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Abstract: For good performance, most existing electrocardiogram (ECG) identification methods
still need to adopt a denoising process to remove noise interference beforehand. This specific
signal preprocessing technique requires great efforts for algorithm engineering and is usually
complicated and time-consuming. To more conveniently remove the influence of noise interference
and realize accurate identification, a novel temporal-frequency autoencoding based method is
proposed. In particular, the raw data is firstly transformed into the wavelet domain, where
multi-level time-frequency representation is achieved. Then, a prior knowledge-based feature
selection is proposed and applied to the transformed data to discard noise components and retain
identity-related information simultaneously. Afterward, the stacked sparse autoencoder is introduced
to learn intrinsic discriminative features from the selected data, and Softmax classifier is used
to perform the identification task. The effectiveness of the proposed method is evaluated on
two public databases, namely, ECG-ID and Massachusetts Institute of Technology-Biotechnology
arrhythmia (MIT-BIH-AHA) databases. Experimental results show that our method can achieve
high multiple-heartbeat identification accuracies of 98.87%, 92.3%, and 96.82% on raw ECG signals
which are from the ECG-ID (Two-recording), ECG-ID (All-recording), and MIT-BIH-AHA database,
respectively, indicating that our method can provide an efficient way for ECG biometric identification.

Keywords: ECG identification; multi-level time-frequency representation; prior knowledge-based
feature selection; stacked sparse autoencoder

1. Introduction

In past decades, identification technology has been widely applied in different fields of our
society to satisfy the requirements for safety and privacy information protection. However, traditional
techniques, including documents, keys, passwords, and radio frequency identification (RFID) all have
concerns regarding their possibility of being lost or forgotten. As a promising alternative, biometric
identification attracts great attention from researchers all over the world [1]. Typical biometrics include
fingerprint, iris, and face, etc. In recent years, it is also found that an electrocardiogram (ECG) signal
can provide various significant properties to advocate its use as a biometric, such as uniqueness,
permanence, and ease of collection. In addition, compared with conventional biometrics, the ECG can
serve as a more reliable and safer way for identification, because it is an electrical signal inside the
body and thus, is hard to be stolen or fabricated. Due to these characteristics, the use of ECG signals
for biometric identification has recently received much attention [2].
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Generally, visually distinguishing the ECG differences among subjects is very challenging
because of the subtle changes in amplitude and duration. To overcome this limitation, pattern
recognition methods are usually adopted for quick, objective, and reliable identification. A typical
ECG biometric identification process can be divided into three parts: preprocessing, feature extraction,
and classification. Among the above three, feature extraction is especially important because it
determines the information transferred to classifiers and has a great influence on the final identification
performance. According to the feature extraction manner, existing ECG identification methods can be
typically divided into two categories which are the fiducial and the non-fiducial [3]: (i) The fiducial [4–7]
refers to methods that extract ECG features based on fiducial points, e.g., P, Q, R, S, and T. Fiducial
features are amplitudes of P, Q, R, S, and T waves, the temporal interval between wave boundaries,
the area of waves, and the slope information [8]; (ii) for the non-fiducial [9,10], no peak detection is
required during feature extraction. The most prevalent non-fiducial features include frequency domain
features which are coefficients or parameters obtained by certain specific transformations, such as
wavelet transform and statistical features, which are converted from ECG waveforms by statistical
methods, such as principal component analysis (PCA).

Among previously reported applications, Biel et al. [4] proposed to select 360 fiducial features
including QRS wave duration, amplitude from 12-lead ECG recordings to classify 20 subjects in 2001,
and this work is one of the earliest researches which apply ECG for human identification. In 2005,
Nemirko et al. [5] demonstrated that it was possible to identify a specific person using one-lead ECG
signals. The proposed system utilized PQRST-fragment as features, and identification accuracy of
96% was achieved using linear discriminant analysis (LDA). Later, principal component analysis
(PCA) was adopted by Irvine et al. [6].to remove common cyclic pattern and retain information
that described the individual’s uniqueness. In 2013, Khairul et al. [7] reported that enhanced by
piecewise cubic Hermite interpolation (PCHIP) and piecewise cubic spline interpolation (SPLINE),
QRS complex could offer excellent discrimination among different subjects from ECG databases
with low sampling frequency. In recent years, with the development of neural network technology,
researchers more and more prefer automatic feature learning to manual extraction. Zhang et al. [9]
proposed a 1-D-convolutional neural network (1-D-CNN) to learn the intrinsic features from wavelet
domain data, obtaining high accuracy on both health and arrhythmic databases. In 2018, generalized
S-transformation and convolutional neural network (CNN) were combined together in [10] to avoid
tedious feature extraction. By converting the one-dimensional signal to a two-dimensional image, this
method could take full advantage of the feature extraction ability of CNN, and thus, learn the potential
discrimination among different subjects.

The above studies have reported promising performances on various issues and applications.
However, some problems still exist. As we all know, there are multiple factors influencing the quality
of the ECG signal [11]. The interference will display in the form of noise and distort the waveform of
ECG signals, leading to a decrease of ECG identification performance [12]. To address the interference,
nearly all of the existing ECG based biometric identification methods have to design or adopt a
denoising method in the preprocessing step. However, due to the diverse collection environments
and multiple noise types in practice, there is still not a denoising algorithm that proves to be able to
perform well in a variety of situations. That means great effort should be made to adjust the denoising
method to obtain good denoising performance, which is time-consuming and complicated. What is
worse, improper design or improvement may further distort the ECG signal and make the following
identification even harder. If the denoising process can be simpler, great time and work will be saved.
Hence, a feature extraction scheme, which can more conveniently remove noise interference and learn
potential discrimination among subjects, needs to be investigated.

This study aims to propose a novel feature extraction method which does not require a specific
denoising process beforehand and can still remove noise interference. Our work can be divided into
two parts.
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(1) On the basis of prior knowledge, we propose a QRST-targeting selection method for feature
initiation. The method aims to remove most noise interference by only preserving identity-related
information. Here, the identity-related information refers to QRST characteristics, which have proven
to be efficient in ECG biometric identification and been widely used according to the literature review.

