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Abstract: In this paper, we propose an approach that uses generative adversarial nets (GAN) to
eliminate multipath ghosts with respect to through-wall radar imaging (TWRI). The applied GAN
is composed of two adversarial networks, namely generator G and discriminator D. Generator G
learns the spatial characteristics of an input radar image to construct a mapping from an input to
output image with suppressed ghosts. Discriminator D evaluates the difference (namely, the residual
multipath ghosts) between the output image and the ground-truth image without multipath ghosts.
On the one hand, by training G, the image difference is gradually diminished. In other words,
multipath ghosts are increasingly suppressed in the output image of G. On the other hand, D is
trained to improve in evaluating the diminishing difference accompanied with multipath ghosts
as much as possible. These two networks, G and D, fight with each other until G eliminates the
multipath ghosts. The simulation results demonstrate that GAN can effectively eliminate multipath
ghosts in TWRI. A comparison of different methods demonstrates the superiority of the proposed
method, such as the exemption of prior wall information, no target images with degradation, and
robustness for different scenes.

Keywords: generative adversarial nets; through-wall radar imaging; multipath ghost suppression;
generator and discriminator

1. Introduction

For through-wall radar imaging (TWRI), the presence of furniture and walls, floors, and
ceilings makes electromagnetic waves have strong reflections between the targets and them, which
brings multipath returns to the received radar signal. Based on imaging algorithms, such as the
back-projection algorithm [1–3], target-like images called multipath ghosts are produced at nontarget
locations, which makes the performance of detection and recognition significantly worse.

To solve this problem, a group of methods was designed via the multipath model based on
prior information about the walls’ locations and antennas. Specifically, in References [4,5], first-order
multipath ghosts were mapped back to the positions of associated targets, while target images that
overlapped with multipath ghosts were mistakenly removed from true positions. To preserve the
overlapped target images, multipath echoes were removed form the raw radar data in Reference [6].
In addition, in Reference [7], multiple estimated images gained by two different kinds of imaging
dictionaries were fused to obtain an image without multipath ghosts.
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Nevertheless, prior information of accurate walls’ locations is difficult to gain in an actual detection
scene. To achieve multipath-ghost suppression without walls’ locations, the aspect-dependence (AD)
feature of multipath ghosts is utilized to develop suppression algorithms. In Reference [8], two aspects
of subaperture images were multiplied to an image without multipath ghosts. However, this method
has a poor performance in suppressing multipath ghosts of the back wall, as they appear close together
in both subaperture images. In Reference [9], multiple images with different array rotation angles were
fused to yield an image without multipath ghosts. However, the two methods based on the AD feature
both needed complicated parameter deployment. In other words, the subaperture method should find
suitable subapertures, and the array rotating method should find appropriate rotating angles.

Depending on the ratio of coherent power to the pixel with the incoherent power, a coherence
factor, a phase coherence factor (PCF), and a sign coherence factor were designed to weigh images
for suppressing multipath ghosts [10–12]. These methods have poor suppression performances
for well-focused multipath ghosts in the case of synthetic aperture imaging. Moreover, the
methods based on these coherence factors and the aforementioned AD feature enlarge the energy
differences between target images, which makes it difficult to identify degraded targets with a low
signal-to-multipath-clutter ratio (SMCR).

Considering that generative adversarial nets (GAN) [13,14] is classified as a structured learning
network that is applied to construct spatial-structure mapping from input images to output images
and multipath-ghost suppression is a typical process of spatial-structure mapping, in this paper,
GAN, including a generator G and a discriminator D, is introduced to suppress multipath ghosts in
through-wall radar imaging. With regard to an input radar image with multipath ghosts, generator
G exploits spatial characteristics to generate an output image with reduced multipath ghosts and
adversarial discriminator D recognizes the difference between the output image and the ground truth
image. The recognized difference is sent to G to improve the generative ability. Through training,
G and D alternate and recur until the end, G generates a desired image without multipath ghosts,
and D loses effectiveness. The simulation results verify the feasibility of the proposed method. The
comparison of different methods demonstrates the superiorities of the proposed method, which are
that the proposed method

• has robustness in finishing multipath-ghost suppression without accurate walls’ locations;
• preserves the target images even if they are overlapped with multipath ghosts;
• finishes multipath ghost suppression without the use of complicated tuning parameters in

different detection scenes; and
• prevents the energy difference of target images from enlarging, which is beneficial in identifying

all targets.

