
electronics

Article

An Efficient Separable Reversible Data Hiding Using
Paillier Cryptosystem for Preserving Privacy in
Cloud Domain

Ahmad Neyaz Khan 1,* , Ming Yu Fan 1,*, Muhammad Irshad Nazeer 2,
Raheel Ahmed Memon 2 , Asad Malik 3 and Mohammed Aslam Husain 4

1 School of Computer Science and Engineering, UESTC, Chengdu 611731, China
2 Department of Computer Science, Sukkur IBA University, Sukkur 65200, Pakistan;

irshad.nazeer@iba-suk.edu.pk (M.I.N.); raheelmemon@iba-suk.edu.pk (R.A.M.)
3 School of Information Science & Technology, SWJTU, Chengdu 614200, China; asad@my.swjtu.edu.cn
4 EED, REC, Ambedkarnagar 224122, India; mahusain87@gmail.com
* Correspondence: ahmadnk500@gmail.com (A.N.K.); ff98@163.com (M.Y.F.); Tel.: +86-182-8024-9324 (A.N.K.)

Received: 23 April 2019; Accepted: 3 June 2019; Published: 17 June 2019
����������
�������

Abstract: Reversible data hiding in encrypted image (RDHEI) is advantageous to scenarios where
complete recovery of the original cover image and additional data are required. In some of the existing
RDHEI schemes, the image pre-processing step involved is an overhead for the resource-constrained
devices on the sender’s side. In this paper, an efficient separable reversible data hiding scheme
over a homomorphically encrypted image that assures privacy preservation of the contents in the
cloud environment is proposed. This proposed scheme comprises three stakeholders: content-owner,
data hider, and receiver. Initially, the content-owner encrypts the original image and sends the
encrypted image to the data hider. The data hider embeds the encrypted additional data into the
encrypted image and then sends the marked encrypted image to the receiver. On the receiver’s side,
both additional data and the original image are extracted in a separable manner, i.e., additional data
and the original image are extracted independently and completely from the marked encrypted image.
The present scheme uses public key cryptography and facilitates the encryption of the original image
on the content-owner side, without any pre-processing step involved. In addition, our experiment
used distinct images to demonstrate the image-independency and the obtained results show high
embedding rate where the peak signal noise ratio (PSNR) is +∞ dB for the directly decrypted image.
Finally, a comparison is drawn, which shows that the proposed scheme is an optimized approach for
resource-constrained devices as it omits the image pre-processing step.

Keywords: reversible data hiding (RDH); image processing; cloud computing; public key
cryptography (PKC); security

1. Introduction

Data hiding is one of the techniques used for securing data, apart from encrypting data. In data
encryption technique, the original data are converted into a non-interpretable form so that adversary
cannot extract any useful information. In data hiding, additional data are embedded into the carrier
cover media (text, audio, video and image) in such a way that they remain concealed and can be extracted
from the cover media later. Cover media is the original media that is used to carry additional data.

However, it is notable that, in data hiding, when data are extracted from the cover media, some
form of distortion remains in the recovered cover media. In some scenarios (e.g., medical and satellite
imagery), distortion in the cover image is inadmissible. That is, the image to be recovered on the
receiver’s side needs to be lossless. To cope with this problem, several reversible data hiding (RDH)

Electronics 2019, 8, 682; doi:10.3390/electronics8060682 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-2783-4190
https://orcid.org/0000-0003-1206-3837
https://orcid.org/0000-0002-9976-3563
http://www.mdpi.com/2079-9292/8/6/682?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8060682
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 682 2 of 16

techniques have been proposed. RDH is a technique to manipulate pixel bits of the cover image to
create some space for embedding the additional data into the cover image, where both the additional
data and the original cover image can be recovered completely. This is done while maintaining the
perceptible quality of the carrier media. RDH schemes can be broadly classified into three categories:
difference expansion [1], lossless compression [2] and histogram shifting [3].

With the growth of cloud-based applications [4,5], data outsourcing is one of the fields where
the users are dependent on cloud for processing and storage. Security concern of the data owners
using cloud for the cover media is addressed using encryption for the cover image. For the sake of
management (using timestamp, tagging, image source information, etc.) of the encrypted media, the
data hider embeds some additional data into the encrypted image. To achieve security and reversibility,
the technique of RDH is used in the encrypted domain.

Reversible data hiding in encrypted images (RDHEI) is a method where additional data are
embedded by the data hider into the encrypted cover image (obtained from the content-owner) to
obtain marked encrypted image. This marked encrypted image is sent to the receiver, where recovery
of both additional data and the cover image from the marked encrypted image is made losslessly.

Many RDHEI schemes based on the symmetric key have been proposed until now. In symmetric
key cryptography, there is only one secret-key for both encryption and decryption, and key management
is needed to share the secret key between the sender and the receiver. Some of the RDH schemes based
on symmetric key cryptography are discussed below.

In 2008, Puech et al. [6] proposed the first RDHEI scheme where the Advanced Encryption
Standard (AES) is used for encryption. Here, the encrypted image is divided into non-overlapping
blocks of n-pixels each, and each block is responsible to carry one bit of additional data. The local
standard deviation of the marked encrypted image is used to retrieve additional data on the receiver’s
side. In 2011, Zhang [7] successfully recovered an image similar to the original image with a secret key,
which is encrypted using a stream cipher. With the help of data hiding key and spatial co-relation in
the image, additional data and original image are recovered losslessly. Embedding is done using a
two-step block division of the encrypted original image, and using least significant bit (LSB) flipping to
identify the type of embedded bit (0 or 1). Hong et al. [8] improved Zhang’s scheme [7] by exploiting
the correlations in neighboring border pixels, which were not taken into consideration by Zhang [7].

At the receiver side, additional data in RDHEI are broadly recovered in two ways, namely
non-separable and separable techniques, which are respectively depicted in Figure 1a,b. To extract the
additional data from the marked encrypted image using the aforementioned schemes, the receiver
must have the data-hiding key and the secret key. As the additional data can only be extracted
after image decryption, this type of schemes falls under the category of non-separable RDHEI, as
depicted in Figure 1a, where the additional data cannot be extracted without decrypting the marked
encrypted image.

Electronics 2019, 8, x FOR PEER REVIEW 2

techniques have been proposed. RDH is a technique to manipulate pixel bits of the cover image to
create some space for embedding the additional data into the cover image, where both the additional
data and the original cover image can be recovered completely. This is done while maintaining the
perceptible quality of the carrier media. RDH schemes can be broadly classified into three categories:
difference expansion [1], lossless compression [2] and histogram shifting [3].

With the growth of cloud-based applications [4,5], data outsourcing is one of the fields where
the users are dependent on cloud for processing and storage. Security concern of the data owners
using cloud for the cover media is addressed using encryption for the cover image. For the sake of
management (using timestamp, tagging, image source information, etc.) of the encrypted media, the
data hider embeds some additional data into the encrypted image. To achieve security and
reversibility, the technique of RDH is used in the encrypted domain.

Reversible data hiding in encrypted images (RDHEI) is a method where additional data are
embedded by the data hider into the encrypted cover image (obtained from the content-owner) to
obtain marked encrypted image. This marked encrypted image is sent to the receiver, where recovery
of both additional data and the cover image from the marked encrypted image is made losslessly.

Many RDHEI schemes based on the symmetric key have been proposed until now. In symmetric
key cryptography, there is only one secret-key for both encryption and decryption, and key
management is needed to share the secret key between the sender and the receiver. Some of the RDH
schemes based on symmetric key cryptography are discussed below.

In 2008, Puech et al [6] proposed the first RDHEI scheme where the Advanced Encryption
Standard (AES) is used for encryption. Here, the encrypted image is divided into non-overlapping
blocks of n-pixels each, and each block is responsible to carry one bit of additional data. The local
standard deviation of the marked encrypted image is used to retrieve additional data on the receiver’s
side. In 2011, Zhang [7] successfully recovered an image similar to the original image with a secret
key, which is encrypted using a stream cipher. With the help of data hiding key and spatial co-relation
in the image, additional data and original image are recovered losslessly. Embedding is done using
a two-step block division of the encrypted original image, and using least significant bit (LSB)
flipping to identify the type of embedded bit (0 or 1). Hong et al [8] improved Zhang’s scheme [7] by
exploiting the correlations in neighboring border pixels, which were not taken into consideration by
Zhang [7].