To extract identity-related information, discrete wavelet transform (DWT) is adopted for
multiresolution analysis. The major advantage of DWT is its ability of multiresolution decomposition,
by which a good description of the original signals on time and frequency domain can be provided.
In prior work [13], DWT has proven to be able to describe ECG discrepancies among subjects. In
this paper, DWT is used to decompose ECG signals into different scales, each of which represents a
particular coarseness of the signal, and provide an initial feature set for the following feature selection.
Then by selecting the scales corresponding to QRST, the identity-related information can be preserved,
while interference can be removed as much as possible.

(2) For further feature extraction, autoencoder (AE), a classical neural network, is adopted as
the tool to discover discriminative data structure from the initial features selected by DWT. AE has
long been applied to fault diagnosis of machinery [14] and image classification [15]. Recently,
it also proves its effectiveness in medical research, such as health informatics and biological signal
analysis [16–19], e.g., Eduardo et al. [19] conducted a deep autoencoder structure to learn lower
dimensional representation of heartbeats. In this paper, by additionally adding a sparse constraint, the
stacked sparse autoencoder network is expected to fit complex function and learn abstract representation
of the input. Here, since the learned DWT feature contains temporal and frequency information of
original data, the process of feature learning on it by AE is called temporal-frequency autoencoding.

The rest of this paper is organized as follows: Section 2 illustrates the used databases for evaluation;
Section 3 performs the proposed methodology; experimental setup and results are presented in Section 4;
the results of our approach are discussed in Section 5, and Section 6 concludes the paper.

2. Database

In our work, two public databases available on the PhysioNet, namely the ECG-ID [5] and the
MIT-BIH-AHA [20], are used for the evaluation of our proposed method.

The ECG-ID contains recordings gathered from 90 subjects (44 males and 46 females) using a
one-lead chest ECG sensor. Each recording is digitized at 500 Hz, over a duration of 20 s. The ECG-ID
database is challenging for biometric identification because of its various emotional and physical
acquisition conditions and has been widely used for evaluation in prior works. During the experiments,
for convenient comparison with existing literature, two schemes were adopted. The detail is as below:

Two-recording: in this scheme, since only a small subset of the subjects have more than two
recordings, we adopted the first two recordings of each subject for the experiments.

All-recording: all the recordings in the database were used during the experiments.
In both of the schemes, the 74th subject was excluded because of its single signal number.
The MIT-BIH-AHA consists of two-channel ECG signals with a sample rate of 360 Hz. These ECG

signals are obtained from 47 subjects (25 males and 22 females) and have a duration of about 30 min.
During the experiments, only the first channel of each subject was adopted, because its QRS complexes
are usually prominent. For better evaluation, each ECG was divided into 20 s short-term ECGs using
the moving window analysis technique. As a result, the segmented ECGs have the same length as
those in ECG-ID, and the number of signals from each subject increases. With the MIT-BIH-AHA
database, the proposed method can be evaluated on the level of the patient.

3. Proposed Methodology

The whole proposed identification process is mainly composed of five parts: (1) preprocessing,
(2) feature selection, (3) feature learning, (4) single-heartbeat identification, (5) multiple-heartbeat
identification. The specific process is shown in Figure 1. Parts in the red block represent the proposed
method in this paper. Here, since the signal label is obtained based on the voting of its contained
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multiple heartbeats, we call the signal identification process Multiple-heartbeat identification in
this paper.
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3.1. Preprocessing

3.1.1. Denoising

For comparing the performances of the proposed method on noisy and clean signals, raw signals
should be firstly denoised to construct Set A (denoised dataset). In practice, raw ECG signals contain
three major noises, which are baseline wander, power-line interference, and muscle artifact, respectively.
Generally, baseline wander results from people inhaling and has a low frequency of less than 0.5 Hz [21].
Power-line interference generates due to the influence of the used power, whose frequency is either
50 Hz or 60 Hz [22]. Muscle artifact, which results from the contraction of other muscles apart from the
heart, is a random noise that spreads over the entire frequency domain [23].

In our work, the noises of ECG signals, which come from the MIT-BIH-AHA database, was
removed by a wavelet transform based denoising algorithm [24–26] to obtain the denoised dataset.
The denoising process is as follows: 9-level lift wavelet decomposition is firstly carried out on raw ECG
signals to get wavelet coefficients; then obtained wavelet coefficients of different levels are thresholded
by the shrinkage (soft) strategy; at last, the thresholded wavelet detail coefficients are reconstructed
back to the original sequence form, leading to the obtaining of clean signal. Here the shrinkage (soft)
strategy thresholds the coefficients according to the universal ‘VisuShrink’ threshold given by [27]:

Thri = σi

√
2 log(Ni), (1)

where Ni and σi, respectively, represent the data point number and the estimated noise level of the i-th
level. σi is obtained according to [28]:

σi =
median(|ωi|)

0.6745
, (2)

where ωi is the wavelet detail coefficients of the i-th level, and median(x) is a function which can output
the median value of input sequence x. Wavelet decomposition, coefficient thresholding, and signal
reconstruction can be implemented by functions lwt, wthresh, and ilwt in MATLAB, respectively. Figure 2
depicts the comparison between a raw ECG signal from the MIT-BIH-AHA and its denoised signal.

For the ECG-ID database, all signals of each subject contain two channels. Among them, one is
the raw signal, and the other one is the denoised signal, which has been preprocessed by the data
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contributor. In this work, we directly adopted the filtered signal of each subject to construct Set A of
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MIT-BIH-AHA database. (a) the original signal; (b) the denoised signal.

