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Abstract: A high-level C++ hardening library is designed for the protection of critical software
against the harmful effects of radiation environments that can damage systems. A mathematical
and empirical model to predict system behavior in the presence of radiation induced faults is
also presented. This model generates a quick evaluation and adjustment of several reliability vs.
performance trade-offs, to optimize radiation hardening based on the proposed C++ hardening
library. Several simulations and irradiation campaigns with protons and neutrons are used to build
the model and to tune it. Finally, the effects of our hardening approach are compared with other
hardened and non-hardened approaches.

Keywords: fault tolerance; single event upset; proton irradiation effects; neutron irradiation effects;
soft errors

1. Introduction

Progressive technological down-scaling is reducing the natural resilience of circuits, implying
greater susceptibility to radiation faults [1]. In the past, fault-tolerant microprocessors were required
for systems working in harsh environments, such as satellites, aircraft, autonomous vehicles, or any
kind of autonomous decision-making systems, but today they are increasingly in demand, even at
ground level [2] where radiation induced soft errors can frequently occur. Soft-error radiation faults
are produced by the effect of incident particles on circuits where, as a consequence, the digital state of
a node can be modified (bit-flipping). The developers of critical systems are constantly searching for
ways to improve and/or to maximize the reliability of critical applications, due to the presence of soft
errors, that can lead to catastrophic failure situations.

Many approaches are shown in the literature to minimize the effect of soft errors. Conventional
approaches improve reliability by introducing redundancy at different hardware, software or
hardware-software structures, in order to mask the wrong results by majority voting [3] or other
redundancy-exploiting methods. For instance, it is common for hardware approaches to apply
triple modular redundancy (TMR), to achieve reliability by replicating some physical components
(rad-hard processors) [4]. Software-implemented hardware fault tolerance (SIHFT) techniques also
introduce redundancy at instruction level by replicating several blocks of code [5] or several critical
instructions [6]. Hardware–software hardening techniques, which reduce some weakness of the
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hardware or software-only techniques, are also possible [7–9]. Other recent approaches represent
attempts to gain reliability improvements by introducing no modifications in either the application
(code instrumentation) or in the system (specific components). These techniques seek to achieve
improvements during the transformation from high level code (source code) to machine code
(executable) by altering the code compilation method [10]. Each approach has its own advantages and
disadvantages; for example, the disadvantage of producing unwanted overheads in processing time
and storage needs can be achieved by applying software hardening techniques.

When comparing the different approaches from the user perspective, there are two that require
either high user intervention levels (most TMR-based approaches), or very little intervention (such
as the approach proposed in this paper), or no user intervention and the delegation of hardening
to some form of Artificial Intelligence (such as MOOGA [10]). The first approaches require lot of
human effort, for instance, to change the focus of hardening. The third set requires a lot of CPU time
to compare a large number of software versions, while the proposed approach can quickly explore
several alternatives simply by changing the type and definition of each variable of interest, in a very
fast operation.

In this article we focus on the SIHFT techniques, because they can be implemented in commercial
off-the-shelf (COTS) microprocessors, thereby avoiding any internal modification to the microprocessor.
More precisely, we are interested in high-level instrumentation techniques capable of deriving the
inherent trade-offs, while maintaining flexibility and usability.

In view of the above, the key issues considered during the development of the new SIHFT
approach presented in this article are:

1. The approach should be applicable to protect the largest possible amount of software, particularly
the intellectual properties (IPs) commonly available on the Internet.

2. Post-compilation interventions must be as limited as possible (possibly none), in order to make
software update and optimization fast and reliable.

3. The approach should apply to any COTS processor. It should not rely on any intrinsic radiation
hardness of the processor except, obviously, the capability to withstand the total ionizing
dose (TID).

The chosen language, C/C++, is compatible with commonly used software development
techniques, leaving aside the domain of modern iconic programming. The idea which addressed and
solved all the above issues is based on developing a set of C++ classes aimed at protecting program
variables and processor registers, mostly by means of TMR.

In the following sections, a new high-level SIHFT technique will be presented, together with a
reliability estimation model, to evaluate the impact of the system configuration parameters on program
execution and radiation sensitivity. The model was developed from the results of two accelerated
radiation campaigns conducted at the National Centre for Accelerators (CNA)—Spain, and Los Alamos
Neutron Science Center (LANSCE)– USA.