At the receiver side, additional data in RDHEI are broadly recovered in two ways, namely non-
separable and separable techniques, which are respectively depicted in Figure 1a,b. To extract the
additional data from the marked encrypted image using the aforementioned schemes, the receiver
must have the data-hiding key and the secret key. As the additional data can only be extracted after
image decryption, this type of schemes falls under the category of non-separable RDHEI, as depicted
in Figure 1a, where the additional data cannot be extracted without decrypting the marked encrypted
image.

Figure 1. (a) Non-separable; and (b) separable methods in reversible data hiding. Figure 1. (a) Non-separable; and (b) separable methods in reversible data hiding.

Figure 1b depicts the separable method used in RDHEI, where the receiver can extract the
additional data independent of image decryption, with the use of data hiding key only. The original
image can be recovered by only using the secret key.

Electronics 2019, 8, 682 3 of 16

Zhang [9] proposed the first separable RDHEI method in 2012. RDHEI methods are fit for the
cloud applications, where the data hider using the cloud can embed additional data for the sake of
management. In addition, the receiver can extract additional data without knowing the content of the
original image. The privacy of the cover image is still preserved as the additional data can be extracted
without image decryption. Yin et al. [10] proposed a separable RDHEI scheme by breaking the cover
image into non-overlapping blocks and the additional data are embedded into the blocks using block
smoothness order and peak points.

Generally, at the content-owner’s side, creating space for embedding data is done mainly in two
ways: Vacating room after encryption (VRAE) (Figure 2a) and vacating room before encryption (VRBE)
(Figure 2b). In VRAE, the space to embed additional data by the data hider is created after the image
encryption. However, in VRBE, the space to embed additional data by the data hider is created before
the image encryption. The framework followed by the above schemes is VRAE.

Electronics 2019, 8, x FOR PEER REVIEW 3

Figure 1b depicts the separable method used in RDHEI, where the receiver can extract the
additional data independent of image decryption, with the use of data hiding key only. The original
image can be recovered by only using the secret key.

Zhang [9] proposed the first separable RDHEI method in 2012. RDHEI methods are fit for the
cloud applications, where the data hider using the cloud can embed additional data for the sake of
management. In addition, the receiver can extract additional data without knowing the content of the
original image. The privacy of the cover image is still preserved as the additional data can be
extracted without image decryption. Yin et al [10] proposed a separable RDHEI scheme by breaking
the cover image into non-overlapping blocks and the additional data are embedded into the blocks
using block smoothness order and peak points.

Generally, at the content-owner’s side, creating space for embedding data is done mainly in two
ways: Vacating room after encryption (VRAE) (Figure 2a) and vacating room before encryption
(VRBE) (Figure 2b). In VRAE, the space to embed additional data by the data hider is created after
the image encryption. However, in VRBE, the space to embed additional data by the data hider is
created before the image encryption. The framework followed by the above schemes is VRAE.

After the image encryption, entropy rises, which allows less space for payload (additional data).
To tackle this problem, Ma et al [11] proposed the first VRBE scheme by preprocessing the cover
image, using traditional RDH scheme. Zhang et al [12] preprocessed the cover image by estimating
some pixels in the cover image. Then, they embedded additional data by using histogram shifting for
estimated prediction errors.

Figure 2. (a) Vacating room after encryption (VRAE); and (b) vacating room before encryption (VRBE).

Qian et al [13] significantly enhanced image quality and embedding rate using histogram
modification, based on n-nary histogram intensities. However, the image histogram leakage reduced
image security. Zhang et al [14] embedded compressed additional data into an encrypted image using
low-density parity check code. Zheng et al [15] compressed the pixel LSBs, in the chaotic-encrypted
image, using Hamming distance to embed data. Cao et al [16] used patch level sparse representation
to embed data, using the sparse coding technique. Self-embedding of leading residual errors and
embedding over-complete dictionary (created by using sparse coefficients to represent cover image)
into the encrypted image is used in this technique.

Recently, public key cryptography is used for efficient key management over cloud [17,18],
specifically in RDHEI [19–24]. In asymmetric key (or public key) cryptography, the key for encryption
(public-key) and the key for decryption (private-key) are different. In the context of RDHEI using
public-key, Chen et al [19] proposed the first signal based reversible data hiding, for multiple signals
and data hiders, using Paillier cryptosystem [25]. Shiu et al [20] improved the work of Chen et al [19],

Figure 2. (a) Vacating room after encryption (VRAE); and (b) vacating room before encryption (VRBE).

After the image encryption, entropy rises, which allows less space for payload (additional data).
To tackle this problem, Ma et al. [11] proposed the first VRBE scheme by preprocessing the cover
image, using traditional RDH scheme. Zhang et al. [12] preprocessed the cover image by estimating
some pixels in the cover image. Then, they embedded additional data by using histogram shifting for
estimated prediction errors.

Qian et al. [13] significantly enhanced image quality and embedding rate using histogram
modification, based on n-nary histogram intensities. However, the image histogram leakage reduced
image security. Zhang et al. [14] embedded compressed additional data into an encrypted image using
low-density parity check code. Zheng et al. [15] compressed the pixel LSBs, in the chaotic-encrypted
image, using Hamming distance to embed data. Cao et al. [16] used patch level sparse representation
to embed data, using the sparse coding technique. Self-embedding of leading residual errors and
embedding over-complete dictionary (created by using sparse coefficients to represent cover image)
into the encrypted image is used in this technique.

Recently, public key cryptography is used for efficient key management over cloud [17,18],
specifically in RDHEI [19–24]. In asymmetric key (or public key) cryptography, the key for encryption
(public-key) and the key for decryption (private-key) are different. In the context of RDHEI using
public-key, Chen et al. [19] proposed the first signal based reversible data hiding, for multiple signals
and data hiders, using Paillier cryptosystem [25]. Shiu et al. [20] improved the work of Chen et al. [19],
having a drawback of inherent overflow, by grouping 64-pixels of the encrypted image followed by
compression. Li et al. [21] used difference histogram shifting based on the additive homomorphic

Electronics 2019, 8, 682 4 of 16

property to embed additional data. Wei et al. [22] enhanced the work of Li et al. [21], by taking the
cross-shaped division mask instead of block-based division mask to use all the embedding opportunities.
Zhang et al. [23] proposed reversible and lossless RDHEI in public-key, with better performance in
terms of PSNR of the directly decrypted image compared to some of the previous schemes.

Tai et al. [24] proposed RDHEI scheme based on Paillier’s cryptosystem. Here, the image is
preprocessed before encryption by dividing each pixel into two parts, called encrypted units: EU1 and
EU2. The order of the two encrypted parts of a pixel, namely EU1 and EU2, is exploited to embed the
bits of additional data in the data hiding phase. If the additional bit to be embedded is 1 and EU1 < EU2,
then swap EU1 and EU2. If the additional bit to be embedded is 0 and EU1 > EU2, then swap EU1 and
EU2. On the receiver side, the additive homomorphic property of Paillier’s cryptosystem is used to
recover the original image losslessly. Again, the order of the two encrypted parts, EU1 and EU2, is
used to extract the bits of additional data from the encrypted image. In [24], the image is preprocessed
before encryption and this makes the content-owner to send double the size of image to the data hider.
This issue is the one addressed in our proposed scheme.

In this paper, an efficient separable reversible data hiding scheme for encrypted images is proposed.
It enjoys the benefits of using Paillier cryptosystem [25], which provides privacy preserving advantage
over the cloud. The usage of our scheme befits cloud domain. Thus, a real-life application scenario of
the proposed scheme over cloud is vividly explained in Section 3.6. Paillier’s cryptosystem is used to
encrypt the original image with the public key. When the encrypted image is received by the data
hider, the data-hiding key and the public key is used to embed additional data into the encrypted
image to obtain marked encrypted image. The additional data and the original image are recovered
losslessly at the receiver’s side using respective data hiding and private keys, independent of each
other. This is done in a separable manner, which means for embedded additional data extraction,
encrypted image is not required to be decrypted and vice versa.

After the brief discussion of previous schemes, we move on to a brief introduction to Paillier’s
public key cryptosystem in Section 2. In Section 3, the proposed scheme is discussed with an example.
Experimental results and discussions are covered in Section 4. Finally, a conclusion is drawn in Section 5.

2. Paillier Cryptosystem

Paillier cryptosystem [25] is one of the most widely used public key cryptosystems, based on
homomorphic properties along with probabilistic properties. Our scheme uses Paillier cryptosystem [25]
for the encryption, decryption and its homomorphic properties have been exploited for data embedding.
Homomorphic implies that arithmetic operations will be preserved from plaintext space to ciphertext
space. It has given a strong base for secure computing on cloud, as it deals with privacy-preserving
concerns of data owners. This is due to its property of semantic security, i.e., the same plaintext gives
different ciphertexts, which obviously can be recovered using the private key. It means one cannot
distinguish between the different ciphertexts generated from the same plaintext.

