward to obtain the pth power of K1(x) as

Kp
1 (x) =

e−px

xp

(
∞

∑
q=0

aqxq

)p

, p ≥ 1. (31)

Utilizing the mathematical operation regarding power series raised to powers [21], the power of
K1(x) can be further converted into

Kp
1 (x) =

e−px

xp

∞

∑
m=0

cmxm, (32)

where

cm =


(a0)

p , m = 0
1

ma0

m
∑

z=1
(pz−m + z)azcm−z, m ≥ 1

(33)

with a0 =
∞
∑
`=0

Λ(1, `, 0), az =
∞
∑
`=z

Λ(1, `, z).

From the perspective of practical implementation, it is normal to consider the approximate
representation in terms of finite series terms of the Bessel function K1(x) [15]. However, there is no
existing work about the finite series representation of Kp

1 (x). In the following, we will examine whether
Kp

1 (x) can be truncated by only using a small series order with high precision instead of infinite series
in (32).

It is apparent that there exist two infinity series in the expression of Kp
1 (x) in Equation (32).

The outer series can be approximated by the finite order Q, namely,

Kp
1 (x) =

e−px

xp

Q

∑
m=0

cmxm + ε = K̃p
1 (x) + ε, (34)

where ε indicates the truncation error, which is negligible with a small Q, as illustrated in Table 1.
Moreover, the smaller Q is, the less coefficients are required to store. The series az within the coefficient
cm is truncated by the parameter Q′, namely,

aq ≈
Q′

∑
`=q

Λ(1, `, q), q = 0, · · · , Q′, (35)

where Q′ and Q are positive integers, Q′ ≥ Q, and a0 ≈ ∑Q′
`=0 Λ(1, `, 0) = 1 [15].
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Remark 1. It is worth noting that two identical finite orders are chosen to replace two infinity series about
K1(x) in [15] (Equation (24)). Unlike that, we attempt to exploit two different finite orders to truncate the
infinite series of Kp

1 (x), which can improve the accuracy when p > 1. Apparently, the former can be regarded as
our special case.

Remark 2. It is likely for Q and Q′ to take different values for different p in order to minimize the truncation
error. We need to search for proper values about Q and Q′ for each p. Once these parameters are fixed,
the coefficients cm can be stored in advance as shown in Table 2.

The accuracy of series approximation of Kp
1 (x) exerts a direct impact on the analytical PEP

derivation. We define the normalized truncation errors as ε = ∑x |K1(x)p − K̃p
1 (x)|/ ∑x |K1(x)p| in

the simulation, where the true K1(x)p is generated by MATLAB command "besselk", and K̃p
1 (x) =

e−px

xp ∑Q
m=0 cmxm. In Table 1, take discrete values on x = 0.01 : 0.1 : 2 for example, where 0.1 is the

adopted sample interval. From Table 1, we observe that the case with Q′ = 12 and Q = 2 has the least
truncation error for p = 2, 3. In addition, Kp

1 (x) with Q′ = Q is better than Q′ > Q for p = 1 whereas
Kp

1 (x) exhibits the smaller truncation error with Q′ > Q than the case Q′ = Q for p > 1.

Table 1. The Truncation Error of Kp
1 (x) with different choices of Q′ and Q.

Kp
1 (x)

Truncation Errror ε K1(x) K2
1(x) K3

1(x)

(Q′, Q) = (5, 5) 9.4640× 10−4 0.0015 0.0022
(Q′, Q) = (8, 8) 4.8373× 10−4 8.9121× 10−4 0.0013
(Q′, Q) = (10, 1) 0.0154 7.6091× 10−4 0.0011
(Q′, Q) = (10, 2) 0.0173 7.0637× 10−4 9.8693× 10−4

(Q′, Q) = (12, 1) 0.0158 6.3690× 10−4 8.2680× 10−4

(Q′, Q) = (12, 2) 0.0204 6.1105× 10−4 7.8361× 10−4

For specific Kp
1 (x), cm can be generated in advance given Q′ and Q, as shown in Table 2. It is

worth noting that the coefficients c0 and c1 in the cases Q′ = 10, 12 and Q = 1 are identical to the
corresponding c0 and c1 with the case Q = 2, hence, the former cases are not shown in this table.
Moreover, Table 2 also illustrates cm in (34) with p = 1 and Q′ = Q has completely the same coefficients
as a1,k,q listed in [15] (Table 1). In any case, it is noticed that c0=1 remains invariant.

