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Abstract: In this paper, an oscillator-based gait pattern with sinusoidal functions is designed and
implemented on a field-programmable gate array (FPGA) chip to generate a trajectory plan and
achieve bipedal locomotion for a small-sized humanoid robot. In order to let the robot can walk
straight, the turning direction is viewed as a parameter of the gait pattern and Q-learning is used to
obtain a straightforward gait pattern. Moreover, an automatic training platform is designed so that
the learning process is automated. In this way, the turning direction can be adjusted flexibly and
efficiently under the supervision of the automatic training platform. The experimental results show
that the proposed learning framework allows the humanoid robot to gradually walk straight in the
automated learning process.
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1. Introduction

Humanoid robots are an attractive topic in the field of robotics. A biped structure is designed
for humanoid robots and is expected to facilitate human lives and even allow the robots to coexist
with humans. Therefore, bipedal locomotion is an important ability of humanoid robots that is
widely researched. Some gait patterns are motivated by biologically inspired control concepts to
achieve bipedal locomotion. Rhythmic movements in animals are realized via an interaction between
the dynamics of a musculoskeletal system and the rhythmic signals from central pattern generators
(CPGs) [1,2]. In robotics, CPGs were formulated as a set of neural oscillators to produce the gait
pattern of oscillations necessary for rhythmic movements [3,4]. Based on the neural oscillator, a set of
coupled-phase oscillators were presented using sinusoidal functions for the gait pattern [5]. However,
the neural oscillator and the coupled-phase oscillator are modulated in the joint space for each joint of
the humanoid robot, resulting in too many parameters needing to be adjusted. Based on the Cartesian
coordinate system, the simplified coupled linear oscillators were extended from the abovementioned
methods to produce the gait pattern [6,7] with trajectory planning in the workspace [8,9]. The simplified
coupled linear oscillators can be divided into a balance oscillator and two movement oscillators which
have a direct correlation between the oscillator parameters and the gait pattern. The center of mass
(CoM) trajectory can be designed through the balance oscillator and its oscillator parameters. Similarly,
the left and right ankle trajectories can be designed through the movement oscillator and its oscillator
parameters. Hence, these oscillator parameters all affect the gait pattern for the humanoid robot. This
gait pattern for the humanoid robot can achieve high flexibility through adjustment of the parameters
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of the oscillator-based gait pattern. Inverse kinematics [10] was performed to transform trajectory
planning into the desired joint position, and the gait pattern of the humanoid robot can be implemented
to achieve bipedal locomotion.

The ability to improve the desired behavior of the robot is a significant technical challenge. The
dynamic motion problems could be solved for unmanned aerial vehicles (UAVs) [11], quadruped
robots [12], and even high-dimensional humanoid robots [13] using the Q-learning algorithm [14–16].
Most gait patterns are designed for humanoid robots, assuming an ideal situation. However, in the
long-term operation of the humanoid robot, some errors may accumulate owing to mechanism error
and motor backlash. Moreover, the real environment may also result in the humanoid robot exhibiting
some unexpected behaviors. In order to adapt environmental changes through the gait pattern of
the humanoid robot, sensors are needed to obtain environmental information [17–19]. The desired
behavior of the robot can be learned to appropriately modulate the observed gait pattern [20–23].
Hence, some studies were developed to adjust the joints [24,25] of the humanoid robot based on the
interaction between the robot and the environment. The angle at each joint can be calculated and
rotated to simulate the straightforward gait pattern. Furthermore, some studies were developed to
adjust the poses [26] of the humanoid robot in order to speed up the learning process. The robot poses
are formed by a set of gait patterns to avoid the complex adjustment of multiple joints and to further
implement the straightforward gait pattern. Hence, the straightforward gait pattern is learned for the
humanoid robot by adjusting the gait pattern with environmental information.

In most cases, for humanoid robots, the simulation results are adequate, but it is difficult to directly
apply the calculated data to real humanoid robots owing to the possibility of mechanism error and
motor backlash. Therefore, this paper focuses on an experiment to allow a real robot to successfully
learn the desired behavior. In this paper, a learning framework is proposed for the humanoid robot to
efficiently learn a straightforward walking gait in a real-life situation. In order to reduce the number of
learning parameters, an oscillator-based gait pattern with sinusoidal functions is designed so that it
can simultaneously speed up the learning process and make the gait pattern more flexible to achieve
bipedal locomotion. In this paper, only the turning direction (the parameter of the gait pattern) needs
to be learned by the Q-learning algorithm to obtain a straightforward gait pattern. Moreover, in order
to reduce the level of human resources and to protect the humanoid robot, an automatic training
platform, as an auxiliary function, is designed to effectively assist and supervise the intrinsically
unstable humanoid robot. The automatic training platform can also be applied to collect environmental
information for the humanoid robot to adjust the turning direction. The oscillator-based gait pattern
and the Q-learning algorithm are deployed on a field-programmable gate array (FPGA) chip. Hence, it
can be integrated with an automatic training platform in the proposed learning framework such that
the adaptability of the humanoid robot can be improved and the straightforward gait pattern can also
be learned.

The rest of this paper is organized as follows: in Section 2, the structure and specification of a
small-sized humanoid robot and the automatic training platform used in the experiment are described.
In Section 3, the system architecture and system process of the proposed learning framework based on
the FPGA chip and the automatic training platform are described. In Section 4, an oscillator-based
gait pattern is designed for the humanoid robot using trajectory planning. A balance oscillator and
two movement oscillators are generated, allowing a direct correlation between oscillator parameters
and the gait pattern. In Section 5, the Q-learning algorithm is presented with the proposed automatic
training platform for the humanoid robot to learn the straightforward gait pattern. In Section 6,
some experimental results are presented to validate the proposed learning framework. Finally, the
conclusions are summarized in Section 7.

2. Hardware Structure and Coordinate System

In this paper, a small-sized humanoid robot and the automatic training platform developed by
our laboratory (Intelligent Control Laboratory of Tamkang University) are shown in Figure 1; this
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experimental platform was designed to implement the proposed method and achieve the desired
behavior of the robot.
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Figure 1. Experimental platforms: (a) small-sized humanoid robot; (b) automatic training platform.