2.1. Key Generation
Two large prime numbers p and q of equal length are randomly chosen, satisfying

gcd (pq, (p− 1) × (q− 1)) = 1. Subsequently, the message sender calculates N and λ using N = pq
and λ = lcm(p− 1, q− 1). Again, some integer g following g ∈ Z∗N is randomly selected, such that it
satisfies gcd(L(gλmodN2), N) = 1, where L(x) = (x− 1)/N. As a result, we get the public key (N, g)
and private key (λ).

2.2. Encryption

Let m be the given message to be encrypted, where integer m ∈ ZN. Select an integer r ∈ Z∗N
randomly. The corresponding ciphertext c can be obtained using:

c = E[m, r] = gm
× rNmodN2 (1)

Electronics 2019, 8, 682 5 of 16

where E[·] represent encryption function having the property of Paillier cryptosystem, and the ciphertext
c lies in the set Z∗

N2 .

2.3. Decryption

Using the private key (λ) in decryption function D[·], the user can decrypt the ciphertext c to get
original message m, using:

m = D[c] =
L(cλmodN2)

L(gλmodN2)
modN. (2)

2.4. Homomorphic Property

The encryption function is additive homomorphic, i.e., the multiplication of two ciphertexts
will decrypt to the sum of their corresponding plaintexts. For two plaintexts m1, m2 ∈ ZN and
randomly selected integers r1, r2 ∈ Z∗N, the corresponding ciphertexts c1, c2 ∈ Z∗N2 can be calculated

as c1 = E[m1, r1] = gm1 × rN
1 modN2 and c2 = E[m2, r2] = gm2 × rN

2 modN2. In addition, c1 and c2 satisfy
Equations (3) and (4):

c1 × c2 = gm1+m2 × (r1 × r2)
nmodN2, (3)

D[gm1+m2 × (r1 × r2)
NmodN2] = m1 + m2modN2. (4)

Semantic security is assured with the homomorphic property of the Paillier cryptosystem, as
shown for a message m ∈ ZN in Equation (5), where r1, r2 ∈ Z∗N, c1 = E[m, r1] and c1 = E[m, r2].

c1 , c2 (5)

3. Proposed Scheme

The idea of our scheme is based on the separable method, as illustrated in Figure 3. The
notations used in the proposed scheme are denoted in Table 1. It comprises of three stakeholders: the
content-owner, the data-hider, and the receiver.

Electronics 2019, 8, x FOR PEER REVIEW 5

Let be the given message to be encrypted, where integer ∈ ℤ . Select an integer ∈ ℤ∗
randomly. The corresponding ciphertext can be obtained using:

 = [,] = × (1)

where E[∙] represent encryption function having the property of Paillier cryptosystem, and the
ciphertext c lies in the set ℤ∗ .

2.3. Decryption

Using the private key	() in decryption function D[∙], the user can decrypt the ciphertext to
get original message , using:

 = [] = () .	 (2)

2.4. Homomorphic Property

The encryption function is additive homomorphic, i.e., the multiplication of two ciphertexts will
decrypt to the sum of their corresponding plaintexts. For two plaintexts , ∈ and randomly
selected integers , ∈ ℤ∗ , the corresponding ciphertexts , ∈ ∗ can be calculated as =[,] = 	× 	 and = [,] = × . In addition, and satisfy
Equations (3) and (4):

 × = × (×) , (3)

 [× (×)] = + .	 (4)

Semantic security is assured with the homomorphic property of the Paillier cryptosystem, as
shown for a message ∈ ℤ in Equation (5), where , ∈ ℤ∗ , = [,] and = [,].

 ≠ (5)

3. Proposed Scheme

The idea of our scheme is based on the separable method, as illustrated in Figure 3. The notations
used in the proposed scheme are denoted in Table 1. It comprises of three stakeholders: the content-
owner, the data-hider, and the receiver.

Encryption Data
embedding Encryption

Image
recovery

Data
extraction

Private key (λ)

Original image
(DDI)

Content - owner

Receiver

Original image
(I) Data hiding key

(Dhk)

Additional data
(D)

Additional data
(D)

C E(D)

Data hiding key
(Dhk)

Marked encrypted
image (C')

C0

Public key (N,g)
0 0 0 0
0
0
0

0 0 0
0 0 0
0 0 0

Data-hider

Public key
(N,g)

Matrix (M0)Matrix (C0)

Figure 3. Working of the proposed scheme. Figure 3. Working of the proposed scheme.

Electronics 2019, 8, 682 6 of 16

Table 1. Key notations used in the proposed scheme.

Notations Description

(N, g) A public key for encryption
(Dhk) A data hiding key for hiding and recovery of additional data
λ A private key possessed by the receiver for image recovery
I An original image of size L× B
k Index for each pixel where 1 ≤ k ≤ L× B
Ik kth pixel of the original image I

Ck
An encrypted value of Ik i.e., kth encrypted pixel of the encrypted

image C
E[·] An encryption function
D[·] A decryption function
rk A randomly selected integer for each Ik such that rk ∈ Z∗N
C An encrypted image generated from all Ck achieved by pixel by

pixel encryption
D Additional data of size L× B bits to be embedded

E(D) Encrypted additional data using (Dhk)
M0 A zero matrix of size L× B where all the elements are zero
C0 A matrix resulting from encryption of matrix M0

C0
k kth encrypted value of “0” from the matrix C0

PU A padded unit
PUk kth padded unit consisting of pair (C0

k , Ck) where 1 ≤ k ≤ L× B

C′ A marked encrypted image (MEI) constituted from all the padded
units (PUs)

DDI A directly decrypted image
DDIk kth pixel of directly decrypted image (DDI)

Data-hider uses (Dhk) to encrypt the additional data (D) and uses (N, g) to embed the encrypted
additional data E(D) into the encrypted image. At the receiver’s end, additional data are recovered
from the marked encrypted image C′ using (Dhk), and the original image I is completely recovered in
a separable manner, using (λ) owned by the receiver.

3.1. Image Encryption

In this step, the content-owner scans each pixel of the original image I in the order from left to
right and top to bottom, as shown in Figure 4 (for an image of size 5× 5), to get the index k for each
pixel. The size of I is L× B, where 1 ≤ k ≤ L× B. This order is used throughout our proposed scheme to
get the value at index k.

Electronics 2019, 8, x FOR PEER REVIEW 6

Table 1. Key notations used in the proposed scheme.

Notations Description (,) A public key for encryption () A data hiding key for hiding and recovery of additional data
 A private key possessed by the receiver for image recovery
 An original image of size ×
 Index for each pixel where 1 ≤ ≤ ×
 kth pixel of the original image
 An encrypted value of i.e., kth encrypted pixel of the encrypted image [∙] An encryption function 	 [∙] A decryption function
 A randomly selected integer for each such that ∈ ℤ∗
 An encrypted image generated from all achieved by pixel by pixel encryption
 Additional data of size × bits to be embedded () Encrypted additional data using (ℎ)
 A zero matrix of size × where all the elements are zero
 A matrix resulting from encryption of matrix
 kth encrypted value of “0” from the matrix
 A padded unit
 kth padded unit consisting of pair (,) where 1 ≤ ≤ ×

 A marked encrypted image (MEI) constituted from all the padded units (PUs)
 A directly decrypted image
 kth pixel of directly decrypted image (DDI)

Data-hider uses (ℎ) to encrypt the additional data () and uses (,) to embed the
encrypted additional data ()	into the encrypted image. At the receiver’s end, additional data are
recovered from the marked encrypted image using (ℎ), and the original image is completely
recovered in a separable manner, using () owned by the receiver.

3.1. Image Encryption

In this step, the content-owner scans each pixel of the original image in the order from left to
right and top to bottom, as shown in Figure 4 (for an image of size 5 × 5), to get the index for each
pixel. The size of I is × , where 1 ≤ ≤ × . This order is used throughout our proposed
scheme to get the value at index .

Figure 4. Scanning order to get index k for an image of size 5 × 5. Figure 4. Scanning order to get index k for an image of size 5 × 5.