Table 2. Coefficients cm in (34) with different Q′ and Q.

cm c0 c1 c2 c3 c4

K1(x) : (Q′, Q) = (4, 4) 1 0.8889 −0.3429 0.1016 −0.0106
K2

1(x) : (Q′, Q) = (10, 2) 1 1.9048 −0.5023
K2

1(x) : (Q′, Q) = (12, 2) 1 1.92 −0.6471
K3

1(x) : (Q′, Q) = (10, 2) 1 2.8571 0.6070
K3

1(x) : (Q′, Q) = (12, 2) 1 2.88 0.4117

5. PEP Derivation of the kth SIC User

From the second user to the last user, the SIC is performed by each user. During each SIC process,
the output of the kth user is

yk
U = G′A

(√
αkPtxk +

K

∑
j=k+1

√
αjPtxj +

k−1

∑
u=1

√
αuPt∆̂u

)
hk

Rhk
U + G′Ahk

Unr + GAhk
Unc + nk, (36)

where ∆̂u = xu − x̂u is the interference cancellation error of the previously detected signal x̂u.
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After the same manipulation as above, the conditional PEP of the kth user is given by

Pr(xk → x̌k|ωk) = Q
(

ωkξk
µk

)
, (37)

where ωk = |hk
Rhk

U |, ξk and µk are represented as

ξk = G′A

{√
αkP

∣∣∆̌k
∣∣2 + 2Re

{
∆̌k

[
k−1

∑
u=1

√
αuPt∆̂∗u +

K

∑
j=k+1

√
αjPtx∗j

]}}
, (38)

µk =
√

2σn
∣∣∆̌k
∣∣√1 + (2− ρ)|GA|2λ, (39)

where ∆̌k = xk − x̌k. It is worth highlighting that since all previous user symbols have been detected,
ξK for the last user is given by

ξK = G′A

{√
αKPt

∣∣∆̌K
∣∣2 + 2Re

{
∆̌K

[
K−1

∑
u=1

√
αuPt∆̂∗u

]}}
, (40)

where ∆̂u is zero if the perfect SIC is taken into account.
From (19), the ordered PDF of the kth user is

fk(ωk) = Ak
4ωk
λrλk

K0

(
2ωk√
λrλk

)(
1− 2ωk√

λrλk
K1

(
2ωk√
λrλk

))k−1

×
(

2ωk√
λrλk

K1

(
2ωk√
λrλk

))K−k
.

(41)

Taking advantage of binomial expansion, we have

(
1− 2ωk√

λrλk
K1
( 2ωk√

λrλk

))k−1
=

k−1

∑
`=0

(
k− 1
`

)(
− 2ωk√

λrλk
K1
( 2ωk√

λrλk

))`
. (42)

Then (41) can be rewritten as

fk(ωk) = Ak

k−1

∑
`=0

(
k− 1
`

)
(−1)`

4ωk
λrλk

(
2ωk√
λrλk

)K′−1
K0

(
2ωk√
λrλk

)
KK′−1

1

(
2ωk√
λrλk

)
, (43)

where K′ = K− k + `+ 1.
With λr = λk = λ assumed, it turns out from (43)

fk(ωk) = Ak

k−1

∑
`=0

(
k− 1
`

)
(−1)`

4ωk
λ2

(
2ωk

λ

)K′−1
K0

(
2ωk

λ

)
KK′−1

1

(
2ωk

λ

)
. (44)

Therefore, the exact PEP of the kth user can be given by

Pr(xk → x̌k) =
∫ ∞

0
fk(ωk)Q(

ωkξk
µk

)dωk

x=2ωk/λ
= Ak

k−1

∑
`=0

(
k− 1
`

)
(−1)`

∫ ∞

0
xK′K0(x)KK′−1

1 (x)Q(bx)dx,
(45)

where b = λξk/(2µk).
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Proposition 2. The approximate closed-form PEP of the kth user can be derived as