The remainder of this paper is organized as follows. Section 2 briefly describes the first-order
multipath model. Section 3 analyzes the details of the generative adversarial model. Section 4 indicates
the detailed structure of the proposed networks. Simulations on different datasets are presented in
Section 5. Section 6 concludes this paper.

2. Multipath Model

Assume that a single-channel radar is monitoring an enclosed room with four separate
homogeneous walls and a synthesized array centered at the origin is placed against the wall surface at
R1, R2, ..., RN, as shown in Figure 1. The front-wall surface is located along the x-axis, and the back
wall is parallel to the x-axis with a length Dx. The left- and right-side walls are symmetric about the
y-axis with a length Dy. We consider the direct path from target P to antenna Rn as path A and three
first-order multipaths as paths B, C, and E. The refraction points of the first-order multipaths on the
back wall and the left- and right-side walls are Br, Cr, and Er, respectively.
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Figure 1. An illustration of the multipath model.

The one-way propagation delays of these four paths are denoted as τ
(n)
p , p ∈ {A, B, C, E} and,

of which the numerical solutions were obtained in References [4,7]. Therefore, the radar echo with
a direct path and first-order multipaths is given by

rn(t)=T2
Ans(t−2τ

(n)
A )+∑

q∈{B,C,E}
TAnTqns(t−τ

(n)
A −τ

(n)
q ), (1)

where s(·) is the transmitting signal and TAn and Tqn are the complex amplitude associated with
reflection and transmission coefficients. Based on the back-projection algorithm, multipaths are
transformed into multipath ghosts in the formed image.

3. Generative Adversarial Model

GAN is a novel way to train a generative model, which consists of two adversarial nets, namely,
a generator G and a discriminator D. In order to make the generator have a wide range of generalization
abilities, generator G establishes mapping from a predefined noise distribution pz to a predefined
data distribution pdata in the initial GAN [13]. As a result, it can output a high-quality image rather
than an image that is full of noise with any input. pg is defined to represent the output distribution
of G. Discriminator D outputs a score to evaluate that x is from pdata rather than from pg. G and
D are alternately trained to achieve pg ≈ pdata. Optimizing the parameter of G is to minimize
log(1− D(G(z))), where D(G(z)) indicates the output of D with the input G(z) and G(z) denotes
the output of G with input z. The feedback of discriminator D improves the generative ability
(to make discriminator D unable to distinguish whether the data are from pdata or pg). Optimizing
the parameters of D is to increase the correct label of the training sample and generating sample,
which means to improve the discriminating ability by trying to make D(x) = 1 and D(G(z)) = 0,
where D(x) denotes the output of D with input x. The whole process is just like two players playing a
game, where one adjusts G to minimize the objective function LGAN(D, G) and where another adjusts
D to maximize it, namely,

min
G

max
D

LGAN(D,G)=Ex[logD(x)]+Ez[log(1−D(G(z)))], (2)

where E[·] denotes the mean value. In order to enhance the controllability of G in Equation (2),
an additional message y was introduced in Reference [14] that can be accomplished by simultaneously
introducing y into G and D. The objective function in Equation (2) can be modified as follows:
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min
G

max
D

LcGAN(D, G) = Ex,y[log D(x, y)] + Ez,y[log(1− D(G(z, y), y))], (3)

where D(x, y) indicates the output of D with the inputs of x and y. G(z, y) indicates the output of G
with the inputs of z and y. In this paper, a radar image with multipath ghosts is used as a conditional
input. The training mechanism is shown in Figure 2. The entire training is an iterative dynamic
process of alternately training G and D. First, the parameters of G are fixed, and only D is trained
to distinguish the output of G and ground truth as much as possible by labeling the output of G as
fake and the ground truth as real. Then, the parameters of D are fixed to train G. By optimizing the
parameters of G, a realistic output can be judged as real by D. Eventually, through the process of
iterative training, discriminator D is unable to differentiate between the two distributions pg and pdata.
Theoretically, there exists a unique solution of D(x, y) = D(G(z, y), y) = 0.5 that can be used as a sign
of the end of training.