2. Automatic Hardening Approach Based on C++ Classes

We propose a method that is intended for the protection of software code on COTS processors.
In particular, it addresses the following elements of a COTS microcontroller system:

1. Numeric data stored in temporary and long-term storage locations. As it is a C/C++ level
approach, there is no explicit distinction between registers and memory, although it provides
overall data protection to data stored in the C/C++ variables, regardless of how and where these
are allocated by the compiler;

2. Microcontroller configuration registers such as those for interrupts, ports, universal asynchronous
receivers-transmitters (UARTs), analog-to-digital converters (ADCs), etc.

3. Program memory, mostly for situations where the program is stored in volatile or
radiation-sensitive memory;
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4. Protection against single-event functional interrupts (SEFIs).

Under certain circumstances induced by radiation, the microcontroller program may occasionally
restart, which is considered acceptable, provided that the results produced at the end of execution are
correct. In particular, some aspects of protection rely on inducing an automatic program reset when a
SEFI is detected.

It is worth noting that most benefits of the proposed approach may also apply to temporary faults
induced by other causes, such as electromagnetic interferences, allowing technological transfer to other
ground-based activities, such as functional safety in automotive electric/electronic systems, and detect
and correct errors in high performance computing (HPC), among others.

2.1. Using C++ Classes for Data Protection

The proposed methodology is based on a C++ template class called TD<DataType> (standing for
“triple data”) which can be applied to any numeric DataType (e.g., TD<char>, TD<int>, TD<float>).
A TD<DataType> class transparently protects, by means of TMR, a numeric variable of any given
DataType. This class has been designed to allow total reuse of existing code, only changing the
definition of all the variables to be protected, while maintaining the rest of the code unchanged.

The internal architecture of a TD<DataType> (see Table 1) class contains three private variables (i.e.,
concealed from the user) of the type DataType, storing as many replicas of the same data (d1, d2, d3).

Table 1. Internal architecture of TD<DataType>.

template <typename DataType> class TD {
private: volatile DataType d1, d2, d3; }

A seamless use of the proposed class requires: (i) the appropriate re-definition of all possible
numeric, comparison and logical operators; (ii) writing the code to implement each of them in a
redundant way.

For instance, for the assignment operator (=), the kernel of the code and its usage are showed in
Table 2.

Table 2. Definition and functioning for the = operator.

definition operator=(TD<DataType>& val) {
d1 = val.d1; d2 = val.d2; d3 = val.d3; }

usage TD<int> a, b;
a = b;

equivalent to int a1, a2, a3, b1, b2, b3;
a1 = b1; a2 = b2; a3 = b3;

Which implies that, despite the apparently identical usage of the assignment (a = b) to standard
C variables, the usage of operator = of class TD<DataType> implies (in a transparent way) that the value
of each replica of b is assigned to the corresponding replica of a. A similar approach applies to all
algebraic operators (e.g., +, -, *, /), comparison operators, logical operators, etc.

In our library, the casting operators to/from TMR data and plain data have been overloaded for
transparent conversion between data types. Conversion from TMR to plain data implicitly implements
majority voting, while conversion from plain to TMR implicitly implements triplication.

The following simple example compares a simple piece of C code which sums up two variables
and stores the result in a third variable (See Table 3). The same code is written in fully unprotected and
partially protected ways, respectively, together with a possible manual protection.
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Table 3. Comparison of how to sum up two integer variables using different protection levels: original
code, protection using our technique and manual TMR protection.

Unprotected Protected Manual TMR

int a, b; TD<int> a, b; \\protected TD<int> a, b; \\protected int a1, a2, a3, b1, b2, b3;
int c; TD<int> c; \\protected int c; \\unprotected int c1, c2, c3;
c = a + b; c = a + b; c = a + b; c1 = a1 + b1;

c2 = a2 + b2;
c3 = a3 + b3;

As a consequence, by writing, c = a + b; the compiler automatically generates the code that
will sum up and store each corresponding replica of the DataType in a completely transparent way
and will preserve (by construction) the correspondence of each replica. A process that is quite unlike
the TMR manual approach, which would be quite prone to coding errors.