Pr(xk → x̌k) ≈
1
2
− Ak

b√
2π

k−1

∑
`=0

T` exp

(
K′2

4b2

)
Q

∑
q=0

Mqb−(q+1)Γ(q + 1)D−(q+1)

(
K′

b

)
, (46)

where T` =
(k−1

` )(−1)`

K′
, and

Mq =


1, q = 0
1
q

q
∑

z=1
(K′z− q + z)

Q′

∑
i=z

Λ(1, i, z)Mq−z, otherwise.
(47)

Proof of Proposition 2. The integral term in Equation (45) can be derived as

Ik =
∫ ∞

0
xK−k+`+1K0(x)KK′−1

1 (x)Q(bx)dx

=
1
2

∫ ∞

0
xK′K0(x)KK′−1

1 (x)erfc(
bx√

2
)dx

=
1

2K′
− b

K′
√

2π

∫ ∞

0
xK′KK′

1 (x) exp
(
− b2

2
x2
)

dx.

(48)

Therefore, the exact PEP expression can be obtained as

Pr(xk → x̌k) = Ak

k−1

∑
`=0

(
k− 1
`

)
(−1)`

×
(

1
2K′
− b

K′
√

2π

∫ ∞

0
xK′KK′

1 (x) exp
(
− b2

2
x2
)

dx
)

.

(49)

The above closed-form expression has a similar manipulation process to (23). It should be pointed
out that the approximate series representation of KK′

1 (x) is given by

KK′
1 (x) ≈ e−K′x

xK′

Q

∑
q=0

Mqxq (50)

with the coefficients Mq manifested in (47). By plugging (50) into (48), we have

Ik ≈
1

2K′
− b

K′
√

2π

Q

∑
q=0

Mq

∫ ∞

0
xq exp

(
−K′x− b2

2
x2
)

dx

=
1

2K′
− b

K′
√

2π
exp

(
K′2

4b2

)
Q

∑
q=0

Mqb−(q+1)Γ(q + 1)D−(q+1)

(
K′

b

)
.

(51)
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Consequently, inserting (51) into (45) yields

Pr(xk → x̌k) =
Nk
2
− Ak

b√
2π

k−1

∑
`=0

T` exp

(
K′2

4b2

)
Q

∑
q=0

Mqb−(q+1)Γ(q + 1)D−(q+1)

(
K′

b

)
, (52)

where Nk = Ak
k−1
∑
`=0

(k−1
` )(−1)`

K′
. Moreover, leveraging on [20] (Equation 0.160), the summation terms

in Nk can be rewritten as

k−1

∑
`=0

(k−1
` )(−1)`

K′
=

k−1

∑
`=0

(
k− 1
`

)
(−1)`

Γ(`+ K− k + 1)
Γ(`+ K− k + 2)

= B(k, K− k + 1).

(53)

Combined with the key property of Beta function B(a, b) =
(a− 1)!(b− 1)!
(a + b− 1)!

[22], it follows that

Nk = AkB(k, K− k + 1) = Ak
(k− 1)!(K− k)!

K!
= 1. (54)

The proof of (46) is completed.

6. Simulation Results

This section validates the derived PEP expressions in the preceding sections. Consider a two-user
NOMA SWIPT system over Rayleigh flat fading channels. BPSK modulation is adopted. The channel
variance is assumed to be λ = 1. In addition, other parameters are fixed as (α1, α2) = (0.72, 0.28),
ρ = 0.6, and η = 0.8, unless otherwise specified. The simulated curves are conducted through Monte
Carlo simulations.