3.1.2. R-Peak Detection and Heartbeat Segmentation

This stage aims to segment a long ECG signal into multiple heartbeats. Since R peak points were
taken as the dividing references during segmentation, it is crucial to detect R peak locations from noisy
ECG signals. In this work, the Pan–Tompkins (PT) algorithm [29] was adopted for R point detection
because of its good performance on noisy ECG signals. The PT algorithm is comprised of several steps:
cascaded low-pass and high-pass filters, differentiation, a squaring function, and moving-window
integration. The cascaded low-pass and high-pass filters firstly remove interference and maximize
QRS energy. Then differentiation and squaring, respectively, provide the slope information and
emphasize the higher frequencies. Afterward, moving-window integration is used to obtain waveform
information, and its rising edge corresponds to the QRS complex. By searching the peak point in the
temporal duration corresponding to the rising edge, the R point can be identified. Even though an
extra denoising process exits in PT algorithm, the step here has much lower requirements for denoising
algorithms compared with those cases where denoised signals are further used for identification. After
the PT algorithm, only the detected R point locations are adopted for raw signal segmentation, and
there is no need to worry about signal quality decrease caused by improper denoising. MATLAB code
for the PT algorithm was downloaded from [30].

Before and after the detected R peaks, 0.24 s and 0.4 s length waveform are extracted, respectively,
to cover the cardiac cycle length. Figure 3 shows two heartbeats, respectively, from Set A (denoised
dataset) and Set B (noisy dataset) of ECG-ID and MIT-BIH-AHA databases.
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Figure 3. Segmented heartbeats with and without noise. (a) a noisy heartbeat from the MIT-BIH-AHA;
(b) a denoised heartbeat from the MIT-BIH-AHA; (c) a noisy heartbeat from the ECG-ID; (d) a denoised
heartbeat from the ECG-ID.

3.2. Feature Selection

As mentioned above, a long ECG signal can be segmented into a series of heartbeats which are
comprise such successive characteristic waveforms as P, Q, R, S, and T. These waveforms appear
in time order, and have different contributions to ECG biometric identification. In prior literature,
Nemirko et al. [5] firstly pointed out that QRS complex did not change significantly with the heart rate
varying, and was able to perform as a stable characteristic. Later, Tuerxunwaili et al. [31] found that
using only three QRS based features was sufficient to identify a subject, which further highlighted the
importance of QRS complex. Actually, to our knowledge, nearly all the existing ECG based biometric
identification methods have taken QRS complex or its related form as features. Furthermore, QRS,
T wave was also reported by Francesco Gargiulo to be necessary to improve the performance of ECG
identification [32]. Even though the research of Simova [33] reported that QRS and T-wave amplitude
would attenuate with age increasing, there is still no evidence that the slope and area information
of QRS and T will change at the same time. Actually, Mikhail Matveev [34] demonstrated that QRS
complexes of ECG recordings which were acquired 5 years apart, still had a strong correlation. Based
on the above, we can reasonably conclude the feature information of QRS and T wave contributes the
most to ECG biometric identification.

To extract QRS and T wave information from noisy ECG signals, our idea is to decompose raw ECG
signals into multiple levels, and each decomposed level represents different frequencies. By selecting
appropriate levels corresponding to QRS and T, the unwanted interference will be removed. Based on
this idea, a QRST-targeting feature selection method, which consists of two parts: decomposition and
selection, is proposed.

3.2.1. Decomposition

For signal decomposition, discrete wavelet transform is adopted in this work because of its
capability to analyze complex non-stationary signals in both frequency and time domain. Generally,
the Mallat algorithm [35] can provide an efficient way to realize DWT. The procedure of multiresolution
decomposition of a given heartbeat x(n) is shown in Figure 4. At the first level, the heartbeat is firstly
filtered by two filters, respectively, which are a high-pass filter g(•) and a low-pass filter h(•) both
associated with the chosen mother wavelet. Then the two obtained filtered signals are downsampled
to get the decomposed signals. Here, the symbol ↓ 2 represents downsampling the filtered signals by
two. The D1 and A1 refer to the detail and approximation coefficients of the first level decomposition,
respectively. After that, by repeating the procedure of the first level, the approximation A1 can be
further decomposed at the second level using the same filters. As the process continues, the input
heartbeat is decomposed into multiple detailed and approximation coefficients, which provide ECG
information in the localized time and frequency domain. In our work, the decomposition level was set
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to 9, and Daubechies order 2 (db2) was selected as the mother wavelet due to its excellent performance
in ECG analysis [36]. Here, the function wavedec in MATLAB is employed to realize discrete wavelet
decomposition. For each heartbeat, the detailed coefficients of each level and the approximation
coefficients of the last level were kept for further use.
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Figure 4. Heartbeat decomposition with discrete wavelet transform.

3.2.2. Selection

To select QRST information and remove interference, frequencies of coefficients from different
levels should be identified. According to the Nyquist sampling theorem, the maximum frequency
contained in the signal is half the sampling frequency. Thus, for the ECG-ID and MIT-BIH-AHA
databases, which have a sampling frequency of 500 Hz and 360 Hz, respectively, the highest frequency
of contained signals can reach 250 Hz and 180 Hz.

During DWT, the filtering process of each level will halve the frequency band of the input [37].
As a result, the frequency band of the outputted detail and approximate coefficients, respectively,
span half of the previous frequency band. For example, when the input signal frequency is 250 Hz,
the approximation coefficients output by the low-pass filter covers the frequency span of 0 to 125 Hz
and the detail coefficients output by the high-pass filter covers the frequency span of 125 to 250 Hz.
In this paper, applying 9-level DWT to the signal gives nine detailed levels and one approximation
level. Distribution of frequencies versus different levels is shown in Table 1:

Table 1. Estimated frequency of coefficients from different levels.