2.1. Small-Sized Humanoid Robot

A small-sized humanoid robot with 23 degrees of freedom (DOFs) was designed to imitate human
movements. There were two DOFs in the head, four DOFs per arm, one DOF in the waist, and six
DOFs per leg. The mechanism and dimensions of the small-sized humanoid robot are described in
Figure 2. Its height and weight were 56.45 cm and 4.5 kg, respectively. The main hardware included
23 servo motors, one complementary metal–oxide–semiconductor (CMOS) sensor, one FPGA board,
and one integrated circuit board. The specifications of the small-sized humanoid robot are shown
in Table 1. The FPGA board contained an FPGA chip which was used as the main controller for the
humanoid robot. The internal signals of the robot could be transferred into the FPGA chip through
the integrated circuit board. Hence, the commands could be transmitted from the FPGA chip to all
device components (i.e., the 23 servo motors) by using general-purpose input/output (GPIO) pins and
the integrated circuit board. It can be mentioned that the FPGA chip has the advantage of parallel
processing and low power consumption. Therefore, the small-sized humanoid robot designed with
this FPGA board had more significant computing and real-time processing capabilities compared to
the Darwin-OP robot [6] with an Arduino board.
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Figure 2. Mechanism and dimensions of the small-sized humanoid robot: (a) sagittal plane;
(b) frontal plane.
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Table 1. Specifications of the small-sized humanoid robot.

Category Description Data

Dimension Height
Weight

56.45 cm
5.34 kg

DOFs

Head
Arm
Waist
Leg

2 DOFs
4 DOFs × 2

1 DOF
6 DOFs × 2

Main controller (FPGA)

CPU
RAM

Logic gates
Power requirement

Altera Cyclone III EP3C120F780C8
DDRII SDRAM 64 MB × 2

119088
1 DC power jack with 5 V power input

Actuator MX-28
(arm)

Holding torque
Speed

Resolution

2.5 N·m @ 12 V
55 rpm @ no load

0.088◦

Actuator MX-64
(leg)

Holding torque
Speed

Resolution

6.0 N·m @ 12 V
63 rpm @ no load

0.088◦

Sensor CMOS sensor 30 fps

In this paper, trajectory planning was adopted to achieve the gait pattern of the humanoid robot.
Hence, inverse kinematics was applied to obtain the angle of each joint from the trajectory planning to
implement bipedal locomotion. The geometric approach was used to solve the inverse kinematics. The
coordinate systems of the humanoid robot described in its sagittal plane and frontal plane are shown
in Figure 3 [10].
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In the sagittal plane of the humanoid robot described in Figure 3a, the angles of the hip joint, knee
joint, and ankle joint of the right (left) foot in the pitch-axis are denoted as θpit

RH(θpit
LH), θpit

RK(θpit
LK), and

θ
pit
RA(θpit

LA), respectively. Based on the geometric approach, θpit
RH, θpit

RK, θpit
RA, θpit

LH, θpit
LK, and θpit

LA can be
respectively described as follows:

θ
pit
RH = cos−1(

Lx
R

2 + Lz
R

2 + lt2
− lc2

2lt
√

Lx
R

2 + Lz
R

2
) + tan−1(

Lx
R

Lz
R
), (1)

θ
pit
RK = π− tan−1(

lt cos(θpit
RH)

lt sin(θpit
RH)

) − tan−1(
Lz

R − lt cos(θpit
RH)

lt sin(θpit
RH) − Lx

R

), (2)
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θ
pit
RA = tan−1(

lt sin(θpit
RH) − Lx

R

Lz
R − lt cos(θpit

RH)
), (3)

θ
pit
LH = cos−1(

Lx
L

2 + Lz
L

2 + lt2
− lc2

2lt
√

Lx
L

2 + Lz
L

2
) + tan−1(

Lx
L

Lz
L
), (4)

θ
pit
LK = π− tan−1(

lt cos(θpit
LH)

lt sin(θpit
LH)

) − tan−1(
Lz

L − lt cos(θpit
LH)

lt sin(θpit
LH) − Lx

L

), (5)

and

θ
pit
LA = tan−1(

lt sin(θpit
LH) − Lx

L

Lz
L − lt cos(θpit

LH)
), (6)

where lt and lc are the lengths of the robot thigh and calf, respectively. Lx
R(Lx

L), Ly
R(Ly

L), and Lz
R(Lz

L) are
the step length, step width, and lift height of the right (left) foot.

In the frontal plane of the humanoid robot described in Figure 3b, the angles of the hip joint and
ankle joint of the right (left) foot in the roll axis are denoted as θrol

RH(θrol
LH) and θrol

RA(θrol
LA), respectively.

Similarly, based on the geometric approach, θrol
RH, θrol

RA, θrol
LH, and θrol

LA can be respectively described as
follows:

θrol
RH = sin−1(

Ly
R

Lz
R
), (7)

θrol
RA = θrol

RH, (8)

θrol
LH = sin−1(

Ly
L

Lz
L
), (9)

and
θrol

LA = θrol
LH. (10)

2.2. Automatic Training Platform

An automatic training platform with three degrees of freedom was designed to allow the robot to
be trained in an automated learning process. The specifications of the automatic training platform are
shown in Table 2. The main hardware included three servo motors, one personal computer (PC), two
infrared sensors, and one CMOS sensor. The PC was used as the main controller for the automatic
training platform. The mechanism dimension of the automatic training platform is shown in Figure 4.
Its length, width, and height were 243 cm, 124 cm, and 85 cm, respectively. The length and width of
the training field were 238 cm and 119 cm, respectively. Two infrared sensors were used to measure
x-axis and y-axis distances of the robot in the training field. As shown in Figure 5, a unit coordinate of
17 × 17 cm2 was considered to construct the coordinate of the training field in the horizontal plane of
the automatic training platform. The measured information (dx, dy) was transferred into a coordinate
to represent the position of the robot in the training field. In addition, a blue round marker was put
above the humanoid robot allowing the platform to follow and protect the robot. As shown in Figure 6,
a traditional red–green–blue (RGB) image of the robot’s mark was captured by the CMOS sensor and it
was transferred into a filtered image via the dilation and erosion based on the hue–saturation–value
(HSV) approach. Hence, the CMOS sensor could be applied to detect the robot so that the platform
could move to follow and protect the robot. In this way, the humanoid robot could be protected and
trained under the supervision of the automatic training platform.
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Table 2. Specifications of the automatic training platform.