Electronics 2019, 8, 682 7 of 16

After scanning, the content-owner encrypts each Ik taken from original image I. Public key and
Equation (1) are used to encrypt Ik to get the corresponding encrypted value Ck as follows:

Ck = E[Ik, rk] = (g)Ik × (rk)
N mod N2 (6)

where E[·] is the encryption function and rk is randomly selected integer for each Ik such that rk ∈ Z∗N.
Step-wise encryption of the original image is as follows.

Step 1. Scan I for each pixel Ik in order from left to right and top to bottom (Figure 4).
Step 2. Encrypt each Ik using the public key (N, g) as in Equation (6) to get the encrypted pixel Ck.
Step 3. After encrypting all the k pixels, the encrypted image generated is C.

3.2. Data Embedding

In this step, initially, the data hider uses the data hiding key (Dhk), to encrypt the additional data
(D) to obtain E(D). Here (also refer to Section 3.5), it is assumed that the number of bits in E(D) is
equal to the number of pixels in the encrypted image C. Before embedding, the data hider generates a
separate zero matrix M0 of size L× B, where all the elements are zero. The data hider uses Equation (1)
and the public key to encrypt M0, to obtain the encrypted matrix C0. Thus, after encryption the size of
matrix C0, is the same as the size of the encrypted image C. It can be noted that each element of the
matrix C0 is distinct but of the same size, by the property of semantic security (Equation (5)) inherent
in Pallier cryptosystem.

In the next step, each bit of E(D) is embedded into the corresponding Ck of the encrypted image
C. That is, each encrypted pixel Ck is responsible for carrying one bit of E(D). For embedding, the data
hider has to pad kth encrypted value of “0” (i.e., C0

k) from the matrix C0, with the corresponding kth
encrypted pixel (i.e., Ck) of C. This padding results into a matrix of L× B padded units (PUs). As each
PU is composed of two encrypted values (Ck, C0

k), L× B padding units make 2× L× B encrypted values.
This makes the size of the PU matrix equal to 2× L× B, which is double the size of the C i.e., L× B. All
the PUs constitute the encrypted image with additional data, i.e., the marked encrypted image C′.

Padding Procedure

In padding, four cases arise as depicted in Figure 5: two cases, if the bit of E(D) is “0”, and two
cases, if the bit of E(D) is “1”. For embedding, we compare values Ck and C0

k .

Electronics 2019, 8, x FOR PEER REVIEW 7

After scanning, the content-owner encrypts each taken from original image . Public key and
Equation (1) are used to encrypt to get the corresponding encrypted value as follows:

 = [,] = () × () 	 	 , (6)

where [∙] is the encryption function and is randomly selected integer for each such that ∈ℤ∗ . Step-wise encryption of the original image is as follows.
Step 1. Scan for each pixel in order from left to right and top to bottom (Figure 4).
Step 2. Encrypt each using the public key (,) as in Equation (6) to get the encrypted pixel

.
Step 3. After encrypting all the pixels, the encrypted image generated is .

3.2. Data Embedding

In this step, initially, the data hider uses the data hiding key (ℎ), to encrypt the additional
data () to obtain (). Here (also refer to Section 3.5), it is assumed that the number of bits in () is equal to the number of pixels in the encrypted image . Before embedding, the data hider
generates a separate zero matrix of size × , where all the elements are zero. The data hider
uses Equation (1) and the public key to encrypt , to obtain the encrypted matrix . Thus, after
encryption the size of matrix , is the same as the size of the encrypted image . It can be noted
that each element of the matrix 	is distinct but of the same size, by the property of semantic security
(Equation (5)) inherent in Pallier cryptosystem.

In the next step, each bit of () is embedded into the corresponding of the encrypted
image . That is, each encrypted pixel is responsible for carrying one bit of	 (). For embedding,
the data hider has to pad kth encrypted value of “0” (i.e.,) from the matrix , with the
corresponding kth encrypted pixel (i.e.,) of . This padding results into a matrix of × padded
units (PUs). As each PU is composed of two encrypted values (,), × padding units make 2 × × encrypted values. This makes the size of the PU matrix equal to 2 × × , which is double
the size of the i.e., × . All the PUs constitute the encrypted image with additional data, i.e., the
marked encrypted image .

Padding Procedure

In padding, four cases arise as depicted in Figure 5: two cases, if the bit of () is “0”, and two
cases, if the bit of () is “1”. For embedding, we compare values and .

kC0() 1 k kE D and C C== >

Case 1

kC
0() 1 k kE D and C C== <

Case 2

kC0() 0 k kE D and C C== <

Case 4

kC0() 0 k kE D and C C== >

Case 3

0
kC

0
kC

0
kC

0
kC

kPU kPU

kPU kPU

Figure 5. Four cases for padded unit (PU) construction.

When the bit of () is equal to 1, the padding is done such that the bigger value (between
and) is at the first position in . Thus, if > , then is placed first in the , as in Figure
5 (Case 1). If < , then is placed first in the , as in Figure 5 (Case 2).

When the bit of () is equal to 0, the padding is done in such a way that the bigger value
(between and) will be at the second position in the . If > , then is placed second
in the , as in Figure 5 (Case 3). If < , then is placed second in the , as in Figure 5
(Case 4).

The step by step procedure for data embedding into the encrypted image can be understood
from the following algorithm:

Figure 5. Four cases for padded unit (PU) construction.

When the bit of E(D) is equal to 1, the padding is done such that the bigger value (between Ck
and C0

k) is at the first position in PUk. Thus, if Ck > C0
k , then Ck is placed first in the PUk, as in Figure 5

(Case 1). If Ck < C0
k , then C0

k is placed first in the PUk, as in Figure 5 (Case 2).
When the bit of E(D) is equal to 0, the padding is done in such a way that the bigger value

(between Ck and C0
k) will be at the second position in the PUk. If Ck > C0

k , then Ck is placed second in
the PUk, as in Figure 5 (Case 3). If Ck < C0

k , then C0
k is placed second in the PUk, as in Figure 5 (Case 4).

The step by step procedure for data embedding into the encrypted image can be understood from
the following algorithm:

Electronics 2019, 8, 682 8 of 16

Let us assume Ck to be the encrypted image for the pixel k where k ∈ [1, (L× B)] and C0
k be the

encrypted value of “0” for pixel k.
Step 1. With the help of data hiding key (Dhk), bits of additional data (D) are encrypted in order

to generate bits of encrypted additional data E(D).
Step 2. If the bit of E(D) to be embedded is 1:
If Ck > C0

k in the selected PUk, then we rearrange the order in PUk by appending C0
k after Ck.

(That is, the bigger value is first and the smaller value is second in the PUk (Figure 5, Case 1).)
Otherwise, we append Ck after C0

k .
(That is, the bigger value is first and the smaller value is second in the PUk (Figure 5, Case 2).)
Step 3. If the bit of E(D) to be embedded is 0:
If Ck > C0

k in the selected PUk, then we rearrange the order in PUk by appending Ck after C0
k .

(That is, the smaller value is first and the bigger value is second in the PUk (Figure 5, Case 3).)
Otherwise, we append C0

k after Ck.
(That is, the smaller value is first and the bigger value is second in the PUk (Figure 5, Case 4).)
Step 4. After the encrypted image C has been embedded with the E(D), the marked encrypted

image C′ is obtained with all the PUk.

3.3. Data Extraction

After the receipt of the marked encrypted image C′ on the receiver side, the embedded E(D) is
extracted using the data-hiding key (Dhk). The step by step procedure for data extraction from C′ is
as follows:

Step 1. Scan the marked encrypted image C′ in the same manner as used in the encryption and
embedding phase, i.e., left to right and top to bottom (Figure 4).

Step 2. For each of the selected PUk, Steps 3 and 4 are performed.
Step 3. If the first value of the pair (C0

k ,Ck) in the selected PUk is bigger than the second value,
then the embedded bit of E(D) is “1”.

In this case, “1” will be extracted.
Step 4. If the first value of the pair (C0

k ,Ck) in the selected PUk is smaller than the second value,
then the embedded bit of E(D) is “0”.

In this case, “0” will be extracted.
Step 5. After extracting all the bits, the encrypted additional data E(D) is constituted.
Data hiding key (Dhk) is used to regenerate the original additional data (D).

3.4. Image Recovery

In this step, if the receiver wants to recover the original image I, he must own the private key (λ).
After receiving the marked encrypted image C′, the receiver applies homomorphic multiplication on
each pair of (C0

k ,Ck) in PUk of C′, to get the corresponding Ck, and then, decrypts each Ck to get kth
pixel of the directly decrypted image DDIk with private key (λ) using:

DDIk = D[Ck] =
L((Ck)

λmodN2)

L(gλmodN2)
modN, (7)

where D[·] is the decryption function, λ is the private key and DDI is the directly decrypted image. In
our scheme, DDI results in the completely recovered original image I, i.e., no post-processing on DDI
is further required. Step-wise procedure used to recover the original image using the private key (λ) is
as follows:

Step 1. Scan the marked encrypted image C′ in the same manner as used in the encryption and
embedding phase, i.e., left to right and top to bottom (Figure 4).