Database ECG-ID MIT-BIH-AHA

Level Approximation (Hz) Detail (Hz) Approximation (Hz) Detail (Hz)

1 0–125 125–250 0–90 90–180
2 0–62.5 62.5–125 0–45 45–90
3 0–31.25 31.25–62.5 0–22.5 22.5–45
4 0–15.625 15.625–31.25 0–11.25 11.25–22.5
5 0–7.812 7.812–15.625 0–5.625 5.625–11.25
6 0–3.906 3.906–7.812 0–2.812 2.812–5.625
7 0–1.953 1.953–3.906 0–1.406 1.406–2.812
8 0–0.976 0.976–1.953 0–0.703 0.703–1.406
9 0–0.488 0.488–0.976 0–0.351 0.351–0.703

According to the frequencies of QRS (0–37 Hz (±5 Hz)), T (0–8 Hz (±2 Hz))) and baseline wander
(less than 0.5 Hz), wavelet coefficients ranging from 0.488 Hz to 62.5 Hz (0.351 Hz to 45 Hz) are
selected as the initial feature for ECG-ID (MIT-BIH-AHA) database. In Table 1, the frequencies of the
wavelet coefficients which are used for further feature learning are highlighted in bold. In this way,
temporal-frequency information of QRST is extracted, and an identity-irrelevant component can be
removed as much as possible.
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3.3. Feature Learning

Even though the proposed feature selection method can retain identity information in both the
time and frequency domains, the obtained feature can hardly be used for direct classification. The aim
of this section is too prominent discrepancy among different subjects and extract a discriminative
feature. In our work, by stacking multiple layers, autoencoder could learn complex functions, and
represent the original data more effectively and compactly. The automatic feature extraction process
performed by the autoencoder is called feature learning.

3.3.1. Sparse Autoencoder (S-AE)

A basic autoencoder is designed as a three-layer network, including the input layer, the hidden
layer, and the output layer. By nonlinear mapping, this network tries to approximate an ideal function,
so as to minimize the error between the input and the output. In this way, the abstract representation at
the hidden layer is considered to contain important information of the original input and can be taken
as a high-level feature. Generally, the whole process of an autoencoder, whose architecture is shown in
Figure 5, can be divided into two stages: encoding and decoding. Both the encoding and the decoding
are forward propagation processes, which conduct nonlinear transformation by using an activation
function. Specifically, the encoding transforms the original input into the abstract representation, and
the decoding recovers the representation with the purpose of reconstruction error minimization.
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Formally, an example x ∈ Rn is firstly transformed into a middle version x̃ by a function x̃ ∼ h(̃x
∣∣∣x)

in the encoding stage. This function can be implemented by Equation (3).

x̃ = h(x) = f (
m∑

j=1

W1
·x + b1), (3)

f (z) = 1/(1 + exp(−z)), (4)

where f (•) is a non-linear activation function, typically a sigmoid function, W1
∈ Rn×m is a weight

matrix connecting the input and the hidden layer and b1
∈ Rm is a bias vector. The size of input data

and the number of the hidden unit both determine the topology structure of the autoencoder.
Then the decoding maps the middle representation to the reconstruction y ∈ Rn. The reconstruction

can be implemented by Equation (5):

y = f (W2
·̃x + b2), (5)
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where W2
∈ Rm×n is a weight matrix connecting the hidden layer and the output layer, and b2

∈ Rn is a
bias vector. When a set of samples X = (x(1), x(2), · · · , x(m)) are given, the autoencoder training process
aims to find parameters W1, W2, b1, b2 to minimize the reconstruction error. Assume W =

{
W1, W2

}
,

b =
{
b1, b2

}
, the cost function of the autoencoder network can be expressed as below:

J(W, b) =
1
m

m∑
i=1

(1
2
‖hW,b(x(i)) − x(i)‖

2
)
+
λ
2

2∑
i=1

∑
j

‖Wi j‖
2, (6)

where hW,b(z) represents the reconstruction result of an example z after passing through the whole

transformation process of the autoencoder. The second term λ
2

2∑
i=1

∑
j
‖Wi j‖

2 is called the regularization

term, which represents the square sum of all weights with a hyper-parameter λ and helps to
avoid overfitting.

Furthermore, to avoid simply repeating the input and capture important information, sparsity
constraint is further imposed on the autoencoder network. As a result, an additional penalty
term is added:

Ppenalty =

S2∑
j=1

KL(ρ‖ρ j), (7)

where S2 is the neuron number of the hidden layer, and ρ j represents the average activation of the j-th
hidden unit. Suppose that a j(x) denotes the activation of j-th the hidden unit, ρ j can be depicted as
Equation (8). Here KL(•) is the Kullback–Leibler (KL) divergence, which is expressed in Equation (9).

ρ j =
1
m

m∑
i=1

a j(x(i)), (8)

KL(ρ‖ρ j) = ρ log
ρ

ρ j
+ (1− ρ) log

1− ρ
1− ρ j

, (9)

where ρ is a sparsity parameter. The penalty function possesses the property that KL(ρ j‖ρ) = 0 if
ρ j = ρ. Otherwise, KL-divergence would approach infinity when ρ j is close to 0 or 1. With the sparse
penalty term added, the cost function is modified as:

Jsparse(W, b) = J(W, b) + βPpenalty, (10)

where β is the weight of the sparsity penalty. This cost function aims to make the reconstruction equal
to the input as much as possible. Its parameters (W, b) can be updated with methods such as stochastic
gradient descent approach and Limited-memory BFGS (L-BFGS) algorithm.

3.3.2. Softmax Classifier

For a multi-class classification problem, Softmax classifier is usually conjunct with the neural
network to classify the learned features. Softmax classifier is the multi-classifier extension of logistic
regression, and can output k values representing the probabilities. Especially, for a feature vector x(i)

classified by the Softmax classifier, the k values can be depicted as Equation (11).

hθ(x(i)) =


p(y(i) = 1

∣∣∣x(i),θ)
p(y(i) = 2

∣∣∣x(i),θ)
...

p(y(i) = k
∣∣∣x(i),θ)

 =
1

k∑
j=1

eθ
T
j x(i)


eθ

T
1 x(i)

eθ
T
2 x(i)

...

eθ
T
k x(i)


, (11)
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where θ1,θ2, · · · ,θk depict the parameters of the Softmax. The class of the input feature vector
corresponds to the one with the maximum value in all categories. For the realization of the process of
feature learning and classification, MATLAB toolkit DeepLearnToolbox was utilized, and its MATLAB
code can be downloaded from [38].