Category Description Data

Dimension
Length
Width
Height

243 cm
124 cm
85 cm

DOFs Platform 3 DOFs

Main controller (PC) CPU
RAM

Intel i5-5200U
8 GB DDR3 SDRAM

Actuator MX-64
Holding torque

Speed
Resolution

6.0 N·m @ 12 V
63 rpm @ no load

0.088◦

Sensors Infrared sensor
CMOS sensor

x-axis/y-axis
30 fps
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In this paper, robot detection was adopted to allow the platform to follow the humanoid robot.
Hence, motion control was applied to keep the robot’s mark in the central position of the image at all
times to implement visual tracking. Velocity control was used for motion control because the automatic
training platform was continuously operated to track the humanoid robot. Hence, the velocities of the
x-axis, y-axis, and z-axis of the automatic training platform are denoted as ωx

ATP, ωy
ATP, and ωz

ATP. In
the image, pixel errors in the x-axis and y-axis (xerr, yerr) represent the horizontal distance between
the robot’s mark position and central position, and the area of the robot’s mark (area) represents the
estimation of vertical distance between the fixed CMOS position and the robot’s mark; they could both
be obtained from the filtered image. In the horizontal motion control, pixel errors were given as the
input for the proportional–derivative controller to calculate the velocity. In the vertical motion control,
the area of the robot’s mark was given as the input for the constant velocity to decide its direction.
Hence, ωx

ATP, ωy
ATP, and ωz

ATP can be respectively described as follows:

ωx
ATP = Kpxerr + Kd

.
xerr, (11)

ω
y
ATP = Kpyerr + Kd

.
yerr, (12)

and

ωz
ATP =


ωC, i f pull up situation (area < areaMax)

0, otherwise

−ωC, i f put down situation (areaMin > area)

, (13)

where Kp and Kd are the gains of the proportional and derivative controllers, respectively, ωC is the
constant velocity, and areaMin and areaMax are the boundaries of the minimum and maximum area of
the robot’s mark.

3. System Overview

In order to allow the humanoid robot to learn a straightforward gait pattern in the automatic
training platform, the proposed learning framework was developed using the system architecture
illustrated in Figure 7 and described in Figure 8. The three modules (Q-learning algorithm, gait
pattern, and inverse kinematics) were designed and implemented in the FPGA chip to speed up the
learning process and to produce real-time bipedal locomotion. In addition, three additional modules
(environmental information, robot detection, and motion control) were designed and implemented in
the automatic training platform to assist and supervise the humanoid robot in the automatic learning
process. Their functions are described below.

Firstly, the robot’s mark was placed above it to be detected by the CMOS sensor. Pixel errors
in the x-axis and y-axis and the area of the robot’s mark (xerr, yerr, area) were obtained to follow the
robot using the detection module. Secondly, the velocities ω were required by the automatic training
platform to control the motors and to follow the robot from the motion control module. Thirdly, when
the humanoid robot walked with its mechanism error and motor backlash in the real environment, its
position in the training field s could be obtained based on the measured data from the environmental
information module via the x-axis and y-axis infrared sensors. Fourthly, the turning direction φ, a
parameter of the gait pattern, could be calculated according to s to learn the straightforward gait
pattern from the Q-learning algorithm module. Fifthly, the trajectory planning P, which depended on
the turning direction φ, could be generated from the gait pattern module. Finally, the angle of each
joint θ was determined from the inverse kinematics module based on P so that the robot could exhibit
bipedal locomotion.
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The process of the proposed automatic training platform is described in Figure 9 which consists of
several states. In the beginning, the humanoid robot was suspended and then slowly lowered onto the
training field, which served as the initial position (the start state), as shown in Figure 9a,b. Next, the
straightforward gait pattern was learned while the automatic training platform followed the robot at
the same time (the operation state), as shown in Figure 9c,d. Then, once the robot was in danger or
once it reached the target region, the humanoid robot was pulled up by the automatic training platform
(the end state), as shown in Figure 9e,f. Finally, the automated training platform could return to the
initial position and restart the learning process (the return state), as shown in Figure 9g,h.
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Figure 9. Process of the automatic training platform: (a) robot is suspended in the start state; (b)
robot is put on the training field in the start state; (c) platform moves forward to follow the robot in
the operation state; (d) platform moves forward and right to follow the robot in the operation state;
(e) robot is in a danger region and is followed by the platform in the end state; (f) robot is pulled up by
the platform in the end state; (g) platform goes back in the return state; (h) platform goes back to the
initial position in the return state.

The procedure of the proposed learning framework based on the automatic training platform can
be described as follows:

Step 1: (Setting State) The robot’s mark is put above the humanoid robot and is detected by a CMOS
sensor installed on the automatic training platform.

Step 2: (Initial State) Pixel errors in the x-axis and y-axis and the area of the robot’s mark (xerr, yerr, area)
are obtained from the robot detection module tallow the platform to follow the robot.

Step 3: (Initial State) The velocities ω are determined from the motion control module to control the
motors, allowing the automatic training platform to follow the robot.

Step 4: (Initial State) The position s of the humanoid robot in the training field is obtained from the
environmental information module based on the measured data via the x-axis and y-axis
infrared sensors.

Step 5: (Start State) The humanoid robot is suspended and then slowly placed on the training field,
which serves as the initial position.

Step 6: (Operation State) The turning direction φ is calculated from the Q-learning algorithm module
based on the position s to learn the straightforward gait pattern.

Step 7: (Operation State) The trajectory planning P, which depends on the turning direction φ, is
generated from the gait pattern module.

Step 8: (Operation State) The angle of each joint θ is determined from the inverse kinematics module
based on P, allowing the robot to exhibit bipedal locomotion.

Step 9: (End State) When the robot is in danger or when it reaches the target region, the humanoid
robot is pulled up by the automatic training platform.

Step 10: (Return State) The automated training platform returns to Step 5 (Start State) and restarts the
learning process.