Step 2. For each selected PUk.

Electronics 2019, 8, 682 9 of 16

Step 3. Apply homomorphic multiplication (×) to each pair (C0
k , Ck) in PUk, to obtain Ck, such that

Ck = C0
k ×Ck.

(The order of C0
k and Ck does not affect the result.)

Step 4. Each Ck is decrypted using the private key (λ) to give the corresponding DDIk.
Step 5. DDI is obtained constituting all the DDIk.
It can be noted that, in Step 3., the original values (unencrypted values) of C0

k and Ck are “0” and
Ik respectively. When homomorphic multiplication is applied to (C0

k , Ck), it means internally zero is
added to the value Ik. Thus, we get encrypted value Ck (i.e., Ck = (C0

k × Ck) = encrypted value of
(0 + Ik)).

3.5. Exemplifying Our Proposed Scheme

Figure 6 shows the working of the proposed scheme at the data-hider side. It is supported by the
following example: our example shows the working for the 1st pixel value I1 = 65, of the original image.
Let the public key = (1763, 94) and the private key = (840). Using the public key and the encryption
function E[·], we get E (65) = C1 = (184, 481) and E(0) = C0

1 = (304, 186). Let the bit to be embedded
be 1, i.e., E(D) = 1. For embedding, we compare C1 and C0

1. According to Step 2 of Section 3.2 (Figure 5,
Case 2), when C0

1 > C1, we put C1 after C0
1 in PU1.Thus, here, PU1 = (304, 186; 184, 481), i.e., the bigger

value is first and the smaller value is second. The receiver extracts the first bit of E(D), by reading the
order in PU1. In (304, 186; 184, 481), the first value is bigger than the second value, so the embedded
bit of E(D) is 1. However, this bit will be further decrypted using data-hiding key (Dhk) to get D
Furthermore, the receiver having the private key (840) gets the first pixel value DDI1, for the directly
decrypted image DDI, from the PU1 = (304, 186; 184, 481) by using homomorphic multiplication. This
is done as: λ(PU1) = λ((C0

1 ×C1)modN2) = λ((304, 186× 184, 481)mod17632) = λ(0 + 65) = 65. Thus,
the pixel value DDI1 is same as the original pixel value I1 = 65.

Electronics 2019, 8, x FOR PEER REVIEW 9

Step 5. is obtained constituting all the .
It can be noted that, in Step 3., the original values (unencrypted values) of and are “0”

and respectively. When homomorphic multiplication is applied to (,), it means internally
zero is added to the value . Thus, we get encrypted value (i.e., = (×) = encrypted
value of (0 +)).
3.5. Exemplifying Our Proposed Scheme

Figure 6 shows the working of the proposed scheme at the data-hider side. It is supported by
the following example: our example shows the working for the 1st pixel value = 65, of the original
image. Let the public key = (1763, 94)	and the private key = (840). Using the public key and the
encryption function [∙], we get 	(65) = = (184,481) and (0) = = (304,186). Let the bit to
be embedded be 1, i.e., () = 1. For embedding, we compare and . According to Step 2 of
Section 3.2 (Figure 5, Case 2), when > , we put after in .Thus, here, =(304,186; 184,481), i.e., the bigger value is first and the smaller value is second. The receiver extracts
the first bit of (), by reading the order in . In (304,186; 184,481), the first value is bigger than
the second value, so the embedded bit of ()	is 1. However, this bit will be further decrypted using
data-hiding key (ℎ) to get Furthermore, the receiver having the private key (840) gets the
first pixel value , for the directly decrypted image , from the = (304,186; 184,481) by
using homomorphic multiplication. This is done as: λ() = λ((C × C)) = λ((304,186 ×184,481) 1763) = λ(0 + 65) = 65. Thus, the pixel value is same as the original pixel value

 = 65.

Figure 6. Data embedding process in our proposed scheme after getting an encrypted image of size (4 × 4) from the content-owner. and are the values for index = 1 of and ,
respectively.

3.6. Proposed Scheme in Cloud Domain

There are a number of resource constrained devices based on cloud services; to show the process
flow, involved hardware and software services we take an example of closed circuit television
(CCTV) cameras installed on roads for monitoring the traffic against any traffic law violation. As
shown in Figure 7, the workflow of the given scenario can be divided into following three phases:

(1) Image capturing and encryption at the sender’s end
(2) Generating MEI over the cloud
(3) Authorized complete recovery of the D and I

Figure 6. Data embedding process in our proposed scheme after getting an encrypted image C of size
(4× 4) from the content-owner. C0

1 and C1 are the values for index k = 1 of C0 and C, respectively.

3.6. Proposed Scheme in Cloud Domain

There are a number of resource constrained devices based on cloud services; to show the process
flow, involved hardware and software services we take an example of closed circuit television (CCTV)
cameras installed on roads for monitoring the traffic against any traffic law violation. As shown in
Figure 7, the workflow of the given scenario can be divided into following three phases:

Electronics 2019, 8, 682 10 of 16
Electronics 2019, 8, x FOR PEER REVIEW 10

Figure 7. Of the proposed scheme in the cloud scenario.

(1) Image capturing and encryption: As shown in Figure 7, at the sender’s end, there can be a
number of CCTVs (1, 2, 3, … , , … ,), all of which are programmed to capture the images with a fixed
time interval. To obtain the encrypted image , the local processing unit (LPU) encrypts the image ()
captured from jth CCTV. This is done using public key (,) and the encryption algorithm [∙]. Once
the image is encrypted, it is sent to the cloud service provider (CSP) acting as the data hider, for
marking.

(2) Generating marked encrypted image (MEI): The data hider embeds the additional data ,
such as the time () of the captured image or CCTV camera-id (). To make secret, it is
encrypted with the data hiding key (ℎ) to obtain (). A zero matrix equal to the size of the
original image (), is encrypted with public key (,), to obtain . is used, to embed ()
into the encrypted image , to obtain as .

(3) Authorized access and recovery: There are three type of end users with different access
policies. The first category of users hold the data-hiding key (ℎ) These users are authorized to
access additional data (e.g., the camera-id , capturing time t, etc.) from the MEI. This type of data
can be used to categorize and store the MEI in a local data base (LDB). The second type of users hold
private key () for retrieving original image. This type of authorized users exploit the original image
for detecting any traffic rule violation such as wrongful crossing, incorrect overtake, etc. The third
type of users hold both data hiding (ℎ) and private	() keys. This enables users to access both
additional data and the original image. Thus, for any rule violation, the image can be crosschecked
with the corresponding additional data (time , camera-id , location, etc.) for validity. Reasonable
penalties can be applied to the subjects flouting the rules.

4. Experimental Results

To evaluate our proposed scheme, we used miscellaneous dataset [26] of gray-scale images, each
having size 512 × 512. For simulation purpose, MATLAB 2015 b was used. We measured our results
on the basis of embedding rate in terms of bit per pixel (bpp), visual quality in terms of peak signal
noise ratio (PSNR) and structural similarity index matrix (SSIM). The embedding rate (ER) can be
calculated using Equation (8) as follows:

 	 () = 	 	 	 		 	 	 	 	 ℎ 	 .	 (8)

Figure 7. Of the proposed scheme in the cloud scenario.

(1) Image capturing and encryption at the sender’s end
(2) Generating MEI over the cloud
(3) Authorized complete recovery of the D and I
(1) Image capturing and encryption: As shown in Figure 7, at the sender’s end, there can be a

number of CCTVs (1, 2, 3, . . . , j, . . . , N), all of which are programmed to capture the images with
a fixed time interval. To obtain the encrypted image C, the local processing unit (LPU) encrypts the
image (I) captured from jth CCTV. This is done using public key (N, g) and the encryption algorithm
E[·]. Once the image is encrypted, it is sent to the cloud service provider (CSP) acting as the data hider,
for marking.

(2) Generating marked encrypted image (MEI): The data hider embeds the additional data D,
such as the time (t) of the captured image or CCTV camera-id (CC j). To make D secret, it is encrypted
with the data hiding key (Dhk) to obtain E(D). A zero matrix M0 equal to the size of the original image
(I), is encrypted with public key (N, g), to obtain C0. C0 is used, to embed E(D) into the encrypted
image C, to obtain C′ as MEI.