G

D Fake D Real

G

D Real D Real

The training of D

The training of G

y G(z,y)

z

x

y y

y G(z,y)

z

x

y y

Figure 2. The training mechanism of conditional generative adversarial nets (GAN): The red rectangles
indicate that the parameters of this network are fixed. The green rectangles indicate that the parameters
of this network are trainable. y is the input as the control condition. x is the ground-truth image.

For the objective function in Equation (3), a better output can be generated by combining the L1
distance [15], expressed as follows:

LL1(G) = Ex,y,z[‖x− G(z, y)‖1]. (4)

Therefore, in this paper, we apply the objective function as follows:

Loss = min
G

max
D

LcGAN(D, G) + λ · LL1(G), (5)

where λ is a parameter to limit the difference between the output and ground truth.

4. Network Architecture

In this section, the structures of generator G and discriminator D are described in detail. In this
paper, G makes use of the type of U-net [16] and D adopts the discriminator of PatchGAN [17].
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4.1. Generator G

In the original GAN generator [13,18], they mainly adopt a decoder structure to map a vector to an
image. Conditional GAN [19,20] almost continues this tradition by an encoder-decoder structure [21],
as shown in Figure 3a, which has two drawbacks of information loss and a high training complexity
because all information flows through the whole network. However, in the radar image, there is
some shared information between the input and output, such as the edges and positions of target
images. In order to solve information sharing, in this paper, a skip connection is adopted to enable
some information to bypass the middle layer and its specific structure is U-net network. The specific
method is to connect the i layer with the n− i + 1 layer, as shown in Figure 3b.
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Figure 3. The structures of two generators. (a) Encoder-decoder. (b) U-net.

4.2. Discriminator D

With respect to the applied objective function in Equation (5), L1 loss concerns the global
information of the input radar image to generate the mean of all possible images. If the effect of
LcGAN(D, G) is ignored, the output image is blurred [15]. This means that L1 loss determines the
low-frequency information of the output image. For this reason, LcGAN(D, G) only needs to generate
high-frequency information. In order to force discriminator D to pay more attention to high-frequency
information, a superior way is to focus on the locality of the image and to narrow the receptive field.
This type of discriminator D is a PatchGAN discriminator [17], which is used to discriminate whether
each N × N block is real or fake. Let D convolve across the entire image to obtain all output values
and average them as the final output. The structure of a PatchGAN discriminator is shown in Figure 4.
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Figure 4. A PatchGAN discriminator where the receptive field of discriminator is N × N.
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4.3. Detailed Architectures of G and D

Based on the aforementioned description, generator G adopts the U-net network and discriminator
D adopts the full convolution network with a receptive field of 70× 70. For simplification, CBRk
is used to represent a Convolution–BatchNorm–ReLU layer with k filters, and CBDRk denotes
a Convolution–BatchNorm–Dropout–ReLU layer with k filters and a dropout rate of 0.5. All
convolutional layers adopt a filter with a size of 4× 4 and a stride of 2. ReLUs are leaky with a
slope of 0.2. In this paper, the detailed architectures of G and D are used as follows.

• Generator architecture
encoder: CBR64 − CBR128 − CBR256 − CBR512 − CBR512 − CBR512 − CBR512 − CBR512

decoder: CBDR512 − CBDR1024 − CBDR1024 − CBR1024 − CBR1024 − CBR512 − CBR256 −
CBR128 − CBR3(tanh)

• Discriminator architecture
CBR64 − CBR128 − CBR256 − CBR512(stride : 1)− CBR1(stride : 1)(sigmoid)

stride: 1 indicates the stride in this layer is 1. tanh and sigmoid denote the activation functions
using tanh or sigmoid in this layer, and the others adopt default parameters.

5. Simulation and Discussion

5.1. Data Preparation

Two groups of data are generated with MATLAB to verify the potential of the method, as shown
in Figure 1. A synthesized array with 31 single-channel radars monitors an enclosed room. The
transmitting signal is a stepped-frequency continuous-wave signal with a carrier frequency of 1.5 GHz
and a bandwidth of 1 GHz. The synthesized array is equidistantly placed with a spacing of 0.1 m.
The lengths of the back wall and the side walls are both a random number from 5 to 7 m, namely the
scenes are changeable. For simplification, the front wall is removed to avoid a penetration effect. The
reflection and transmission coefficients Tqn and TAn are set to 0.5. All point targets are set at random
locations inside the enclosed room. Based on Equation (1), echoes with first-order multipaths are
obtained to form the input image of generator G. Echoes without first-order multipaths are obtained
to form the ground-truth image of discriminator D. Specifically, a back-projection algorithm is used to
form these images. The size of the input images and the ground-truth images is set to 256× 256.