4. Oscillator-Based Gait Pattern

In order to implement a flexible and adaptable gait pattern, oscillators were adopted for the
humanoid robot in this paper. Hence, the legs of the humanoid robot and their coordinate system
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needed to be defined for the gait pattern, as shown in Figure 10a. PW = (Px
W , Py

W , Pz
W) represents the

position of the waist, which was considered to be the center of mass (CoM). PRA = (Px
RA, Py

RA, Pz
RA)

and PLA = (Px
LA, Py

LA, Pz
LA) represent the positions of the left and right ankles, respectively. The right

and left legs interchanged as the support leg to obtain the walking ability of the humanoid robot.
Hence, the three-dimensional gait pattern could be described by the position of the waist, and left
and right ankles (PW , PLA, PRA), as shown in Figure 10b. The standing posture of the robot and its leg
parameters are shown in Figure 11, where dy is the distance between the waist PW and the hip, and dz

is the distance between the hip and the ankle.

Electronics 2019, 8, x FOR PEER REVIEW 10 of 23 

 

Step 8: (Operation State) The angle of each joint θ  is determined from the inverse kinematics 
module based on P , allowing the robot to exhibit bipedal locomotion. 

Step 9: (End State) When the robot is in danger or when it reaches the target region, the humanoid 
robot is pulled up by the automatic training platform. 

Step 10: (Return State) The automated training platform returns to Step 5 (Start State) and restarts 
the learning process. 

4. Oscillator-Based Gait Pattern 

In order to implement a flexible and adaptable gait pattern, oscillators were adopted for the 
humanoid robot in this paper. Hence, the legs of the humanoid robot and their coordinate system 
needed to be defined for the gait pattern, as shown in Figure 10a. ( , , )x y z

W W W WP P P P=  represents the 
position of the waist, which was considered to be the center of mass (CoM). ( , , )x y z

RA RA RA RAP P P P=  and 
( , , )x y z

LA LA LA LAP P P P=  represent the positions of the left and right ankles, respectively. The right and left 
legs interchanged as the support leg to obtain the walking ability of the humanoid robot. Hence, the 
three-dimensional gait pattern could be described by the position of the waist, and left and right 
ankles ( , , )W LA RAP P P , as shown in Figure 10b. The standing posture of the robot and its leg 
parameters are shown in Figure 11, where yd  is the distance between the waist WP  and the hip, 
and zd  is the distance between the hip and the ankle.  

 

WP

RAP
LAP

 
(a) (b) 

Figure 10. Legs of the humanoid robot: (a) coordinate system; (b) three-dimensional gait pattern. 

 
  

(a) (b) (c) 

Figure 11. Standing posture: (a) horizontal plane; (b) sagittal plane; (c) frontal plane. 

The humanoid robot was a high-dimensional complex structure; thus, three-dimensional 
trajectory planning ( , , )W LA RAP P P P=  was generated by the oscillators based on the Cartesian 
coordinate system to simplify the gait pattern of the humanoid robot. The oscillators could be 
divided into a balance oscillator and two movement oscillators, located at the CoM WP , and left and 
right ankles ( , )LA RAP P , respectively, to generate the trajectories. The purpose of the balance oscillator 
was to maintain the balance of the robot and to generate the CoM trajectory. The purpose of the 
movement oscillators was to support and move the body of the robot and to generate the left and 
right ankle trajectories. Since the gait pattern was a periodic behavior, a sinusoidal function was 
adopted for the oscillators, which was adjusted by the walking phase p  to simplify the design 
method. The equations of the oscillators at the CoM WP , and left and right ankles ( , )LA RAP P  can be 
expressed as follows: 

Figure 10. Legs of the humanoid robot: (a) coordinate system; (b) three-dimensional gait pattern.

Electronics 2019, 8, x FOR PEER REVIEW 10 of 22 

 

4. Oscillator-Based Gait Pattern 

In order to implement a flexible and adaptable gait pattern, oscillators were adopted for the 
humanoid robot in this paper. Hence, the legs of the humanoid robot and their coordinate system 
needed to be defined for the gait pattern, as shown in Figure 10a. ( , , )x y z

W W W WP P P P=  represents the 
position of the waist, which was considered to be the center of mass (CoM). ( , , )x y z

RA RA RA RAP P P P=  and 
( , , )x y z

LA LA LA LAP P P P=  represent the positions of the left and right ankles, respectively. The right and left 
legs interchanged as the support leg to obtain the walking ability of the humanoid robot. Hence, the 
three-dimensional gait pattern could be described by the position of the waist, and left and right 
ankles ( , , )W LA RAP P P , as shown in Figure 10b. The standing posture of the robot and its leg 
parameters are shown in Figure 11, where yd  is the distance between the waist WP  and the hip, 
and zd  is the distance between the hip and the ankle.  

 

WP

RAP
LAP

 
(a) (b) 

Figure 10. Legs of the humanoid robot: (a) coordinate system; (b) three-dimensional gait pattern. 

 
  

(a) (b) (c) 

Figure 11. Standing posture: (a) horizontal plane; (b) sagittal plane; (c) frontal plane. 

The humanoid robot was a high-dimensional complex structure; thus, three-dimensional 
trajectory planning ( , , )W LA RAP P P P=  was generated by the oscillators based on the Cartesian 
coordinate system to simplify the gait pattern of the humanoid robot. The oscillators could be 
divided into a balance oscillator and two movement oscillators, located at the CoM WP , and left and 
right ankles ( , )LA RAP P , respectively, to generate the trajectories. The purpose of the balance oscillator 
was to maintain the balance of the robot and to generate the CoM trajectory. The purpose of the 
movement oscillators was to support and move the body of the robot and to generate the left and 
right ankle trajectories. Since the gait pattern was a periodic behavior, a sinusoidal function was 
adopted for the oscillators, which was adjusted by the walking phase p  to simplify the design 
method. The equations of the oscillators at the CoM WP , and left and right ankles ( , )LA RAP P  can be 
expressed as follows: 

0 0 0      ( ( ),  ( ),  ( )) ( , , )

      ( ( ) sin( ( ) ( )), ( ) sin( ( ) ( )),

          ( ) sin( ( ) ( ))) (0, 0, 0),     {1,  2, ,  6}

o
W W W

x y z x y z
W W W W W W

x x x y y y
W W W W W W

z z z
W W W

P osc P

osc p osc p osc p P P P

p p t p p p t p

p p t p p

ρ ω δ ρ ω δ
ρ ω δ

= +

= +

= + +

+ + ∈ 

, 
(14) 

Figure 11. Standing posture: (a) horizontal plane; (b) sagittal plane; (c) frontal plane.