The TD<DataType> class is designed to support any operator and constructor (e.g., vectors and
structures) commonly used inside C programs. The potential risks of pointers are normally to be
avoided and they can be applied with greater safe by using, for instance, a TMR-protected TD<int*>,
as redundancy significantly reduces the risk of pointer corruption.

In the case of single-event upsets (SEUs) (or any other transient fault) affecting one of the
three replicas, the original value can be recovered by majority voting, again in a transparent way.
For instance, the simple piece of code of Table 4

Table 4. Example of triplicating and voting automation for two hardened and non-hardened variables.

TD<int> a; int b;
b = a; \\ majority vote a’s replicas into b
a = b; \\ triplicate b into a’s replicas
a = (int) a; \\ compact form: vote+TMR

First converts and copies a redundant variable, a, into a non-redundant variable, b, by enforcing
majority voting, and it then stores the three replicas of the voted value, b, back into variable a. In other
words, it re-synchronizes the replicas by majority voting. The last line is a compact form which does
exactly the same thing.

Any existing program can therefore be hardened, by a mere redefinition of the variables used,
while the active part of the code requires no single modification. This idea per se is not novel, as TMR
is widely used to achieve data protection, but the way it has been implemented and optimized with
respect to radiation tolerance is new and easy to use.

2.2. Protecting Other Elements of a Program

A complex program not only relies on data memory, which can be protected by means of the
TD<...> class. Other elements have also been considered.

Configuration registers cannot be triplicated in the same way as normal memory location, as they
are unique in hardware and their TMR would require redesigning the manufacturing masks. Protecting
the configuration registers is therefore supported by another type of class, called TDreg<...>, which
automatically stores two other copies of the register in data memory and periodically re-synchronizes
the hardware register by majority voting with the other two stored replicas.

Periodical refresh can be implemented in different ways, depending on system and mission
requirements. For instance: (i) a timer-driven interrupt routine which refreshes all variables, set at,
for instance, every minute; (ii) at the beginning or at the end of each program loop (if any); (iii) by
voting whenever a critical variable is used.
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Since configuration registers of commercial processors mix read-only and write-only bits,
the definition of TDreg<...> supports this feature and synchronization is automatically limited to
writable bits.

Program memory should nominally be read-only, as it only contains machine code and numeric
constants. We explicitly omit consideration of self-modifying codes, as those are considered too
dangerous for critical applications.

As a consequence of a nominally constant program code, its protection is limited to computing a
“signature” of the code area, on a periodic basis, and verifying it against a golden sample. As soon as a
SEU affects the program area, its signature will no longer match and the program will automatically be
reset, downloading the program again from a more rad-tolerant ROM. This is implemented by means
of the TDcode class.

Internal control registers (namely internal state machines, program counter and stack pointer) are
more difficult to protect and are the most common cause of program hang, therefore causing SEFIs.
Our approach offers periodical verification of stack-pointer consistency, but the other control registers
(e.g., program counter and status register) can be protected only to a very limited extent.

The only means available to compensate SEFIs is the use of a watchdog timer (or equivalent
methods) already commonly used in these situations. Yet Section 4.1 shows that protection of program
counter and stack pointer will not usually improve hardness significantly.

Interrupt handlers are normal routines that can be protected with the same techniques described
above. In addition, interrupts also rely on interrupt enable bits, which are part of configuration
registers; these can be protected by means of the TDreg<...> class described above.

2.3. Performance Issues

The use of TMR, on the one hand, significantly increases the hardness of a program to single-event
effects (SEEs) but, on the other hand, it also impacts on aspects of performance, particularly speed
and memory size. In theory, execution time should increase by a factor of three at most (the same
as redundancy), although the increased flexibility and safety made available by the use of the C++
classes causes an additional overhead by another factor of two, on average, mostly due to the periodic
necessity of majority voting. This overhead has been strongly optimized by means of the many features
of state-of-the-art optimizing compilers, although it cannot be completely removed for several reasons.

As a consequence, program execution, for a program with variables that are totally triplicated will
take six times more time to execute, on average. An appropriate selection of which variables to protect
and which ones need no protection significantly reduces the impact on program speed. Section 4.1
gives some hints on both how to select storage blocks and which specific variables to protect and
which ones need not be protected, allowing a quick performance trade-off customized for specific
mission requirements.