(3) Authorized access and recovery: There are three type of end users with different access
policies. The first category of users hold the data-hiding key (Dhk) These users are authorized to access
additional data (e.g., the camera-id CC j, capturing time t, etc.) from the MEI. This type of data can
be used to categorize and store the MEI in a local data base (LDB). The second type of users hold
private key (λ) for retrieving original image. This type of authorized users exploit the original image
for detecting any traffic rule violation such as wrongful crossing, incorrect overtake, etc. The third type
of users hold both data hiding (Dhk) and private (λ) keys. This enables users to access both additional
data and the original image. Thus, for any rule violation, the image can be crosschecked with the
corresponding additional data (time t, camera-id CC j, location, etc.) for validity. Reasonable penalties
can be applied to the subjects flouting the rules.

4. Experimental Results

To evaluate our proposed scheme, we used miscellaneous dataset [26] of gray-scale images, each
having size 512× 512. For simulation purpose, MATLAB 2015 b was used. We measured our results on
the basis of embedding rate in terms of bit per pixel (bpp), visual quality in terms of peak signal noise

Electronics 2019, 8, 682 11 of 16

ratio (PSNR) and structural similarity index matrix (SSIM). The embedding rate (ER) can be calculated
using Equation (8) as follows:

Embeding Rate(ER) =
Number o f total embedded bits

Number o f total pixels o f the image
. (8)

To calculate PSNR, Equation (9) is used

PSNR = 10× log10
2552

MSE
(dB), (9)

where mean square error (MSE) is calculated as follows:

MSE =
1

L× B

L−1∑
l=0

B−1∑
j=0

(I(i, j) −R(i, j))2. (10)

Structural similarity index matrix (SSIM) is a method to measure the structural similarity between
the recovered and reference images, where the reference image is the original image. It is used as a
measure of perceived degradation in structural information of the recovered image with respect to the
original image. The range of SSIM is [−1, 1], where 1 shows that the images are identical. For original
image I and the recovered image R, SSIM is calculated as follows

SSIM(I, R) =
(2µIµR + c1)(2σIR + c2)

(µ2
I + µ2

R + c1)(σ
2
I + σ2

R + c2)
. (11)

where µI, µR are the mean of images I and R, respectively, and σ2
I , σ2

R are the variance of images I and
R, respectively. σIR is the covariance of I and R, respectively. Here, c1 = (k1L)2,c2 = (k2L)2, where L is
the dynamic range of values of pixel and k1 = 0.01, k2 = 0.03 by default.

4.1. Results Showing Independence of the Proposed Scheme for Different Images

From the selected database [26] we experimented on four standard gray-scale images, as depicted
in Figure 8a–d (Lena, Baboon, Boat and Airplane, respectively) with size 512 × 512 each. The respective
images when decrypted directly from the marked encrypted image are depicted in Figure 8e–h. The
embedding rate is 1 for all the four images, using Equation (8).

In the proposed scheme, for each pixel. one padded unit (PU) is constructed and each PU is
responsible to carry 1-bit of additional data. This results in embedding rate of 1-bit per pixel, i.e., 1 bpp
as each pixel is responsible to carry one bit of additional data. PSNR for directly decrypted images,
calculated using Equation (9), was found to be +∞ dB for all four images. It implies that the recovery
of all the four original images was complete. This also shows that no post-processing on the directly
decrypted image was needed to completely recover the original image. Using Equation (11), SSIM
value for the four images was 1. This means that the structural similarity index of the recovered images
against the original images was the same. Values for PSNR and SSIM support that the perceptual
quality of the directly decrypted image with respect to the original image was the same. Table 2 shows
the results for the metrics embedding rate, PSNR, and SSIM for all four images. It is inferred that the
embedding rate, PSNR and SSIM are independent of the texture of chosen images, as these metric
values remained constant for the four distinct images. This implies that, for a complex image, the
embedding rate will be the same as that for a smooth image for our proposed scheme.

Electronics 2019, 8, 682 12 of 16

Electronics 2019, 8, x FOR PEER REVIEW 11

To calculate PSNR, Equation (9) is used
 = 10 × log 255 (), (9)

where mean square error (MSE) is calculated as follows:
 = 1× ((,) − (,)) . (10)

Structural similarity index matrix (SSIM) is a method to measure the structural similarity
between the recovered and reference images, where the reference image is the original image. It is
used as a measure of perceived degradation in structural information of the recovered image with
respect to the original image. The range of SSIM is [−1, 1], where 1 shows that the images are
identical. For original image and the recovered image , SSIM is calculated as follows

 	SSIM(I, R) = (2μ μ + c)(2σ + c)(μ + μ + c)(σ + σ + c).	 (11)

where μ , μ are the mean of images and , respectively, and , are the variance of images
and , respectively. is the covariance of and , respectively. Here, = () , = () ,
where is the dynamic range of values of pixel and = 0.01, = 0.03 by default.

4.1. Results Showing Independence of the Proposed Scheme for Different Images

From the selected database [26] we experimented on four standard gray-scale images, as
depicted in Figure 8a–d (Lena, Baboon, Boat and Airplane, respectively) with size 512 × 512 each. The
respective images when decrypted directly from the marked encrypted image are depicted in Figure
8e–h. The embedding rate is 1 for all the four images, using Equation (8).

Figure 8. (a–d) The four original standard gray-scale images of size 512 × 512; and (e–h) the directly
decrypted images (DDI) to check embedding rate, peak signal noise ratio (PSNR), structural similarity
index matrix (SSIM) for different images in our scheme.

In the proposed scheme, for each pixel. one padded unit (PU) is constructed and each PU is
responsible to carry 1-bit of additional data. This results in embedding rate of 1-bit per pixel, i.e., 1
bpp as each pixel is responsible to carry one bit of additional data. PSNR for directly decrypted
images, calculated using Equation (9), was found to be +∞ dB for all four images. It implies that the
recovery of all the four original images was complete. This also shows that no post-processing on the
directly decrypted image was needed to completely recover the original image. Using Equation (11),

Figure 8. (a–d) The four original standard gray-scale images of size 512 × 512; and (e–h) the directly
decrypted images (DDI) to check embedding rate, peak signal noise ratio (PSNR), structural similarity
index matrix (SSIM) for different images in our scheme.

Table 2. Embedding rate, peak signal noise ratio (PSNR), structural similarity index matrix (SSIM) for
four distinct standard test images (Figure 8a–d) in the proposed scheme.

Test Images Embedding Rate (bpp) PSNR SSIM

Lena, Baboon, Boat and Airplane 1.0 +∞ 1

4.2. Comparative Analysis with Other Standard Schemes in RDHEI

To compare the proposed scheme with other schemes [9–12,16,24], we used the test image Lena
(Figure 9a) from the database [26]. Figure 10 shows the comparison on the basis of PSNR of the directly
decrypted image and their corresponding embedding rate.

Electronics 2019, 8, x FOR PEER REVIEW 12

SSIM value for the four images was 1. This means that the structural similarity index of the recovered
images against the original images was the same. Values for PSNR and SSIM support that the
perceptual quality of the directly decrypted image with respect to the original image was the same.
Table 2 shows the results for the metrics embedding rate, PSNR, and SSIM for all four images. It is
inferred that the embedding rate, PSNR and SSIM are independent of the texture of chosen images,
as these metric values remained constant for the four distinct images. This implies that, for a complex
image, the embedding rate will be the same as that for a smooth image for our proposed scheme.

Table 2. Embedding rate, peak signal noise ratio (PSNR), structural similarity index matrix (SSIM) for
four distinct standard test images (Error! Reference source not found.a–d) in the proposed scheme.

Test Images Embedding Rate
(bpp)

PSNR SSIM

Lena, Baboon, Boat
and Airplane

1.0 +∞ 1

4.2. Comparative Analysis with Other Standard Schemes in RDHEI

To compare the proposed scheme with other schemes [9–12,16,24], we used the test image Lena
(Figure 9a) from the database [26]. Figure 10 shows the comparison on the basis of PSNR of the
directly decrypted image and their corresponding embedding rate.

Figure 9. The test image Lena: (a) Original; and (b) directly decrypted image.

Figure 10. Performance comparison on the test image Lena for compared schemes Method-1 [9],
Method-2 [10], Method-3 [12], Method-4 [11], Method-5 [16], Method-6 [24].