The humanoid robot was a high-dimensional complex structure; thus, three-dimensional trajectory
planning P = (PW , PLA, PRA) was generated by the oscillators based on the Cartesian coordinate system
to simplify the gait pattern of the humanoid robot. The oscillators could be divided into a balance
oscillator and two movement oscillators, located at the CoM PW , and left and right ankles (PLA, PRA),
respectively, to generate the trajectories. The purpose of the balance oscillator was to maintain the
balance of the robot and to generate the CoM trajectory. The purpose of the movement oscillators was
to support and move the body of the robot and to generate the left and right ankle trajectories. Since
the gait pattern was a periodic behavior, a sinusoidal function was adopted for the oscillators, which
was adjusted by the walking phase p to simplify the design method. The equations of the oscillators at
the CoM PW , and left and right ankles (PLA, PRA) can be expressed as follows:

PW = oscW + Po
W

= (oscx
W(p), oscy

W(p), oscz
W(p)) + (Px0

W , Py0
W , Pz0

W)

=
(
ρx

W(p) sin(ωx
W(p)t + δx

W(p)), ρy
W(p) sin(ωy

W(p)t + δ
y
W(p)),

ρz
W(p) sin(ωz

W(p)t + δz
W(p))

)
+ (0, 0, 0), p ∈ {1, 2, · · · , 6}

, (14)

PLA = oscLA + Po
LA

= (oscx
LA(p), oscy

LA(p), oscz
LA(p), oscφLA(p)) +

(
Px0

LA, Py0
LA, Pz0

LA, Pφ0
LA)

=
(
ρx

LA(p) sin(ωx
LA(p)t + δx

LA(p)), ρ
y
LA(p) sin(ωy

LA(p)t + δ
y
LA(p)),

ρz
LA(p) sin(ωz

LA(p)t + δz
LA(p)), ρ

φ
LA(p) sin(ωφLA(p)t + δ

φ
LA(p))

)
+ (0, dy, −dz, 0), p ∈ {1, 2, · · · , 6}

, (15)
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and

PRA = oscRA + Po
RA

= (oscx
RA(p), oscy

RA(p), oscz
RA(p), oscφRA(p)) +

(
Px0

RA, Py0
RA, Pz0

RA, Pφ0
RA)

=
(
ρx

RA(p) sin(ωx
RA(p)t + δx

RA(p)), ρ
y
RA(p) sin(ωy

RA(p)t + δ
y
RA(p)),

ρz
RA(p) sin(ωz

RA(p)t + δz
RA(p)), ρ

φ
RA(p) sin(ωφRA(p)t + δ

φ
RA(p))

)
+ (0, −dy, −dz, 0), p ∈ {1, 2, · · · , 6}

, (16)

where oscW , oscLA, and oscRA are the oscillators at the CoM, and left and right ankles, respectively, p0
W ,

p0
RA, and p0

LA are the starting points of the CoM, and left and right ankles, respectively, and (ρ,ω,δ) are
the amplitude, angular velocity, and phase shift of the oscillator parameters. All oscillators involved
three axes of the sub-oscillator (x-axis, y-axis, and z-axis) in three-dimensional space, and the two
movement oscillators additionally included one sub-oscillator for the turning direction φ.

The gait pattern could be described as three modes: starting mode, gait cycle mode, and ending
mode, and each mode was divided into two phases. Hence, a complete walking process consisted of six
phases: Phase 1–6 (p1–p6) [7], as shown in Figure 12. The leftmost (initial posture) and the rightmost
(final posture) postures were both standing postures. In these six phases, the parameters of the CoM in
terms of the x-axis, y-axis, and z-axis (SWx, SWy, HW) were the same as those involved in the walking
process. Phase 1 (p1) and Phase 2 (p2) were classified as the starting mode, which only worked once
at the beginning of the walking process. The CoM swung from the middle to the left, and both feet
remained on the floor in Phase 1. The CoM swung from the left back to the middle, with the left foot
still on the floor, and the right foot lifted a height HS

R to move one step forward SS
R in Phase 2. Phase 3

(p3) and Phase 4 (p4) were classified as the gait cycle mode, which worked repeatedly in the middle of
the walking process. The CoM swung in a circular motion on the right side, with the right foot on the
floor, and the left foot lifted a height HG

L to move one stride forward SG
L in Phase 3. The CoM swung in

a circular motion on the left side, with the left foot on the floor, and the right foot lifted a height HG
R to

move one stride forward SG
R in Phase 4. Phase 5 (p5) and Phase 6 (p6) were classified as the ending

mode, which also only worked once at the end of the walking process. The CoM swung to the right
side, with the right foot on the floor, and the left foot lifted a height HE

L to move one step forward SE
L in

Phase 5. The CoM swung from the right back to the middle, with both feet on the floor, in Phase 6.Electronics 2019, 8, x FOR PEER REVIEW 12 of 23 
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The turning direction φ was also involved in the designed gait pattern to increase the flexibility of
the humanoid robot. When humans change direction, it is natural for them to rotate their legs. Hence,
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the movement oscillators were related to the turning direction of the humanoid robot to generate the
trajectories. The turning direction of the humanoid robot is shown in Figure 13 and it could also be
assigned a starting mode, gait cycle mode, and ending mode, which in total contained six phases
(p1–p6). If the left foot moved forward and the right foot was on the floor in the complete walking
process, the turning left direction could be executed as shown Figure 13a. Similarly, if the right foot
moved forward and the left foot was on the floor in the complete walking process, the turning right
direction could be executed as shown Figure 13b. The turning direction was distributed to both feet,
the moving foot and the foot on the floor, to rotate the legs (φL, φR) in a ratio of three to seven. In the
turning left direction, it is expressed by

(φL,φR) = (0.3 ∗φ,−0.7 ∗φ). (17)

In the turning right direction, it is expressed by

(φL,φR) = (−0.7 ∗φ, 0.3 ∗φ). (18)
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right direction.

In this way, the designated region could be effectively reached using the turning direction. The
parameter set of the oscillator-based gait pattern with the period of a walking step T in the walking
process is shown in Table 3. Trajectories and footprints with turning direction are shown in Figure 14.

Table 3. Parameter set of the oscillator-based gait pattern in a walking process.