3.3.3. Stacked Sparse Autoencoder

In application, single S-AE (Sparse Autoencoder) may not be able to provide a sufficient way to
model data structure. Thus multiple S-AEs are usually stacked together to form deeper architecture
and learn high-level abstract features. In this research, the parameter settings of the used S-AEs are
shown in Table 2.

Table 2. Parameter setting of the proposed S-AEs.

Parameters Value

Number of hidden layers 2

Node per layer MIT-BIH-AHA: 71-200-50-47
ECG-ID: 95-200-50-89

Sparsity parameter ρ 0.1
Weight decay λ 3 × 10−5

Sparsity penalty weight β 3
Maximum epoch 400

Activation function sigmoid

Figure 6 shows the overall framework of feature learning and classification, which includes the
following steps:

(1) Normalization: Given a heartbeat sample x(i) processed by QRST-targeting selection method,
it should be firstly normalized and rescaled into the range [0, 1]. In this work, min–max normalization
is adopted to realize the process, which can be seen in Equation (12)

x(i) =
x(i) − x(i)min

x(i)max − x(i)min

, (12)

where x(i)min and x(i)max, respectively, represent the maximum and minimum value in feature vector x(i).
The function mapminmax in MATLAB was adopted to realize normalization in this work.

(2) Initialization: The original data set is divided into two parts: the training set and the testing set.
Meanwhile, the network parameters W and b are initialized randomly, and related hyper parameters,
such as maximum epochs, are set to proper values.

(3) S-AE training: After related parameters are initialized, L-BFGS is used for performing
back-propagation, which continuously adjusts the weights and biases to minimize the reconstruction
error. Specially, we trained the S-AEs using a layer-wise way, in which each S-AE is trained individually,
and the hidden layer output of the previous layer is taken as the input of the subsequent layer. After
training, with the output layer removed, the obtained S-AEs are stacked together.

(4) Fine-tuning: A Softmax classifier is added to the end of the stacked S-AEs. By taking advantage
of the label knowledge of the trained data, this Softmax classifier fine-tunes the whole network to learn
the potential discrepancy among subjects. The process of fine-tuning is also back-propagation, which
can be realized by such algorithms as L-BFGS.

(5) Testing: By now, the whole network has been well trained. When a test sample is input,
the network will obtain its abstract representation and output its identification result at the Softmax layer.
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3.4. Multiple-Heartbeat Identification

With a heartbeat sample as input, the network will assign it a label at the last layer. To get the
final decision of a whole signal, we make heartbeats which come from the same signal vote. Based
on the results, the class ranking the first in voting number is considered as the label of the estimated
signal. As shown in Figure 1, three heartbeats from the same signal are firstly classified as “Label A”,
”Label A” and “Label B” by the Softmax during the single-heartbeat identification process. Then in the
multiple-heartbeat identification, three heartbeats vote to decide the signal label. As a result, “Label A”
gets 2 votes and “Label B” gets 1 vote. Since “Label A” ranks the first in voting number, the label of the
signal is considered as “Label A”.

4. Experiments

4.1. Experimental Setup

For the training of the sparse autoencoder, the toolkit minFunc which implements L-BFGS was
employed to optimize network parameters. In this work, the epoch numbers of training and fine-tuning
were both set to 400. After each epoch, the proposed method validates the S-AEs model. Out of the
whole training ECG heartbeats, 7/10 was used for training and the rest 3/10 for validation.

To convincingly evaluate the proposed method, in the Two-recording scheme, two recordings of
each subject from the ECG-ID were alternately taken as the training set, and the rest one was used as the
testing set. When it comes to the All-recording scheme, the difference is that when one subject has over
5 recordings, its number of recordings used for training became two. All the recordings of each subject
take turns to serve as the training data, and the rest of the recordings were used for testing. Here all
the recordings of the ECG-ID which are taken into experiments are 20 s-length. For the MIT-BIH-AHA
database, we separated the signal of each subject equally into 10 segments in time order. Heartbeats
of 1 segment (3 min-length) are used in the training of S-AE while those heartbeats of 9 segments
are used for testing. The approach is iterated 10 times by shifting the training data. For both of the
two databases, performances, such as single-heartbeat identification accuracy and multiple-heartbeat
(signal) identification accuracy, are evaluated during each iteration. At last, the performances of all
iterations are averaged to obtain an overall performance of the proposed method.
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Experiments were all made in MATLAB 2017a (MATLAB, 2017a, MathWorks, Natick, MA, USA).

4.2. Results

4.2.1. Performance Evaluation with the Training and Validation Data

During training, the mean square error (MSE) function was adopted as the loss function, and
the parameter optimization problem was solved by the L-BFGS algorithm, which is realized by the
minFunc toolkit [39]. The training and validation processes of S-AEs on two databases are exhibited in
Figure 7. Here the S-AEs are trained on the training data with true identity labels and then tested on
both of the training and validation data. According to Figure 7, the training and validation curves show
similar convergence forms on both the loss and the accuracy. With the epoch number growing, the loss
becomes much smaller, and the accuracies on the training and validation data both increase significantly.
When the epoch is 400, the constructed model can achieve 100% single-heartbeat identification accuracy
on the training data, and over 95% single-heartbeat identification accuracy on the validation data.
At the same time, train losses on the training and validation data are close to 0. The above indicates
that the constructed network model can effectively learn most of the discriminative patterns in ECG
data, and does not have the over-fitting problem.
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4.2.2. Reconstruction of Temporal-Frequency Curves with S-AEs