• Dataset 1
The number of targets is set to a random number ranging from one to four; 1000 samples and 100
samples of data are respectively used as a training set and a validation set.

• Dataset 2
The number of targets is increased to a random number ranging from ten to twenty; 2000 samples
and 200 samples of data are respectively used as a training set and a validation set.

5.2. Training Details

For the convenience of practical training, minimizing log(1− D(G(z, y), y)) in objective function
Equation (5) is replaced by maximizing log D(G(z, y), y). Minibatch SGD (stochastic gradient descent)
and the Adam optimizer are adopted with momentum parameters β1 = 0.5 and β2 = 1.00. The
batch size is set to 1. Moreover, λ in Equation (5) is set to 100. All training is run on a single GeForce
GTX1080Ti GPU (with 11 GB memory). The loading process of a G network requires 54.414 MB of
memory, and the loading process of a D network requires 2.769 MB of memory. As a result, the training
of GAN requires at least 57.183 MB of memory, and the testing of GAN requires at least 54.414 MB.
The weights of all filters are initialized from a Gaussian distribution with a mean of 0 and a standard
deviation of 0.02. In the training of Dataset 1, 50 epochs are trained and each epoch consumes an
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average of 144 s. In the training of Dataset 2, 150 epochs were trained and each epoch consumes an
average of 298 s. The learning rate of the first 100 epochs is 0.0002, and the learning rate of the last 50
epochs is reduced by 0.000002 each time.

5.3. Result Analysis

After 50 epochs of training of Dataset 1, generator G could correctly eliminate the multipath ghosts.
The training-loss curve is shown in Figure 5. Specifically, the curve of LcGAN(D, G) has an undulating
trend, since one of generator G and discriminator D is always in a dominant position during the
adversarial process. There is a slight downward trend in the curve of LL1(G), which indicates that the
similarity between the image generated by G and the ground truth is slightly improved. The initial
stage of Dreal is almost greater than D f ake, which means that generator D can completely distinguish
whether the sample is from G or the ground truth. However, both of them later begin to approach
each other, which indicates that generator G can correctly eliminate multipath ghosts so that D hardly
distinguishes the radar image from G or ground truth. The performance of GAN changing over the
iterations is shown in Figure 6, which indicates that multipath ghosts are gradually suppressed but
target images are gradually formed.

Figure 5. The loss of dataset 1 over time. MA means the moving average curve with the cycle of one
epoch. Dreal indicates the curve of D(x, y), and D f ake represents the curve of D(G(z, y), y).

400

...

input output

5×104

200 600 800

100 300 500 700

0

Figure 6. The output of GAN varies from the iterations of Dataset 1. The yellow rectangles indicate a
part of the multipath ghosts’ positions.

The results of generator network G are shown in Figure 7, which indicates that multipath ghosts
are correctly eliminated. The differences between the output image and the ground truth image are
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only the grating lobes and side lobes marked with a red oval which can be learned by continuing
training. However, as this paper mainly focuses on multipath-ghost suppression, it can be reasonably
considered that training is completed. It is worth noting that marks, axis, and color bars are absent in
the training samples.

(a) (b) (c)(a) (b) (c)

Figure 7. The results of Dataset 1. (a) Input images. (b) Ground-truth images. (c) Output images. The
red ellipses mark the differences between the output images and the ground-truth images. The yellow
lines mark the walls’ locations. The white rectangles mark the targets’ positions.

After 150 epochs of training of Dataset 2, the curve of loss is shown in Figure 8. Compared with
Figure 5, the LcGAN has a different (ascent) trend due to the mismatch of evolution speed between G
and D in the early stages. In a complex situation with a large number of multipath ghosts, the reason
for a mismatch could be summarized into two conflict points. On the one hand, complex multipath
ghosts bring convenience to D to identify the radar image from G or ground truth. On the other
hand, it makes it difficult for G to eliminate multipath ghosts. The mismatch increases the training
time, appearing as the ascent trend of LcGAN in Figure 8. The performance of GAN, varying from the
iterations, is shown in Figure 9, which indicates that multipath ghosts are gradually suppressed but
target images are gradually formed.