3. A Compact Reliability Estimation Model

During the process of hardening a piece of code (or even a complete HW/SW design), it is of
the utmost importance to analyze a number of different configurations and to evaluate the impact of
configuration parameters (e.g., data triplication, register refresh, error checking, register optimization,
inlining, interrupts, etc.) on program execution and radiation sensitivity.

We developed a mathematical and empirical model, for quick evaluation of several reliability
vs. performance trade-offs and for the optimization of radiation hardening without excessively
compromising performance. The model offers valuable advance information on system behaviour in
the presence of radiation induced faults. Firstly, it predicts the occurrence frequency of faults that affect
program execution for any combination of processor, high level language, compilation parameters,
hardening techniques and selection of protected variables. Secondly, it estimates the impact of each
storage area, variable or data structure on the overall reliability, to concentrate hardening efforts on the
block that has the highest impact on radiation sensitivity.
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It is worth highlighting other works that either compare different methods with real radiation data
(making the approach quite expensive and time consuming, and therefore ruling out the possibility
of comparing large numbers of alternatives) and with simulated campaigns (cheaper and faster
approach, but of lower reliability). The proposed approach is, instead, based on a compact parametric
mathematical model, the parameters of which are first evaluated once and for all on real radiation
measurements, then the model is applied in an iterative way, thereby permitting a wider search in the
space of hardening alternatives.

3.1. Model Preliminaries

The model is based on cycle-accurate simulations using the OVPsim simulator [11] while randomly
corrupting: registers (R), data memories (D), and program memory (P). Each storage block may
have a different hardware implementation, so it may therefore have its own cross section per byte
αR (respectively, αD and αP); in addition, data storage may be distributed between a number of
memories, each one having a different cross section αD1, αD2, αD... (e.g., FLASH, ferroelectric, static and
dynamic RAMS).

We assume that the cross section is different for each type of storage, and we relate each one
to the basic cross section of main processor RAM (D1), that is αD1 ≡ α. We therefore state that:
αR = KR · α, αD2 = KD2 · α, αP = KP · α, . . . , where KX are appropriate coefficients and, by definition,
KD1 = 1 . In particular, KP, is the coefficient of either ROM or RAM, depending on where the program
is executed.

For each given processor, algorithm, language, compilation flags, hardening effort, etc., OVPsim
simulations are set up to induce one random SEU per run of the compiled program, in either of the
aforementioned storage blocks (R, D, P). The fault injection can be performed in each memory block at
different abstraction levels. It means, for example, that we can induce an error in an SRAM or a DRAM
device on any possible address from their available addressing space or only induce faults on single
C/C++ variables of interest (vectors, matrices, . . . ).

Injected faults are classified according to their effect on program behavior, in a similar way to
the first proposals of Mukherjee et al. [12]. Faults which neither hang program execution nor affect
expected program output are called unnecessary for architecturally correct execution (unACE). On the
other hand, faults which visibly affect program execution are called architecturally correct execution
(ACE), which comprise the two categories specifically considered in this paper: (i) faults which allow
the program to terminate normally, but produce corrupted results, called silent data corruption (SDC);
and, (ii) faults which cause abnormal program termination or infinite execution loops, called HANG.

Each simulation set was configured to inject 1000 faults per register in the register file and 18,000
faults in the memory section allocated by the benchmark. This arrangement implies a total of at least
72,000 faults injected per program version, achieving a statistical error of ±1% at a 99% confidence
level, according to the statistical model proposed by Leveugle et al. [13].

3.2. Model Description

Simulations provide, as an output, the number of SDCs (respectively SDR, SDD1, SDD2, SDD..., SDP)
and HANGs (respectively HGR, HGD1, HGD2, HGD..., HGP) out of RR program executions (respectively, RD1,
RD2, RD..., RP). The size of each storage area being SR words (respectively, SD1, SD2, SD..., SP).

For every configuration we define, for each storage area (where Z is either R, D1, D2, P, . . . ) the
equivalent block size for SDCs of that area, expressed in bytes, as:

βZ
∆
= KZ ·

SDZ

RZ
· SZ (1)

We also define the equivalent block size for HANGs of that area, expressed in bytes, as:

γZ
∆
= KZ ·

HGZ

RZ
· SZ. (2)
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The two formulas provide two factors (βZ, γZ) which are proportional to: the increased sensitivity
of the specific memory area (KZ) to radiation; the failure probability as estimated by simulations (SDZRZ

,
HGZ
RZ

) and the size SZ of the memory block, which is proportional to the probability of a particle hitting
that block.