For the neural network based classification system, the quality of learned features directly
determines the final classification performance. When it comes to an autoencoder, one important
indicator to evaluate its feature learning ability is how well it can reconstruct the original curve based
on the information provided by its hidden layer. Generally, good reconstruction means the hidden layer
contains enough and necessary information about the input data. Figure 8 shows the reconstructions
operated by the proposed S-AEs on examples from the ECG-ID and MIT-BIH-AHA databases. It can
be observed that when comparing the curves of the original and the reconstruction, little error exists.
On both figures, the reconstruction and the original have the same trend from the overall perspective,
and similar amplitude at each point. Furthermore, average mean square errors of 0.13 and 0.08 were
obtained, respectively, for all heartbeats of the ECG-ID and MIT-BIH-AHA, both of which were at a
small error level. Based on the above, the proposed S-AEs can be thought of as an effective feature
learning method for ECG data.
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Figure 8. Reconstructions operated by S-AEs on Samples from Set B of the ECG-ID and the
MIT-BIH-AHA. (a) Comparison between original and reconstructed curves of wavelet feature of Beat 1
from the MIT-BIH-AHA database, Record-100; (b) Comparison between original and reconstructed
curves of wavelet feature of Beat 1 from the ECG-ID database, Record-1.

4.2.3. Noisy vs. Denoised

To validate the effectiveness of the proposed method for noisy ECG signals, both single-heartbeat
and multiple-heartbeat identification accuracy were compared on Set A (denoised data) and Set B
(noisy data). Figure 9 shows the obtained experimental consequences. According to Figure 9, it can
be observed that with Set A (denoised data), the proposed method acquired 84.52%/88.47%/72.86%
single-heartbeat identification (SI) accuracy and 98.31%/96.20%/85.64% multiple-heartbeat identification
(MI) accuracy on the ECG-ID (Two-recording)/MIT-BIH-AHA/ECG-ID (All-recording). Relative to
the results of previous methods, the accuracies are at a high level. When it comes to Set B (noisy
data), average SI and MI accuracy of 88.04%/84.22% and 98.87%/92.3% were achieved on the ECG-ID
(Two-recording)/ECG-ID (All-recording), and those of 92.09% and 96.82% were obtained on the
MIT-BIH-AHA. Compared with the results of Set A, the proposed method achieved competitive or
even higher performance using noisy data in all cases. That may be because, without denoising,
some potential information useful for identification is well retained. Figure 10 presents the confusion
matrices of the proposed method evaluated on Set B of two databases. It can be seen that nearly
all the signals from both of the two databases are well identified, which indicates that the proposed
method can provide an efficient way for feature extraction from noisy ECG data. In our subsequent
experiments, Set B of the two databases is taken as the dataset to evaluate the proposed method under
noisy condition.
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on the ECG-ID (All-recording). (SI—Single-heartbeat Identification; MI—Multiple-heartbeat
Identification).
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4.2.4. Comparison of Different Features

To verify the effectiveness of DWT feature selection, with the feature learning process (S-AE) and
classifier (Softmax) fixed, results of features which contain various temporal-frequency information
were compared. The compared features can be seen below:

• Time domain feature: after ECG signal segmentation, we directly used the obtained waveform of
a cardiac cycle as features. It describes amplitude, slope, and angle of the original signal in the
time domain, but contains no frequency information. Thus, we call it time domain feature.

• FFT (Fast Fourier Transformation) feature: FFT has been widely used in signal processing.
Compared with DWT, the FFT feature, which is obtained based on sines and cosines, describes
the original signal from a global perspective, ignoring information in localized time and
frequency domains.

• DWT Feature-Selected: according to the knowledge provided by prior literature, we selected
wavelet coefficients corresponding to the frequency of QRST as features. Here, the selected feature
refers to detail coefficients whose frequency ranges from 0.488 Hz to 62.5 Hz (0.351 Hz to 45 Hz)
for ECG-ID (MIT-BIH-AHA).

• DWT Feature-Low: in addition to the DWT Feature-Selected, this feature further contains the
approximation coefficients, which corresponds to frequency 0 to 0.488 Hz (0–0.351 Hz).

• DWT Feature-High: this feature refers to detail coefficients whose frequency ranges from 0.488
Hz (0.351 Hz) to 125 Hz (90 Hz) for ECG-ID (MIT-BIH-AHA).

Table 3 shows the comparison of different features, and the highest accuracies under all cases
are highlighted in bold. As illustrated in Table 3, the FFT Feature yielded the worst performance and
proves ineffective for identifying ECG signals. That is maybe because ECG signals are transient in
nature (amplitude and frequency information varies over time), and global frequency description
can hardly capture localized discrepancies among subjects. Compared with FFT Feature and Time
domain Feature, DWT based features achieved better performance in most of the cases by taking
localized temporal-frequency information into consideration. In particular, DWT Feature-Selected
yielded average SI accuracy and MI accuracy of 88.04%/84.22% and 98.87%/92.3% on the ECG-ID
(Two-recording)/ECG-ID (All-recording), respectively, and those of 92.09% and 96.82% on the
MIT-BIH-AHA, respectively, which suggests the effectiveness of DWT.



Electronics 2019, 8, 667 16 of 24

Table 3. Performance comparison of different features. (SI-Single-heartbeat Identification, MI-Multiple-
heartbeat Identification).

Feature

Database ECG-ID
(Two-Recording) MIT-BIH-AHA ECG-ID

(All-Recording)

SI (%) MI (%) SI (%) MI (%) SI (%) MI (%)

Time domain Feature 83.78 96.62 91.08 96.48 81.66 88.71
FFT Feature 57.51 75.28 84.48 94.34 57.17 71.79.

DWT Feature-Low 62.99 76.96 87.84 95.67 60.56 77.43
DWT Feature-High 89.44 98.31 91.64 96.80 79.89 89.74

DWT Feature-Selected 88.04 98.87 92.09 96.82 84.22 92.3

When DWT Feature-Selected is compared with DWT Feature-High, it is noted that even though
DWT Feature-High contains more temporal-frequency information, its accuracies do not increase
significantly. When it comes to DWT Feature-Low, extra detail coefficients conversely leads to a
significant accuracy decrease. The above results suggest that DWT Feature-Selected may have already
contained sufficient components for biometric identification, and the additional feature does little help
improvement. Furthermore, noise interference may be introduced and worsen the recognition.