The result of the final training is shown in Figure 10. Although the situation is more complicated,
multipath ghosts are still correctly eliminated. It is worth noting that true target images can be
preserved even if targets are overlapped with multipath ghosts. For example, the overlapped target
images marked with red rectangles in the input images are clearly preserved in the output image.
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Figure 8. The loss of Dataset 2 over time. MA means the moving average curves with the cycle of one
epoch. Dreal indicates the curve of D(x, y), and D f ake represents the curve of D(G(z, y), y).

input output

400

0 ... 3×105

200 600 800

100 300 500 700

Figure 9. The output of GAN varies from the iterations of Dataset 2. The red rectangles indicate a part
of the targets’ positions.

In addition, the performance of elimination is quantitatively measured, and the results are shown
in Table 1. The above two networks are separately tested with 200 new test samples. The rate of one
error and two or more errors are separately counted, where an error indicates a residual multipath
ghost or a lost target image. The statistical results demonstrate the proposed method can effectively
eliminate multipath ghosts.

Table 1. Accuracy.

One Error Two Errors or More

GAN trained by Dataset 1 0.5% 0%
GAN trained by Dataset 2 2.5% 0.5%
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(a) (b) (c)(a) (b) (c)

Figure 10. The results of dataset 2. (a) Input images. (b) Ground-truth images. (c) Output images. The
red ellipses mark the differences between the output images and the ground-truth images. The yellow
lines mark the walls’ locations. The white rectangles mark the targets’ positions. Moreover, the yellow
ellipses mark the target images that are overlapped with multipath ghosts.

5.4. Comparison of Different Methods

In this section, the proposed method is compared with the PCF method [11], the
subaperture-fusion method [8], and the imaging-dictionary-based method [7]. The results are
shown in Figure 11. Specifically, the walls’ locations need to be known in advance by the
imaging-dictionary-based method. Table 2 illustrates the averaging computation time of 100
trials for each multipath-suppression method. The PCF method, subaperture-fusion method, and
imaging-dictionary-based method run on Matlab 2017a, while the proposed method runs on Python.
All methods adopt a workstation including a Intel 2.60 GHz Core(TM) i7-6700HQ CPU processor
(with 8 GB of memory) and a NVIDIA GeForce GTX1080Ti GPU (with 11 GB of memory) with CUDA
(compute unified device architecture) acceleration. The comparison results in Table 2 demonstrate
that the proposed method and subaperture-fusion method have similar time consumptions that are
superior to the PCF and imaging-dictionary-based methods.
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(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

Figure 11. The comparison results of different methods. (a) The original images. (b) The PCF
method [11]. (c) The subaperture-fusion method [8]. (d) The imaging-dictionary-based method [7].
(e) The proposed method. The yellow lines mark the walls’ locations, which indicate that the
imaging-dictionary-based method requires prior wall location information. The red ellipses mark a
part of the multipath ghost locations. The green ellipses mark a part of the degraded target images.
The white rectangles mark the targets’ positions.
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Table 2. The averaging computation time of 100 trials for four different multipath suppression methods.

Method Computation Times

PCF 1.09
Subaperture-fusion 0.62
Imaging-dictionary 1.65

The proposed method 0.65

As shown in Figure 11b, the PCF method is unable to eliminate well-focused multipath ghosts,
marked by red ellipses in the case of synthetic aperture imaging (SAI). In Figure 11c, a part of
the multipath ghosts, marked by the red ellipses especially about the back wall, still exist with
the subaperture-fusion method, as they appear at the close positions in both subaperture images.
Figure 11d demonstrates that the imaging-dictionary-based method has an excellent performance in
suppressing multipath ghosts while it needs the prior walls’ locations. In Figure 11b,c, the PCF method
and the subaperture-fusion method enlarge the energy differences between the target images, which
makes it difficult to identify degraded targets such as target images marked by green ellipses with
a low SMCR that is a ratio between the peak of the target image and its multipath ghost [10]. As a
comparison, as shown in Figure 11e, the proposed method achieves an excellent multipath suppression
without walls’ locations. Moreover, the proposed method prevents the difference of target images from
enlarging, which is beneficial to identifying all targets.