From these factors, we can find the total equivalent size for SDCs and for HANGs of the whole
program, respectively:

βTOT = βR + βD1 + βD2 + βD... + βP + βX (3)

γTOT = γR + γD1 + γD2 + γD... + γP + γX. (4)

The two additional parameters, βX and γX, are the equivalent block size for SDCs and HANGs of
the internal control unit and the state machines, which cannot be simulated by the OVPsim simulator
and are therefore empirically estimated.

3.3. System Reliability

Given βTOT and γTOT, our model predicts the probability of SDCs and HANGs per execution:

P(SD) = Φ · α · (TE · βTOT) (5)

P(HG) = Φ · α · (TE · γTOT), (6)

where Φ is the radiation flux (particles/s/cm2), while α is the cross section per byte (cm2/byte) of
storage, and TE is nominal program execution time (s).

The two expressions between brackets are called the size-time figures for SDCs (χSDC = TE · βTOT)
and HANGs (χHANG = TE · γTOT), respectively, of the given configuration.

An innovative aspect of the proposed approach is that the size-time figures, χSDC and χHANG,
mean that the impact of each data storage, each data structure, and even each individual variable on
overall radiation performance can be easily assessed and the hardening efforts may be therefore be
concentrated where the effect is highest and to reduce the impact of hardening to a minimum.

Depending on the application, we can estimate, in the first place, the mean work to failure (MWTF)
(i.e., the average number of program executions between two failures), in the following way:

MWTF =


1

P(SD) =
1

Φ·α·χSDC
for SDCs

1
P(HG) =

1
Φ·α·χHANG

for HANGs
1

P(ERR) =
1

Φ·α·(χSDC+χHANG)
for any error

, (7)

which depends on: (i) radiation flux Φ; (ii) processor’s cross section α; and (iii) size-time figures of
given program configuration (χSDC or χHANG)

In second place, for time-sampled systems, where the program starts every TS (sample time),
executes over a certain time, TE, then stops until the next sample, we can compute the mean time to
failure (MTTF), which is the average time between two failures:

MTTF = TS · MWTF, (8)

which also depends on sample time TS.

3.4. Model Validation under Radiation

The proposed model was evaluated against real radiation measurements. Table 5 shows the
relevant model parameters for protons and neutrons measured during the two radiation campaigns
described below. The model showed a good accuracy for the estimation of reliability. In fact, the figures
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shown in the last two columns of Table 6 have an error of −30% + 50% with respect to radiation
measurements (not shown in the table).

The device under test (DUT) selected for the irradiation experiments was the ZYBO board.
The DUT is equipped with a 28nm CMOS Xilinx ZYNQ XC7Z010 system on chip (SoC). This SoC
is divided into two parts, an FPGA area (programmable logic—PL) and a 32-bit ARM cortex A9
microprocessor (processing system—PS). The processor has a 13-stage instruction pipeline that includes
a branch prediction block and support for two levels of cache. In addition, the microprocessor has a
little built-in memory called on chip memory (OCM), where the bootloader or the program under test
can be loaded.

The DUT was controlled by an external computer, the RaspberryPi 3 Model B, the main task of
which is to receive and log all the messages sent by the DUT. The DUT was configured to send a state
message every five seconds in the absence of errors, otherwise the message is notified instantly and
the external computer resets and reprograms the DUT.

Tested programs present a rich variety of flow structures and data. For example, BubbleSort (BB)
is a well-known sorting algorithm that achieves its objective by making use of several nested loops.
The second algorithm considered here is the Dijkstra algorithm (DK), also known as the shortest path
problem, which uses an adjacency matrix that is stored in the memory where the weights of all paths
are located.

3.4.1. Proton Irradiation Campaign

The test campaign was carried out in mid-2018 at the National Centre for Accelerators (CNA),
in Spain [14]. Irradiation tests were performed using the external beam line, installed in the cyclotron
laboratory. Although the proton energy delivered by this cyclotron was fixed to 18 MeV, the beam
was extracted to the air up to reach the DUT (device under radiation) position with 15.2 MeV energy.
The flux fluctuated within ±5% during each run. Beam uniformity under these experimental conditions
was better than 90% in the area of interest.