It should be pointed out that the aforementioned parabolic Cylinder function Dv(z) ([20],
Equation (9.240)) can be converted into

Dv(z) = 2
1
4
+

v
2 z
−

1
2 W1

4
+

v
2

,−
1
4

(
z2

2

)
, (55)

where W(·) is the Whittaker function, which is available in MATLAB toolbox.
In Figure 2, we evaluate the derived closed-form PEP (21) for the first user compared with

the simulated PEP. It is worth pointing out that the PEP of the first user is associated with x2

when ∆̌1 is fixed. The solid lines represent the simulated PEP, while the markers denote the
analytical PEP. The average analytical PEP is obtained by taking the average of both cases x2 = ±1.
As seen in Figure 2a,b, the accuracy of the closed-formed PEP is related to the value (Q, Q′). When
(Q, Q′) = (4, 4), the analytical PEP with x2 = 1 is evidently inconsistent with the simulated PEP
at SNR = 30 dB, which is due to the approximation error of finite series representation of K1(x)K.
However, the analytical PEP almost agrees well with the simulated PEP when (Q, Q′) = (2, 8).
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Figure 2. Simulated and Analytical pairwise error probability (PEP) for the first user. (a) (Q, Q′) =
(4, 4); (b) (Q, Q′) = (2, 8).

Figure 3 verifies the accuracy of the derived analytical closed-form PEP expression for the second
user. Whichever modulation is adopted, the closed-form expression (46) in Proposition 2 is consistent
with the simulated PEP acquired by random Monte Carlo simulation over Rayleigh fading channels.
To preclude the influence of the approximate error of finite series representation of K1(x)K′ , (49) is
provided for more reliable reference. Specifically, for (49), we use the existing MATLAB “Besselk”
function to implement K1(x)K′ as a benchmark. As anticipated, the simulated PEP and the analytical
in Equation (49) completely overlap. Meanwhile, Equation (46) Proposition 2 is totally in agreement
with the other two curves when (Q, Q′) = (4, 4).
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16QAM
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Figure 3. Simulated and Analytical PEP for the second user with BPSK, QPSK, and 16QAM modulation.
(Q, Q′) = (4, 4).

The impact of several parameter values on PEP is straightforwardly presented. The following three
figures are simulated at SNR = 20 dB, and the average analytical PEP is evaluated for the first user. First,
we observe the performance of PEP with varying PS factors ρ for two users as seen in Figure 4. Fortunately,
ρ = 0.5 or 0.6 simultaneously corresponds to the optimal performance of two users.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

−2

10
−1

10
0 ρP

E
P

 

 

User 1

User 2

Figure 4. PEP vs. power splitter (PS) factor ρ for both users.
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In order to evaluate the effect of power allocation coefficients, we alter α1 of the first user. For the
second user, its power allocation coefficient will make a corresponding change due to α1 + α2 = 1. As
depicted in Figure 5, the first user with a weaker channel condition performs gradually better as α1

slowly increases. On the other hand, the second user with stronger channel quality becomes worse
due to its reduced α2. The choice of power allocation coefficient depends on the required quality of
service for different users.

0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82
10

−2

10
−1

α
1

P
E

P

 

 

User 1

User 2

Figure 5. PEP vs. α1 for both users.

The effect of energy conversion efficiency on the error performance is explored as shown in
Figure 6. For any user, only a slight change in PEP happens when η varies from 0.5 to 0.9.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
10

−2

10
−1

10
0

η

P
E

P

 

 

User 1

User 2

Figure 6. PEP vs. η for both users.
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7. Conclusions

An approximate closed-form PEP analysis is derived for cooperative NOMA SWIPT systems
over Rayleigh fading channels. Based on the ordered statistics of the composite channel across the
Source-Relay-User link, the PDF and CDF of |hk

Rhk
U | are related to the modified Bessel functions of the

second kind, which renders the PEP analysis very challenging. In order to obtain the closed-form PEP,
the finite series representation of K1(x)k is introduced. We verify the effectiveness of the approximately
analytical PEP for NOMA users, which is expressed by finite series representation. Numerical results
substantiate that our method agrees well with Monte Carlo simulations. It is worth pointing out that
for more than three users, it needs some time to search the suitable pairs of (Q, Q′) to match the finite
series representation of Kp

1 (x). Specifically, assuming K = k = 3, the accuracy of PEP calculations for
the third user depends on the joint precision of finite series approximations of K1(x), K2

1(x), and K3
1(x),

which can be seen from Equation (49). Our future work will explore an effective approach to determine
the joint pairs of (Q, Q′) for different Kp

1 (x) to adapt more users.
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