To strengthen the point of the proposed method being well-suited for the application, the
advantages and disadvantages of each method are summarized in Table 3. Furthermore, the
SMCR is applied to quantitatively evaluate the performances of multipath-ghost suppression for
different methods. Specifically, as shown in Figure 12, the scene with two targets in Figure 11 is
chosen as a sample. As shown in Table 4, the proposed method has a much lower SMCR than
the PCF method (by about 20–50 dB) and the subaperture-fusion method (by about 15–35 dB).
The imaging-dictionary-based method also has the highest SMCR. As a result, both the proposed
method and the imaging-dictionary-based method have an excellent multipath suppression while the
imaging-dictionary-based method needs prior walls’ locations.

Table 3. The advantages and disadvantages of different methods.

Method Advantages Disadvantages

PCF
1. Does not require prior walls’ locations.
2. Does not require complicated tuning
parameters.

1. Poor multipath suppression for SAI.
2. A part of target images are degraded
with low SMCR.

Subaperture-fusion Does not require prior walls’ locations.

1. Poor suppression for the multipath
ghosts of back wall.
2. A part of target images are degraded
with low SMCR.
3. Requires complicated tuning
parameters.

Imaging-dictionary
1. Excellent multipath suppression.
2. Does not require complicated tuning
parameters.

Requires prior walls’ locations.

The proposed method

1. Excellent multipath suppression.
2. Does not require prior walls’ locations.
3. No target images with degradation.
4. Does not require complicated tuning
parameters.

Requires a dataset with labels.
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(a) (b) (c) (d) (e)(a) (b) (c) (d) (e)

P1P2 P1_1

P1_3

P1_2P2_3

P2_2
P2_1

P1P2 P1_1

P1_3

P1_2P2_3

P2_2
P2_1

P1P2 P1_1

P1_3

P1_2P2_3

P2_2
P2_1

P1P2 P1_1

P1_3

P1_2P2_3

P2_2
P2_1

P1P2 P1_1

P1_3

P1_2P2_3

P2_2
P2_1

P1P2 P1_1

P1_3

P1_2P2_3

P2_2
P2_1

P1P2 P1_1

P1_3

P1_2P2_3

P2_2
P2_1

P1P2 P1_1

P1_3

P1_2P2_3

P2_2
P2_1

P1P2 P1_1

P1_3

P1_2P2_3

P2_2
P2_1

P1P2 P1_1

P1_3

P1_2P2_3

P2_2
P2_1

Figure 12. The selected sample for quantitatively evaluating multipath-ghost suppression for different
methods. (a) The original images. (b) The PCF method. (c) The subaperture-fusion method. (d) The
imaging-dictionary-based method. (e) The proposed method. The white rectangles mark the regions of
target images and their multipath ghosts.

Table 4. Ratios between the peaks of the target images and their multipath ghosts (dB).

Method P1VS.P1_1 P1VS.P1_2 P1VS.P1_3 P2VS.P2_1 P2VS.P2_2 P2VS.P2_3

Original image 5.89 5.90 8.48 6.37 5.74 6.00
PCF 13.09 6.99 35.11 10.47 12.81 12.53

Subaperture-fusion 17.41 17.15 24.93 20.89 17.41 18.42
Imaging-dictionary 103.56 119.37 172.02 112.93 75.06 123.06

The proposed method 32.45 54.49 56.49 43.49 31.27 27.06

It is worth noting that the side/grating lobes are preserved in ground-truth images and output
images. On the one hand, GAN is classified as a structured learning network that is applied to construct
spatial structure mapping from input images to output images. The preservation of side/grating
lobes is equivalent to preserving the spatial structure, which promotes the elimination of multipath
ghosts and the preservation of target images. On the other hand, side/grating lobes in output images
could be eliminated by threshold detection thanks to a high signal-to-noise ratio. In other words,
side/grating lobes are effective information for multipath suppression and have no effect on the
target-detection performance.

6. Conclusions

A GAN-based multipath-ghost suppression algorithm is presented in this paper. Based on Matlab
simulation datasets, the generator of GAN is trained to be able to efficiently reduce multipath ghosts,
along with fighting with the discriminator. It is demonstrated that GAN has the potential for multipath
elimination in TWRI. In a future work, we will research the modification of GAN and use complicated
simulation datasets (such as changeable radar parameters) and practical measured datasets to outline
the potential of GAN.
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