3.4.2. Neutron Irradiation Campaign

The neutron SEE campaigns were performed at the Los Alamos Neutron Science Center (LANSCE)
in September 2018 [15,16]. The neutron beam was provided by a tungsten spallation source at
approximately 30 degrees to the left of the main beam. During the campaign, the DUT remained at
23 m from the neutron source, and the beam was collimated, so that a spot was obtained in the order
of 30 mm of diameter. This size covers the active area with uniformity better than 90%. A constant
neutron flux of 1.7· 105 n/(s · cm2), above 10MeV, was obtained.

4. Reliability Issues

In the last step of this activity, our model has been used to identify the most critical storage
areas, variables and data structures, that is, those which most affect reliability, in order to concentrate
hardening efforts on the most relevant areas. In addition, the performance of the proposed C++ classes
against other optimization techniques proposed by the same authors in [10] was compared.

The proposed C++ classes have been used to protect a variety of programs on an ARM Cortex-A9
processor and our model has identified the most critical storage areas which deserve more hardening
effort. Some results are shown in Table 6, namely for a BubbleSort sorting algorithm and a Dijkstra
shortest path finder algorithm, with both on-chip memory (OCM), an external rad-hard memory (EXT),
as well as neutron and proton irradiation. All these results were also verified during the two radiation
campaigns briefly described in Section 3.4
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Table 5. ARM Cortex-A9 parameters estimated during two radiation campaigns.

Particles α
KR KP

βX γX

(cm2/byte) (byte) (byte)

proton 1.39 × 10−14 ± 10% 35 ± 5 1.6 ± 0.2 40 ± 10 25 ± 25
neutron 4.85 × 10−14 ± 10%

4.1. Performance Considerations

We draw a few considerations here, which can be found by analyzing the results shown in Table 6,
where a few C++ hardening configurations are compared with other configurations with hardening
on specific aims [10]: mean work to failure (MWTF) maximization, fault coverage maximization
(Max-ACE), trade-off optimization among execution time, memory size and fault coverage (Pareto),
baseline compilation (O0) and code optimization (O3). All C++ versions were compiled using the -O3
optimization flag. We can observe that:

Table 6. Execution time, TE,(for 666MHz clock) plus equivalent block sizes for SDCs and HANGs and
total time-size figures for a BubbleSort and a Dijkstra program, for different compilation flags, use
of C++ classes vs. other hardening techniques, for four storage blocks (registers, data memory, stack,
and code memory, taken as examples, for an ARM Cortex-A9 processor, using either on-chip memory
(OCM) and external rad-hard memory (EXT). Highlighted values are those referenced in the text for
the sake of clarity.

Configuration TE REG Data+BSS STACK CODE TIME-SIZE

Hardening ID MEM Part βR γR βD1 γD1 βD2 γD2 βP γP χSDC χHANG

Strategy (µs) (B) (B) (B) (B) (B) (B) (B) (B) (B·ms) (B·ms)

Bu
bb

le
So

rt

Max-ACE BB-C1 OCM prot 67 778 12.9 401 13.8 0 5 420 516 110 37

O0 BB-C2 OCM prot 335 53 12.6 256 145 3 3 153 594 169 252

MWTF BB-C3 OCM prot 58 81 16.2 395 24.8 0 4 535 553 61 35

Pareto BB-C5 OCM prot 60 64 15.6 377 14.3 0 6 99 461 35 29.8

O3 BB-C10 EXT prot 980 90 15.6 19.9 0.7 0.0 0 4.5 30 151 46

C++ (O3) BB-C14 OCM prot 522 16.8 17.6 4.1 8 0 11 0 807 32 440

C++ (O3) BB-C11 EXT prot 12821 16.8 17.6 0.2 0.4 0 1 0 40 731 755

C++ (O3) BB-L4 OCM neut 517 6.6 9 2.7 9.6 0 18 0 568 25.5 312

D
ijk

. O0 DK-L1 OCM neut 2377 31 4.8 5297 1986 11.8 18.7 205 2052 13,279 9656

C++ (O3) DK-L3 OCM neut 9676 226 18.9 13.1 707 16.8 22.9 742 2890 10,042 35,216

• in the BubbleSort algorithm the influence of stack (βD2 and γD2) is close to zero, therefore negligible
with respect to the influence of other storage blocks (βR, γR, βP and γP); in this situation, it is
useless to protect the stack. In the Dijkstra algorithm, the influence of stack on SDCs (βD2) is
comparable to that of data storage (βD1), at least for one configuration (DK-L3); in this situation,
it might also be worth protecting the stack;