For Methods-1–5 [9–12,16], PSNR decreased with the increase in embedding rate. For Method-6 [24],
PSNR was +∞ dB and was independent of the embedding rate with maximum embedding rate of 1

Figure 9. The test image Lena: (a) Original; and (b) directly decrypted image.

Electronics 2019, 8, 682 13 of 16

Electronics 2019, 8, x FOR PEER REVIEW 12

SSIM value for the four images was 1. This means that the structural similarity index of the recovered
images against the original images was the same. Values for PSNR and SSIM support that the
perceptual quality of the directly decrypted image with respect to the original image was the same.
Table 2 shows the results for the metrics embedding rate, PSNR, and SSIM for all four images. It is
inferred that the embedding rate, PSNR and SSIM are independent of the texture of chosen images,
as these metric values remained constant for the four distinct images. This implies that, for a complex
image, the embedding rate will be the same as that for a smooth image for our proposed scheme.

Table 2. Embedding rate, peak signal noise ratio (PSNR), structural similarity index matrix (SSIM) for
four distinct standard test images (Error! Reference source not found.a–d) in the proposed scheme.

Test Images Embedding Rate
(bpp)

PSNR SSIM

Lena, Baboon, Boat
and Airplane

1.0 +∞ 1

4.2. Comparative Analysis with Other Standard Schemes in RDHEI

To compare the proposed scheme with other schemes [9–12,16,24], we used the test image Lena
(Figure 9a) from the database [26]. Figure 10 shows the comparison on the basis of PSNR of the
directly decrypted image and their corresponding embedding rate.

Figure 9. The test image Lena: (a) Original; and (b) directly decrypted image.

Figure 10. Performance comparison on the test image Lena for compared schemes Method-1 [9],
Method-2 [10], Method-3 [12], Method-4 [11], Method-5 [16], Method-6 [24].

For Methods-1–5 [9–12,16], PSNR decreased with the increase in embedding rate. For Method-6 [24],
PSNR was +∞ dB and was independent of the embedding rate with maximum embedding rate of 1

Figure 10. Performance comparison on the test image Lena for compared schemes Method-1 [9],
Method-2 [10], Method-3 [12], Method-4 [11], Method-5 [16], Method-6 [24].

For Methods-1–5 [9–12,16], PSNR decreased with the increase in embedding rate.
For Method-6 [24], PSNR was +∞ dB and was independent of the embedding rate with maximum
embedding rate of 1 bpp. It is notable that the maximum PSNR for any of the highest embedding rate
for the directly decrypted image in Methods-1–5 [9–12,16] was less than 55.34 dB, showing that recovery
of the directly decrypted image is incomplete without post-processing. However, in Method-6 [24]
and the proposed scheme, the directly decrypted image is the same as the original image and no
post-processing is required.

In the proposed scheme, the PSNR for the directly decrypted image (Figure 9b) was independent
of the embedding rate and the maximum embedding rate is 1 bpp. The image quality of other compared
schemes (except Method-6 [24]) was significantly less as compared to our proposed scheme when
PSNR for the directly decrypted image was taken into account.

Table 3 shows a property-wise comparison of different schemes [9–12,16,24]. The maximum
embedding rate for Zhang’s scheme [9] was 0.033 bpp with PSNR = 38.0 dB, which decreased with the
increase in the embedding rate. The maximum embedding rate for Zhang et al.’s scheme [12] was
0.04 bpp with PSNR = 55.34 dB. For Yin et al.’s scheme [10], maximum embedding rate is 0.1294 bpp
with PSNR = 50.51 dB.

Table 3. Scheme-wise property comparison.

Schemes Image
Pre-Processing Encryption Receiver

Maximum
Embedding
Rate (bpp)

PSNR (dB)
of Directly

Image

Data
Expansion

Zhang [9] No Stream
cipher Separable 0.033 38.0 No

Zhang et al. [12] Yes Stream
cipher Separable 0.04 55.34 No

Yin et al. [10] No Stream
cipher Separable 0.1294 50.51 No

Ma et al. [11] Yes Stream
cipher Separable 0.7 33.273 No

Cao et al. [16] Yes Stream
cipher Separable 0.8 37.375 No

Tai et al. [24] Yes Public key Separable 1.0 +∞ Yes
Proposed No Public key Separable 1.0 +∞ Yes

The maximum embedding rate for schemes of Ma et al. [11], Cao et al. [16] and Tai et al. [24] are
0.7 bpp, 0.8 bpp and 1.0 bpp with PSNR equal to 33.273 dB, 37.375 dB and +∞ dB, respectively. For

Electronics 2019, 8, 682 14 of 16

our proposed scheme, the maximum embedding rate was 1 bpp with PSNR = +∞ dB. Here, PSNR is
+∞ dB was irrespective of the embedding rate.

The schemes compared in Table 3 achieved complete recovery of image Lena (Figure 9a) at the
receiver’s side after post-processing. All schemes including the proposed scheme are separable. A
stream cipher is used for encryption in the schemes in [9–12,16], while public key cryptography is used
for encryption in the scheme in [24] and the proposed scheme. The public-key cryptosystem used in
our scheme is responsible for the inevitable data expansion caused due to homomorphic properties
unlike in the schemes in [9–12,16]. However, with this disadvantage comes an advantage that the
property of homomorphic addition inherent in the Paillier cryptosystem used in our scheme makes it
suitable for privacy-preserving environment needed for cloud computing.

Sharing the similarity of using Paillier public-key cryptosystem with Tai’s scheme [24], our scheme
is also a separable reversible data hiding scheme, where the data hiding key is used by the receiver to
extract the additional data from the marked encrypted image. Although image pre-processing is not
done in the schemes in [9,10], the quality of the directly decrypted image is lesser as compared to our
scheme. In the scheme in [24], the image preprocessing step needed for data hiding is an unnecessary
overhead for the content-owner. This overhead is gracefully transferred to the data hider’s side
using the benefits of cloud in our scheme, which enhances the efficiency in the resource-constrained
environment on the content-owner’s end because the size of the pre-processed image (in the scheme
in [24]) to be encrypted and sent is reduced to half in our scheme (see Table 4).

Table 4. Comparative analysis of our scheme in terms of bit-size for image (L × B) with Tai et al. [24].

Schemes
Size (in bits)

Content-Owner Data-Hider Receiver

Tai et al. [24] 2× L× B× (blog2 N2
c+ 1) 2× L× B× (blog2 N2

c+ 1) 2× L× B× (blog2 N2
c+ 1)

Proposed 1× L× B(blog2 N2
c+ 1) 2× L× B× (blog2 N2

c+ 1) 2× L× B× (blog2 N2
c+ 1)

In Table 4, a test image of size L× B is taken for comparison between our proposed scheme and
the scheme in [24]. It is inferred that the proposed scheme has an edge over the scheme in [24] as we
reduced the image preprocessing step on the sender’s side, which is an additional step in the scheme
in [24]. The size of the encrypted image is L× B× (blog2 N2

c+ 1) bits in our proposed method. For the
same image, the size of the encrypted image in the scheme in [24] is 2 × L × B × (blog2 N2

c+ 1) bits.
This is because the scheme in [24] involves a preprocessing step of dividing the original image into
two parts and then encrypting it on the content-owner side. This can be also be seen as a reduction
in the encryption cost to half on the content-owner side because, in the scheme in [24], the original
image pixel is divided into two parts, each having the size of the original pixel. Thus, for encryption
of a single image of size L × B, the scheme in [24] has to encrypt L × B two times, i.e., for the two
preprocessed parts of the same image. In the case of our scheme, for encrypting the image of size
L× B, encryption has to be done only once. It is a boon for those resource constrained devices on the
sender side which entrust cloud for storage and processing. On the cloud side, the processing power is
extremely large, thus attaching an equal payload to embed the additional data and its transmission is a
trivial task.

5. Conclusions

In this work, an efficient separable reversible data hiding framework in encrypted images is
proposed where Paillier cryptosystem is adequately used to preserve the privacy of the content in the
cloud environment. Here, data extraction is accomplished in a separable manner, where the embedded
additional data can be extracted using data hiding key and an independent complete image recovery
is achieved using the private key.

Electronics 2019, 8, 682 15 of 16

In addition, the cost for encryption is reduced on the content owner’s side (using limited processing
and memory) with respect to Tai et al.’s scheme [24] by gracefully transferring the pre-processing step
to the data hider side using cloud. Moreover, this proposed scheme exploits vast storage and memory
resources available on the cloud. The proposed scheme was well explained with a real life application
over cloud. Future works may include improving the efficiency of our scheme using new techniques
in RDHEI.