4.2.5. Classification with Different Classifiers

To further verify the effectiveness of the features extracted by the proposed method, five widely
used classifiers, namely, k-nearest neighbor (KNN), back propagation neural network (BP), random
forest (RF), support vector machine with radial basis function kernel (RBF-SVM) and Softmax were
adopted and compared. Table 4 depicts key parameter settings of different classifiers which are
optimized and obtained based on the validation set.

Table 4. Key parameter settings of five classifiers.

Classifier Type Parameter Setting

KNN Nearest Neighbor Number K: 3

BP Network Layer: 3
Hidden Unit Number: 50

RF Decision Tree Number: 500

RBF-SVM Error Penalty Factor C: 1
Kernel Parameter g: 0.1

Softmax
Input layer unit number: 50

Output layer unit number: 89 for the ECG-ID
47 for the MIT-BIH-AHA

Figure 11 gives the results of the extracted features classified by different classifiers. According
to Figure 11, it is observed that using the features extracted by the proposed QRS-targeting selection
strategy and S-AEs, all the classifiers could produce Single-heartbeat identification (SI) accuracy
over 75% and Multiple-heartbeat identification (MI) accuracy over 90% on both of the databases.
The obtained results demonstrate that features extracted by the proposed method can well describe the
discrepancies among different subjects, and are effective for ECG identification.
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Figure 11. Comparison of different classifiers using the proposed method. (a) Classification results of
different classifiers on the MIT-BIH-AHA database; (b) Classification results of different classifiers on
the ECG-ID database (Two-recording); (c) Classification results of different classifiers on the ECG-ID
database (All-recording).

4.2.6. Sparsity vs. Dense

To further validate the effectiveness of the sparsity constraint, we compared the used S-AEs with
Dense Autoencoders (Dense-AEs). Here Dense-AEs represents stacked autoencoders without sparsity
constraint, whose sparsity penalty weight β is set to 0 during training and testing. Except for the
above, Dense-AEs has the same architecture and parameters as S-AEs. The comparison results of the
identification performances on different databases are shown in Figure 12.

According to Figure 12, the Dense-AEs achieved average SI and MI accuracy of 76.61%/71.19%
and 94.94%/84.61% on the ECG-ID (Two-recording)/ECG-ID (All-recording), respectively. Meanwhile,
89.17% SI accuracy and 95.66% MI accuracy were obtained on the MIT-BIH-AHA. Compared with
the results of S-AEs, Dense-AEs shows lower accuracies on both of the databases. Furthermore, it is
noted that when it comes to the ECG-ID with more subjects, the improvement caused by sparsity
constraint seems to be even more significant. That may be because by constraining the activation of
hidden units, the relevance among extracted features is reduced. Thus more identity-related structure
can be highlighted, leading to better identification performance.
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Figure 12. Comparison of the sparse and dense AEs. (a) Single-heartbeat identification accuracy;
(b) Multiple-heartbeat identification accuracy.

4.2.7. Comparison with Existing Literature

In this section, the proposed method is compared with some state-of-the-art work, and the
comparison results can be seen in Tables 5–7.

According to Tables 5–7, for signals from different databases, the proposed method achieved
high-level multiple-heartbeat identification accuracies compared with the existing literature. Even
though Ronald et al. [40] reported 100% accuracies on two of the evaluated databases, the proposed
LSTM network was impractical for real-life applications in the case where quick identification is
required. In general, with the same input layer size n1 and hidden layer size n2, a single-layer LSTM
contains 4 × ((n1 + n2) × n2 + n2) parameters, while a single-layer S-AE only has (2n1n2 + n1 + n2)

parameters. As the networks grow deeper, the training and testing process of LSTM will take much
more time and space than those of S-AEs because of its complex architecture. Compared with LSTM,
the architecture of S-AEs is much simpler, which makes it able to realize fast identification.

It is also noted that nearly all of the existing literature adopt a traditional denoising algorithm,
which requires great effort for improvement or parameter optimization, before feature extraction.
Compared with them, the proposed method can more directly and conveniently remove the influence
of noisy interference. Since the only purpose of the proposed method is to select the DWT coefficients
corresponding to QRST, it does not require extra adjustment except for decomposing the input into
proper levels. Once the target temporal-frequency bands are determined, direct selection can well
discard most of the noise, and preserve identity-related information at the same time. According to
Tables 5–7, with raw signals, the proposed method can achieve competitive or even better identification
performances than methods which used clean signals. The above suggests that our method can remove
the influence of noise in a more convenient way.



Electronics 2019, 8, 667 19 of 24

Table 5. Comparison with existing literature on ECG biometric identification using the MIT-BIH-AHA.

Related Works

Traditional
Denoising
Algorithm
Required?

Individuals
Features

Extraction
Method

Classifier MI Accuracy

Zhang et al. [9] Yes 47 DWT + 1-CNN Softmax 91.1%

Sarker et al. [41] Yes 45 Fiducial
features LDA + KNN 95%

Dar et al. [13] Yes 47 Haar Transform
and HRV/GBFS RF 95.85%

Ronald et al. [40] Yes 47
RNN
GRU
LSTM

Softmax
93.6%
96.8%
100%

Alhan et al. [42] Yes 47 LGA on SODP SFFS KNN 95.12%

Our Approach No 47 DWT + S-AEs Softmax 96.82%

Table 6. Comparison with existing literature on ECG biometric identification using the ECG-ID
(Two-recording).

Related Works

Traditional
Denoising
Algorithm
Required?

Individuals Features Extraction
Method Classifier MI

Accuracy

Ronald et al. [40] Yes 89
RNN
GRU
LSTM

Softmax
91.7%
94.4%
100%

Yu et al. [43] Yes 88 PCA RPROP 96.60%

Tan et al. [44] Yes 89 Temporal, amplitude, and
angle + DWT coefficients

Random Forests +
WDIST KNN 100%

Our Approach No 89 DWT + S-AEs Softmax 98.87%

Table 7. Comparison with existing literature on ECG biometric identification using the ECG-ID
(All-recording).