Parameter
Starting Mode Gait Cycle Mode Ending Mode

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6

(ρx
W(p),ρy

W(p),ρz
W(p)) (0, SWy, HW) (SWx, SWy, HW) (SWx, SWy, HW) (SWx, SWy, HW) (SWx, SWy, HW) (0, SWy, HW)

(ωx
W(p),ωy

W(p),ωz
W(p)) (2π/T, π/T, 2π/T) (2π/T, π/T, 2π/T) (2π/T, π/T, 2π/T)

(δx
W(p), δy

W(p), δz
W(p)) (0, 0, π) (0, π/2, 0) (π, π, π) (π, 0, π) (π, π, π) (0, 0, 0)

(ρx
LA(p),ρ

y
LA(p),ρ

z
LA(p),ρ

φ
LA(p)) (0, 0, 0, 0) (SS

R/2, 0, 0,φL) (SG
L /4, 0,HG

L ,φL) (SG
R /4, 0, 0,φL) (SE

L /2, 0,HE
L ,φL) (0, 0, 0, 0)

(ωx
LA(p),ω

y
LA(p),ω

z
LA(p),ω

φ
LA(p)) (π/T, 0, 2π/T, 0) (π/T, 0, π/T, π/T) (π/T, 0, 2π/T, π/T)

(δx
LA(p), δ

y
LA(p), δ

z
LA(p), δ

φ
LA(p)) (0, 0, 0, 0) (π, 0, 0, 0) (3π/2, 0, 0, 0) (π/2, 0, 0, 0) (3π/2, 0, 0, π/2) (0, 0, 0, 0)

(ρx
RA(p),ρ

y
RA(p),ρ

z
RA(p),ρ

φ
RA(p)) (0, 0, 0, 0) (SS

R/2, 0,HS
R,φR) (SG

L /4, 0,φR) (SG
R /4, 0,HG

R ,φR) (SE
L /2, 0,φR) (0, 0, 0, 0)

(ωx
RA(p),ω

y
RA(p),ω

z
RA(p),ω

φ
RA(p)) (π/T, 0, 2π/T, 0, 0) (π/T, 0, π/T, π/T, π/T) (π/T, 0, 2π/T, π/T, π/T)

(δx
RA(p), δ

y
RA(p), δ

z
RA(p), δ

φ
RA(p)) (0, 0, 0, 0) (0, 0, 0, 0) (π/2, 0, 0, 0) (3π/2, 0, 0, 0) (π/2, 0, 0, π/2) (0, 0, 0, 0)
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Figure 14. Trajectories and footprints with turning directions: (a) CoM trajectories; (b) left ankle
trajectories; (c) right ankle trajectories; (d) footprint of the humanoid robot.

5. Learning the Straightforward Gait Pattern

In this paper, a flat terrain was adopted for the humanoid robot to learn the straightforward
gait pattern. Most gait patterns are designed assuming an ideal situation, where the mechanism and
motors are working well. However, the long-term operation of the humanoid robot may result in
mechanism error and motor backlash. Moreover, the real environment also cause the humanoid robot
to exhibit some unexpected behaviors. As shown in Figure 15, the target region (yellow area) was
placed in front of the robot and the robot started from the initial position (green area). In an ideal
situation, the humanoid robot could walk straight to reach the target region, as shown in Figure 15a. In
a realistic situation, the humanoid robot could not walk straight and could not reach the target region,
as shown in Figure 15b. Hence, the Q-learning algorithm was adopted to adjust the turning direction
φ, allowing the robot to walk straight to reach the target region from the initial position according to
the environmental information.
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The Q-learning algorithm is a well-known model-free reinforcement learning method, and it
employs the concept of the Markov decision process (MDP) with finite state and action [15,22]. An
optimal policy can be learned by using Q-learning to maximize the expected reward [14]. During
the learning process, an action is taken by an agent and interacts with the environment for one
state to another state. After taking an action a for state s, the policy can be updated through an
action-value function Q(s, a). A Q-table is composed of Q-values which are designed and evaluated by
the action-value function Q(s, a) for the agent. The Q-values with state s and action a are updated as
follows [12,14,16]:

Q(s, a) = Q(s, a) + α

r + γ max
a′

Q(s′, a′) −Q(s, a)

, (19)

where α and γ are the learning rate and discount factor, respectively, r is the reward, which can be
evaluated after taking action a for state s, s′ is the next state after taking action a for state s, and
maxQ(s′, a′) denotes the maximum future Q-value, while ε-greedy is set to choose a random action.
The pseudo-code of the Q-learning algorithm is shown in Table 4.

Table 4. Pseudo-code of the Q-learning algorithm.

Algorithm: Q-learning Algorithm.

Initialize Q(s, a) arbitrarily
Repeat (for each episode):

Initialize s
Repeat (for each step of episode):

Choose a from s using policy derived from Q(e.g., ε-greedy)
Take action a, observe r, s′

Q(s, a)← Q(s, a) + α

r + γ max
a′

Q(s′, a′) −Q(s, a)


s← s′

Until s is terminal

The proposed learning framework with the Q-learning algorithm is shown in Figure 16. The
FPGA chip allowed the agent to learn the straightforward gait pattern, and the automatic training
platform worked to follow and train the robot. In order to adjust the turning direction φ using the
Q-learning algorithm, three elements of the Q-learning algorithm were defined and designed to update
the Q-values of the Q-table: (1) state (s), the environmental information measured by the infrared
sensors installed on the automatic training platform to offer the position of the humanoid robot in the
training field; (2) action (a), the turning direction φ selected according to state s for the gait pattern
of the humanoid robot; (3) reward (r), the learning guideline dependent on state s and action a to
strengthen or weaken the selected action.
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5.1. State for the Straightforward Gait Pattern

In the learning process, the automatic training platform was adopted not only for supervision to
protect the humanoid robot, but also to obtain the current environmental information of state s required
by the Q-learning algorithm. As shown in Figure 17, there were 60 total states of the coordinate system
in the training field. The green area denotes the initial position, i.e., the start point of the robot. The
yellow region denotes the target region that needs to be reached from the initial position after passing
the blue line, which denotes the target distance. Similarly, the red color denotes the danger regions or
the boundary of the automatic training platform which the robot cannot reach. These 60 states can be
used to present the current position of the robot in the training field. The states can be obtained as
follows:

s = 12 ∗ dy + dx + 1, (20)

where dx and dy are the x-axis and y-axis distances of the robot in the training field measured using the
two infrared sensors.
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5.2. Action for the Straightforward Gait Pattern

In order to reach the target region from the initial position, the turning direction φ of the humanoid
robot was designated as action a by the Q-learning algorithm. There were a total of 9 actions that could
be selected, as shown in Table 5. Instead of the value 0, four levels labeled minor (value 1), middle
(value 2), major (value 4), and urgent (value 7) were designed to allow the robot to walk straight to the
target region. These four levels included positive (+) and negative (−) values to realize the turning left
direction and turning right direction for the robot, as shown in Figure 18, while the value 0 represented
walking straight. However, only one action a could be selected based on the obtained state s to estimate
an appropriate policy in the training field.
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Table 5. Actions of the Q-learning algorithm.