• the use of C++ classes (BB-C14, BB-L4, DK-L3) increases execution time by a factor of between 2
and 10 times, depending on configuration (without considering BB-C11 which runs on an external,
slower, rad-hard memory), but it reduces the influence of data memory on SDCs (βD1) by a factor
of 100 and almost nullifies the influence of data memory on SDCs (βP); the effects of the C++
classes on HANGs are negligible;

• for configurations not protected by means of the C++ classes, the effect of registers on SDCs
and HANGs is negligible despite the register’s very high cross section (see KR in Table 5); when
protecting the program by means of the C++ classes, the effect of registers (mostly for SDCs)
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is almost the only relevant one, therefore increasing protection requires an additional effort to
protect the registers, which are not protectable by means of the C++ classes;

• using an external, slower, rad-hard memory (configuration BB-C11, based on the proposed
C++ classes, without cache) offers the lowest equivalent block sizes for all data storage (except
obviously registers), despite it increasing execution time, TE, by a factor of 20 to 25.

• by looking at the total size-time figures (two last columns), which are the most relevant overall
parameter directly affecting MWTF and MTTF, the reduction of equivalent program size often
counteracts an increase in execution time. The best performance for SDCs was achieved using the
proposed C++ classes, while the best performance for HANGs was achieved with configurations
BB-C3 and BB-C5.

4.2. Optimization Process

This section shows how an appropriate use of the compact model can rapidly optimize the
usage of the C++ classes. We took as an example an optimized BubbleSort algorithm (different from
the one used for Table 6) running at 666MHz on a Cortex A9 processor and irradiated by protons.
We simulated the few configurations shown in Table 7, both for SDCs and for HANGs.

Each row shows different configurations: first and second configurations are plain C code with
no optimization (-O0) and highest optimization (-O3), respectively. Each column shows the equivalent
size of : registers (REG); whole data memory (βD); only the first, the second, and the third C variables of
the program (βD,V1, βD,V2, βD,V3, respectively); the other five variables were less relevant, taken together
(βD,V4); program memory (PROG); the other three columns show the equivalent size, the execution
time and the size-time figure of the whole program; the last two columns show the expected MWTF
and MTTF for a given irradiation level (see caption of Table 7).

From the table, it is, for instance, clear that the variable V2 for SDCs has by far the highest
relevance (namely, highest size, 261B/388B) among all the C variables. It would therefore be worth
hardening only that variable by means of the C++ classes. The hardening of other variables would add
significantly to the execution time while reducing total equivalent size by a negligible amount.

Consequently, one variable, V2, when hardened (by changing the data type to the proposed
C++ class), yields the results shown in the third line of the table, which shows the lowest size-time
figure χSDC from among all the configurations. We also evaluated the fourth configuration of the table,
for comparative purposes, by applying the C++ classes to all the program variables.

It is clear that the configuration with only one hardened variable, V2, showed the best equivalent
size (135 B) and size/figure performance (29 B·ms) from among all of them, despite the higher execution
time (215 µs). The same configuration also shows the highest MWTF (about ten times higher than the
-O0 and two times higher than the -O3 without the C++ classes; slightly lower for HANG) and MTTF
(also about ten times higher than the -O0 and two times higher than the -O3 without C++ classes),
proving the effectiveness of the proposed method. Table 8 shows the global MWTF and MTTF metrics
(including both SDC and HANG). As can be seen, the configurations hardened by C++ classes provide
the best overall reliability.
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Table 7. Equivalent sizes (βTOT and γTOT), size-time figures (χSDC and χHANG) and reliability metrics
(MWTF and MTTF) of a selected program (optimized BubbleSort) in a few different configuration.
The individual impact of Registers (R), total data memory (D), individual memory variables (V1
through V3), other variables (V4), code area (P) and total (TOT), for an ARM Cortex A9 processor,
with on-chip memory (OCM) tuning at 666MHz clock frequency. The last two columns refer to the
estimated proton irradiation results with radiation flux of 5.45 × 105 particles/cm2/s and sample time
TS = 20 ms. Highlighted values are those referenced in the text for the sake of clarity.