Author Contributions: Conceptualization, A.N.K.; Data curation, A.N.K., M.I.N., A.M. and M.A.H.; Formal
analysis, A.N.K. and A.M.; Funding acquisition, M.A.H.; Investigation, R.A.M.; Methodology, A.N.K.; Supervision,
M.Y.F.; Validation, A.N.K.; Writing—original draft, A.N.K.; Writing—review & editing, A.N.K.

Funding: This research was funded by TEQIP-III of REC Ambedkar Nagar, grant number-TEQIP 3-RECABN and
the APC was funded by TEQIP-III of REC Ambedkar Nagar.

Acknowledgments: The support of TEQIP-III of REC Ambedkar Nagar for this work is highly acknowledged.

Conflicts of Interest: The authors declare no conflict of interests.

References

1. Tian, J. Reversible data embedding using a difference expansion. IEEE Trans. Circuits Syst. Video Technol.
2003, 13, 890–896. [CrossRef]

2. Celik, M.; Sharma, G.; Tekalp, A.M.; Saber, E. Lossless generalized-LSB data embedding. IEEE Trans. Image
Process. 2005, 14, 253–266. [CrossRef] [PubMed]

3. Ni, Z.; Shi, Y.Q.; Ansari, N.; Su, W. Reversible data hiding. IEEE Trans. Circuits Syst. Video Technol. 2006, 16,
354–362.

4. Malik, A.; Wang, H.; Wu, H.; Abdullahi, S.M. Reversible Data Hiding with Multiple Data for Multiple Users
in an Encrypted Image. Int. J. Digit. Crime Forensics 2019, 11, 46–61. [CrossRef]

5. Shi, Y.-Q.; Li, X.; Zhang, X.; Ma, B.; Wu, H. Reversible Data Hiding: Advances in the Past Two Decades. IEEE
Access 2016, 4, 1. [CrossRef]

6. Puech, W.; Chaumont, M.; Strauss, O. A reversible data hiding method for encrypted images. Proc. SPIE
2008, 6819, 68191E.

7. Zhang, X. Reversible Data Hiding in Encrypted Image. IEEE Signal Process. Lett. 2011, 18, 255–258. [CrossRef]
8. Hong, W.; Chen, T.-S.; Wu, H.-Y. An Improved Reversible Data Hiding in Encrypted Images Using Side

Match. IEEE Signal Process. Lett. 2012, 19, 199–202. [CrossRef]
9. Zhang, X. Separable Reversible Data Hiding in Encrypted Image. IEEE Trans. Inf. Forensics Secur. 2012, 7,

826–832. [CrossRef]
10. Yin, Z.; Luo, B.; Hong, W. Separable and Error-Free Reversible Data Hiding in Encrypted Image with High

Payload. Sci. World J. 2014, 2014, 1–8. [CrossRef]
11. Ma, K.; Zhang, W.; Zhao, X.; Yu, N.; Li, F. Reversible Data Hiding in Encrypted Images by Reserving Room

Before Encryption. IEEE Trans. Inf. Forensics Secur. 2013, 8, 553–562. [CrossRef]
12. Zhang, W.; Ma, K.; Yu, N. Reversibility improved data hiding in encrypted images. Signal Process. 2014, 94,

118–127. [CrossRef]
13. Qian, Z.; Han, X.; Zhang, X. Separable Reversible Data hiding in Encrypted Images by n-nary Histogram

Modification. In Proceedings of the 3rd International Conference on Multimedia Technology (ICMT 2013),
Guangzhou, China, 29 November–1 December 2013; pp. 201–204.

14. Zhang, X.; Qian, Z.; Feng, G.; Ren, Y. Efficient reversible data hiding in encrypted images. J. Vis. Commun.
Image Represent. 2014, 25, 322–328. [CrossRef]

15. Zheng, S.; Li, D.; Hu, D.; Ye, D.; Wang, L.; Wang, J. Lossless data hiding algorithm for encrypted images with
high capacity. Multimed. Tools Appl. 2016, 75, 13765–13778. [CrossRef]

16. Cao, X.; Du, L.; Wei, X.; Meng, D.; Guo, X. High Capacity Reversible Data Hiding in Encrypted Images by
Patch-Level Sparse Representation. IEEE Trans. Cybern. 2016, 46, 1. [CrossRef] [PubMed]

17. Kuribayashi, M.; Tanaka, H. Fingerprinting protocol for images based on additive homomorphic property.
IEEE Trans. Image Process. 2005, 14, 2129–2139. [CrossRef] [PubMed]

18. Wu, H.-T.; Cheung, Y.-M.; Huang, J. Reversible data hiding in Paillier cryptosystem. J. Vis. Commun. Image
Represent. 2016, 40, 765–771. [CrossRef]

http://dx.doi.org/10.1109/TCSVT.2003.815962
http://dx.doi.org/10.1109/TIP.2004.840686
http://www.ncbi.nlm.nih.gov/pubmed/15700530
http://dx.doi.org/10.4018/IJDCF.2019010104
http://dx.doi.org/10.1109/ACCESS.2016.2573308
http://dx.doi.org/10.1109/LSP.2011.2114651
http://dx.doi.org/10.1109/LSP.2012.2187334
http://dx.doi.org/10.1109/TIFS.2011.2176120
http://dx.doi.org/10.1155/2014/604876
http://dx.doi.org/10.1109/TIFS.2013.2248725
http://dx.doi.org/10.1016/j.sigpro.2013.06.023
http://dx.doi.org/10.1016/j.jvcir.2013.11.001
http://dx.doi.org/10.1007/s11042-015-2920-y
http://dx.doi.org/10.1109/TCYB.2015.2423678
http://www.ncbi.nlm.nih.gov/pubmed/25955861
http://dx.doi.org/10.1109/TIP.2005.859383
http://www.ncbi.nlm.nih.gov/pubmed/16370465
http://dx.doi.org/10.1016/j.jvcir.2016.08.021

Electronics 2019, 8, 682 16 of 16

19. Chen, Y.-C.; Shiu, C.-W.; Horng, G. Encrypted signal-based reversible data hiding with public key
cryptosystem. J. Vis. Commun. Image Represent. 2014, 25, 1164–1170. [CrossRef]

20. Shiu, C.-W.; Chen, Y.-C.; Hong, W. Encrypted image-based reversible data hiding with public key cryptography
from difference expansion. Signal Process. Image Commun. 2015, 39, 226–233. [CrossRef]

21. Li, M.; Xiao, D.; Zhang, Y.; Nan, H. Reversible data hiding in encrypted images using cross division and
additive homomorphism. Signal Process. Image Commun. 2015, 39, 234–248. [CrossRef]

22. Liu, W.-L.; Leng, H.-S.; Huang, C.-K.; Chen, D.-C. A Block-Based Division Reversible Data Hiding Method in
Encrypted Images. Symmetry 2017, 9, 308. [CrossRef]

23. Zhang, X.; Long, J.; Wang, Z.; Cheng, H.; Wang, J. Lossless and Reversible Data Hiding in Encrypted Images
with Public Key Cryptography. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 1. [CrossRef]

24. Tai, W.-L.; Chang, Y.-F. Separable Reversible Data Hiding in Encrypted Signals with Public Key Cryptography.
Symmetry 2018, 10, 23. [CrossRef]

25. Paillier, P. Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In Proceedings of the
Advances in Cryptology—EUROCRYPT ’99, Prague, Czech Republic, 2–6 May 1999; pp. 223–238.

26. CVG-UGR—Image Database. Available online: http://decsai.ugr.es/cvg/dbimagenes/g512.php (accessed on
21 April 2019).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jvcir.2014.04.003
http://dx.doi.org/10.1016/j.image.2015.09.014
http://dx.doi.org/10.1016/j.image.2015.10.001
http://dx.doi.org/10.3390/sym9120308
http://dx.doi.org/10.1109/TCSVT.2015.2433194
http://dx.doi.org/10.3390/sym10010023
http://decsai.ugr.es/cvg/dbimagenes/g512.php
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Paillier Cryptosystem
	Key Generation
	Encryption
	Decryption
	Homomorphic Property

	Proposed Scheme
	Image Encryption
	Data Embedding
	Data Extraction
	Image Recovery
	Exemplifying Our Proposed Scheme
	Proposed Scheme in Cloud Domain

	Experimental Results
	Results Showing Independence of the Proposed Scheme for Different Images
	Comparative Analysis with Other Standard Schemes in RDHEI

	Conclusions
	References