Type Actions

φ(degree)) −7 −4 −1 −2 0 +1 +2 +4 +7
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5.3. Reward for the Straightforward Gait Gattern

In the learning process, after a selected action a is taken by an agent and interacts with the
environment, a reward r can be returned to the agent. The learning guideline offered a reward to
implement the straightforward gait pattern. If a good reward was returned, the selected action was
strengthened. Similarly, if a bad reward was returned, the selected action was weakened. Hence, the
reward was used to update the policy. The positive and negative rewards were respectively designated
in the target region and danger region. In this way, the humanoid robot was attracted or repelled to
achieve the straightforward gait pattern. In addition, the time of one learning process t was involved
in the reward for the humanoid robot to walk approximately in a straight line and reach the target
region, as shown in Figure 19. The reward can be established as follows:

r =


60/t, i f achieve target region

0, otherwise

−1, i f achieve danger region

, (21)

where t is the time of one learning process and it is greater than 0.Electronics 2019, 8, x FOR PEER REVIEW 17 of 23 
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6. Experimental Results

The performance of the proposed learning framework is illustrated in this section. The
straightforward gait pattern was learned for the humanoid robot using an FPGA chip and an
automatic training platform in a training field. The real learning process of the proposed learning
framework is demonstrated with four states in Figure 20. In the start state, the humanoid robot was
suspended and then slowly lowered by the automatic training platform in the initial position, as shown
in Figure 20a,b. In the operation state, the humanoid robot was followed by the automatic training
platform when walking from the initial position to the front coordinate of the training field, as shown
in Figure 20c,d. In the end state, the humanoid robot reached the end position and then was pulled up
by the automatic training platform, as shown in Figure 20e,f. In the return state, the humanoid robot
was returned by the automatic training platform to the initial position, as shown in Figure 20g,h. The
turning direction was adjusted by the Q-learning algorithm and the walking path of the humanoid
robot could also be recorded in this learning process.
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Figure 20. Snapshot of the one learning process: (a) robot is suspended by the automatic training
platform in the start state; (b) robot is lowered by the automatic training platform in the start state;
(c) automatic training platform moves forward to follow the robot in the operation state; (d) automatic
training platform moves forward and right to follow the robot in the operation state; (e) robot is in the
danger region and is followed by the automatic training platform in the end state; (f) robot is pulled up
by the automatic training platform in the end state; (g) automatic training platform goes back in the
return state; (h) automatic training platform is at the initial position in the return state.

Based on the proposed learning framework, there were a total of 594 episodes executed to learn
the straightforward gait pattern for the humanoid robot. The target region, with a center of 229.5 cm,
59.5 cm, was located in front of the initial position (25.5 cm, 59.5 cm) where the humanoid robot began
walking in each episode. The target distance was where the x-coordinate of the training field was
221 cm. In the learning process, an episode was terminated when the humanoid robot reached the
danger region or the target region. The Q-table could be updated by selecting the turning direction
according to the position of the robot in the training field. The walking paths of the humanoid robot in
these 594 episodes were recorded to analyze the learning process, and they could be divided into three
stages: (1) initial stage, (2) middle stage, and (3) final stage, as shown in Figures 21–23.
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6.1. Initial Stage of the Learning Process

Episodes 0 to 200 represented the initial stage of the learning process, as shown in Figure 21.
Episode 0 shows that the humanoid robot could only walk in a straight line to approximately half of
the target distance, as shown in Figure 21a. After a few learning processes, episode 81 shows that the
humanoid robot could reach the target region, as shown in Figure 21b. However, most episodes in
the initial stage, such as episodes 145 and 195, show that the humanoid robot still could not reach the
target distance, as shown in Figure 21c,d.

6.2. Middle Stage of the Learning Process

Episodes 201 to 400 represented the middle stage of the learning process, as shown in Figure 22.
Episode 247 shows that the humanoid robot could gradually reach over half of the target distance, as
shown in Figure 22a. After a few learning processes, episode 290 shows that the humanoid robot could
reach the target region, as shown in Figure 22b. However, most episodes in the middle stage, such as
episodes 344 and 386, show that the humanoid robot still could not reach the target region, as shown in
Figure 22c,d.

6.3. Final Stage of the Learning Process

Episodes 401 to 594 represented the final stage of the learning process, as shown in Figure 23.
Episode 431 shows that the humanoid robot could gradually approach the target region, as shown in
Figure 23a. After a few learning processes, episode 466 shows that the humanoid robot could reach the
target region, as shown in Figure 23b. Moreover, most episodes in the final stage, such as episodes
546 and 594, show that the humanoid robot could not only reach the target region, but also walk
approximately in a straight line, as shown in Figure 23c,d. Hence, the straightforward gait pattern was
learned in this stage.

The recorded walking path could be analyzed based on the walking distance and the lateral
offset. The walking distance was denoted by the horizontal length along the x-coordinate from the
initial position to the end position. The lateral offset distance was the offset length compared with
the straightforward line representing the walking distance. In the initial stage, the average walking
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distance was 95.4204 cm, which was far from the target region, and the average lateral offset distance
was 22.8071 cm, which was also far from a straight line during this walking distance. In the middle
stage, the average walking distance was 100.0183 cm, which approached the target region, and the
lateral offset distance was 21.0969 cm, which also approached a straight line during this walking
distance. In the final stage, the average walking distance was 148.7788 cm, which was closer to the
target region, and the lateral offset distance was 14.8387 cm, which was closer to a straightforward
line during this walking distance, within a unit coordinate of the training field. The detailed average
experimental results are shown at each stage in Table 6. The final Q-table of the straightforward gait
pattern is shown in Table 7.