Related Works

Traditional
Denoising
Algorithm
Required?

Individuals
Features

Extraction
Method

Classifier MI Accuracy

Dar et al. [45] Yes 90 Haar
Transform/GBFS KNN 83.2%

Dar et al. [13] Yes 90 Haar Transform
and HRV/GBFS RF 83.9%

Alhan et al. [42] Yes 90 LGA on SODP SFFS KNN 91.26%

Our Approach No 89 DWT + S-AEs Softmax 92.3%

Furthermore, the proposed method only needs R points detected during identification. To our
knowledge, even though the existing R wave detection techniques have started to provide acceptable
results, detecting P, Q, and S is challenging. That means the use of some fiducial methods, e.g.,
Tan et al. [44] will be greatly limited in application despite their great performance. By taking the easily
detected R points as fiducial points, the proposed method can be potentially applied in more cases.

To further evaluate the proposed method, we also realized the approach proposed by Yu et al. [43]
and compared its results with ours under the same conditions. The comparison results of the two
methods can be seen in Figure 13.
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Figure 13 shows that under the same subject number conditions, our method achieved better
performances that the reference method on all the databases. Furthermore, when it comes
to single-heartbeat identification accuracy, the improvement is even more significant. On the
MIT-BIH-AHA, ECG-ID (Two-recording), and ECG-ID (All-recording) database, the proposed obtained
5.89%, 9.68%, and 11.93% higher for single-heartbeat identification accuracy than the reference method,
which further proves the effectiveness of the proposed method. Based on the above, the main
advantages of the proposed method are high-level identification accuracy, convenient noise removal,
and only R point detection required.Electronics 2019, 8, x FOR PEER REVIEW 20 of 24 
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(a) Single-heartbeat identification accuracy comparison; (b) Multiple-heartbeat identification
accuracy comparison.

5. Discussion

In this work, a novel ECG based biometric identification method suitable for noisy signals was
developed. Given a raw ECG signal, its R points were firstly detected using the PT algorithm. Later,
the whole signal was segmented into multiple heartbeats centered on the detected R points, and
each heartbeat roughly covered a cardiac cycle length. Then obtained heartbeats were processed
by the proposed QRST-targeting feature selection strategy and represented by wavelet coefficients
corresponding to QRS and T. In this way, most noise interference is removed, and only identity-related
information is preserved for the subsequent steps. According to the experimental results, competitive
or even higher identification accuracy than time domain, FFT, and other DWT features were achieved
using the selected feature, which proves that it is sufficient for ECG biometric identification.
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After that, S-AEs was implemented to learn discrimination among subjects based on obtained
DWT features. Here, the training process of S-AEs aims to preserve the necessary information for good
reconstruction of the original input, and the fine-tuning process optimizes parameters of networks to
emphasize the discrepancies among different subjects. To directly show the effectiveness of learned
discriminative representations, a technique “t-SNE” [46] is adopted to visualize high dimensional
data. Taking several subjects of the ECG-ID as an example, the comparison result of the original
temporal-frequency features and the learned S-AE features can be seen in Figure 14. It is observed that
the t-SNE fails to separate the selected subjects using raw data. In this case, data points of subjects
completely mix together, which increases the difficulty of classification. For S-AE features, it can
be seen that data points are relatively better clustered with less overlap and all subject classes are
separated clearly. Based on the above, it indicates the S-AEs is an effective approach for ECG biometric
feature learning.
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Compared with other methods in the literature, our method has two main advantages. Firstly, its
noise removal process is more convenient compared with a traditional denoising algorithm. In this
method, noise can be removed by selecting proper temporal-frequency bands. Thus complex algorithm
engineering is avoided compared with most existing methods. Secondly, even though the proposed
method is also fiducial, it only requires R point detection during identification. Compared with other
fiducial methods, it has no need for accurate detection of Q, S, and T point. In addition to that, our
work also produces high single-heartbeat identification accuracy on both healthy and patient databases
and thus, is potentially suitable for wearable devices which use few heartbeats for fast identification.

Even though the proposed method achieved good performances on biometric identification, it still
has some limitations. According to the experiments, it is noted that here we have only evaluated
our method on the on-the-person databases, which have better signal quality than the off-the person
database. However, when tested on the off-the-person databases, e.g., CYBHi database, the proposed
method cannot perform as well as on the on-the-person database. That is because the signals of the
off-the-person databases, which are collected from the finger or palm, contain much more noise content
than the signals collected from the chest. Under such high-level noise conditions, the proposed method
can hardly detect the accurate locations of R-peaks. Thus in the future, we will further improve the
proposed algorithm, and explore methods to make it work well even on the off-the-person databases.
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6. Conclusions

In this work, we proposed a novel method based on DWT and S-AE for ECG signal identification.
Compared with other previous studies, we obtained promising average multiple-heartbeat identification
accuracies of 98.87%, 92.3%, and 96.82% on the ECG-ID (Two-recording), ECG-ID (All-recording),
and MIT-BIH-AHA databases, respectively, by using the raw ECG signals. In comparison with the
experiments using denoised signals, the results based on raw signals were 0.56%, 6.66%, and 0.8%
higher, respectively. When it comes to single-heartbeat identification accuracy, the improvements
are even more significant and can reach 3.52%, 11.36%, and 3.62%, respectively. Furthermore, this
proposed QRST-target feature selection method does not contain various parameters that need to be
optimized and can remove noise interference more conveniently compared with traditional denoising
algorithm. Moreover, our method only requires R peak detection, which makes it suitable for more
application cases than traditional fiducial methods. Moreover, because of its high identification and
simple architecture, the proposed method also has the potential to be applied on wearable devices
which use ECG signals for fast recognition. In all, our method can serve as an efficient way for an ECG
biometric and is expected to contribute to information security.
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