Configuration REG MEM PROG TOTAL MWTF MTTF

βR βD βD,V1 βD,V2 βD,V3 βD,Vx βP βTOT TE χSDC runs hrs
(B) (B) (B) (B) (B) (B) (B) (B) (µs) (B·ms) (×103)

SD
C

-O0 56.0 261 1.67 261 1.92 2.45 210 527 562 296 446 2.5

-O3 102 401 0.04 388 0.00 0.00 105 608 87.1 53.0 2493 13.8

C++ -O3 (V2) 81.2 0.00 0.01 0.00 0.00 0.00 53.5 135 215 29.0 4552 25.3
C++ -O3 (all) 82.6 0.00 0.04 0.00 0.00 0.00 68.7 151 208 31.5 4184 23.2

γR γD γD,V1 γD,V2 γD,V3 γD,Vx γP γTOT TE χHANG runs hrs
(B) (B) (B) (B) (B) (B) (B) (B) (µs) (B·ms) (×103)

H
A

N
G

-O0 455 152 0.3 133 0.1 1.2 714 1321 562 742 178 1.0

-O3 679 17.8 0.0 0.0 0.0 0.0 434 1130 87.1 98.4 1341 7.5

C++ -O3 (V2) 386 24.1 0.0 0.0 0.0 0.0 281 691 100 69.1 1910 10.6
C++ -O3 (all) 274 14.6 0.0 0.0 0.0 0.0 371 660 100 66.0 2000 11.1

Table 8. Total MWTF and MTTF for different configurations. Highlighted values are those referenced
in the text for the sake of clarity.

Configuration -O0 -O3 C++ -O3 (V2) C++ -O3 (All)

MWTF runs (×103) 127 872 1345 1353
MTTF hours 0.7 4.8 7.5 7.5

4.3. Further Improvements

It is clear from Table 7 that the proposed C++ classes significantly reduced the influence of
data storage for SDCs and slightly reduced the influence of data storage for HANGs, although they
significantly increased the execution time.

The reason is that all the variables were protected for the configurations shown in Table 6.
Nevertheless, the proposed approach can be individually used to address the effect of each variable,
by splitting data storage into smaller blocks (D1, D2, D. . . ), namely one per variable or group of
variables, and to evaluate the effect of each of them on execution time and equivalent program sizes.
From this analysis, the best trade-off between what to protect and what not to protect can be assessed.

Another parameter that can be addressed is the rate of data recovery; each data verification in
the C++ classes takes time and data recovery takes even longer. Frequent verifications and recovery
increase execution times, while less frequent verifications can increase the risk of double faults.
A trade-off may also be established in this case, by means of the proposed approach.

5. Conclusions

A new hardening approach has been proposed on the basis of a set of C++ classes, to ease the
protection of existing and new software programs.

A simple though accurate reliability model has also been proposed, to support the optimization
of the usage of C++ classes, and to compare the performance of those classes with the performance of
other hardening methodologies.
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A relevant feature of this model is that it provides two compact figures (namely the size-time figure
χSDC and χHANG) that directly relate to the reliability figures (MWTF and MTTF for SDCs and HANGs,
respectively), by taking into account both the increased computation time-typical of SIHFT-and the
improvement in robustness-typical of TMR.

The basic results showed that programs protected with the C++ classes were slower, but less
subject to radiation-induced effects. Yet the two effects partially canceled out when considering
the mean time or mean work between consecutive program HANGs, while the lower sensitivity to
radiation was more relevant than the increase in execution time when considering the mean time
or mean work between consecutive SDCs. It has been shown that a straightforward usage of C++
classes improved the reliability of a software system against corrupted results, but had less effect on
program HANGs. A targeted application of the proposed C++ classes to specific variables significantly
improved both effects.

In conclusion, the use of appropriate C++ classes shown in this paper has greatly facilitated the
use of TMR. Also, the availability of an easy-to-use performance estimation model could be used for
quick and effective radiation tolerance optimization of the COTS microcontroller systems.
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