Table 6. Average experimental results at each stage (unit: cm).

Type Initial Stage Middle Stage Final Stage

Walking distance 95.4204 100.0183 148.7788

Lateral offset distance 22.8071 21.0969 14.8387

Table 7. Final Q-table of the straightforward gait pattern.

a
−7 −4 −2 −1 0 +1 +2 +4 +7

s

1 (0,0) 0.0000 −0.0036 −0.1000 0.0000 −0.0100 −0.0100 0.0000 −0.0100 0.0000

2 (1,0) −0.2163 −0.2943 −0.1179 −0.1179 −0.2943 −0.2159 −0.2214 −0.1259 −0.2159

3 (2,0) −0.2238 −0.2238 −0.3705 −0.2416 −0.2537 −0.2946 −0.3410 −0.2455 −0.2026

4 (3,0) −0.2061 −0.3014 −0.3648 −0.2059 −0.2323 −0.2934 −0.2922 −0.2148 −0.1293

5 (4,0) −0.2114 −0.2447 −0.3619 −0.3430 −0.3063 −0.4362 −0.3648 −0.3627 −0.2053

6 (5,0) −0.2943 −0.2943 −0.2027 −0.4102 −0.3646 −0.3573 −0.2943 −0.2789 −0.1967

7 (6,0) −0.1161 −0.2872 −0.2156 −0.2140 −0.2228 −0.2872 −0.2175 −0.1076 −0.2051

8 (7,0) −0.0997 −0.2253 −0.2232 −0.2159 −0.2416 −0.1361 −0.1107 −0.1090 −0.1090

9 (8,0) −0.1178 −0.2943 −0.3159 −0.2328 −0.3475 −0.4236 −0.2872 −0.2657 −0.1130

10 (9,0) −0.2871 −0.3506 −0.4298 −0.3579 −0.2632 −0.3454 −0.2652 −0.4384 −0.1090

11 (10,0) −0.1981 −0.2872 −0.2872 −0.2800 −0.2863 −0.2010 −0.2943 −0.4675 −0.1090

12 (11,0) −0.1090 −0.4238 −0.4352 −0.2080 −0.1981 −0.2872 −0.2800 −0.1277 −0.1089

13 (0,1) −0.0004 −0.0005 −0.0017 −0.0012 −0.0010 −0.0005 −0.0009 −0.0012 −0.0010

14 (1,1) −0.0052 −0.0215 −0.0251 −0.0249 −0.0222 −0.0070 −0.0055 −0.0074 −0.0216

15 (2,1) −0.0119 −0.0150 −0.0092 −0.1018 −0.0112 −0.0337 −0.0430 −0.0057 −0.0103

16 (3,1) −0.0326 −0.0175 −0.0197 −0.0323 −0.0133 −0.0409 −0.0467 −0.0901 −0.0250

17 (4,1) −0.0230 −0.0184 −0.0237 −0.0232 −0.0442 −0.0548 −0.0243 −0.0331 −0.0130

18 (5,1) −0.0016 −0.0098 −0.0028 −0.0019 −0.0197 −0.0204 −0.0355 −0.0417 −0.0004

19 (6,1) −0.0018 −0.0231 −0.0036 −0.0010 −0.0036 −0.0010 −0.0012 −0.0017 −0.0024

20 (7,1) −0.0016 −0.0023 −0.0022 −0.0076 −0.0104 −0.0029 −0.0157 −0.0040 0.0002

21 (8,1) −0.0047 −0.0200 −0.0639 −0.0172 −0.0229 −0.0507 −0.0405 −0.0312 0.0008

22 (9,1) −0.0002 −0.0370 −0.0339 −0.0793 −0.0331 −0.0406 −0.0236 −0.0804 0.0000

23 (10,1) 0.0000 −0.0023 −0.0100 −0.0017 −0.0370 −0.0362 0.0000 0.0007 0.0000

24 (11,1) −0.1981 −0.0100 −0.0100 −0.0500 −0.0099 −0.1323 −0.2080 −0.1000 0.0000

25 (0,2) −0.0721 −0.2001 −0.0729 −0.0009 −0.0003 −0.0005 −0.0002 0.0005 −0.0010

26 (1,2) −0.0002 −0.0007 −0.0009 −0.1601 −0.0003 −0.0006 0.0011 −0.1999 −0.0002
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Table 7. Cont.

a
−7 −4 −2 −1 0 +1 +2 +4 +7

s

27 (2,2) −0.0009 −0.0021 −0.0006 −0.0016 −0.0026 −0.0009 0.0019 −0.0003 −0.0006

28 (3,2) 0.0000 −0.0011 0.0026 −0.0010 −0.0012 −0.0011 −0.0018 −0.0010 −0.0012

29 (4,2) 0.0000 0.0001 −0.0001 0.0000 −0.0001 0.0000 −0.0020 −0.0021 0.0000

30 (5,2) 0.0000 −0.0008 −0.0002 0.0011 0.0000 0.0012 0.0000 0.0028 0.0000

31 (6,2) 0.0000 0.0011 0.0009 0.0000 0.0011 0.0031 0.0000 0.0000 0.0000

32 (7,2) 0.0000 0.0018 −0.0014 0.0008 0.0036 0.0000 0.0009 0.0000 0.0000

33 (8,2) 0.0005 0.0002 0.0007 0.0000 0.0000 0.0003 0.0003 0.0028 0.0000

34 (9,2) 0.0000 0.0002 0.0016 0.0043 0.0059 0.0130 0.0000 0.0000 0.0000

35 (10,2) 0.0090 0.0000 0.0000 0.0000 0.0000 0.0000 0.1908 0.0000 0.0774

36 (11,2) 0.0000 0.0910 −0.0001 0.0000 −0.0361 −0.0003 0.0000 0.6387 0.0628

37 (0,3) 0.0000 0.0000 0.0000 −0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

38 (1,3) −0.0017 −0.0001 −0.0025 0.0000 0.0000 −0.0016 −0.0001 −0.0001 −0.0001

39 (2,3) −0.0008 −0.0008 −0.0014 −0.0022 0.0002 −0.0017 −0.0007 −0.0016 −0.0007

40 (3,3) −0.0001 0.0011 −0.0008 −0.0005 −0.0009 −0.0007 −0.0008 −0.0046 −0.1000

41 (4,3) −0.0006 −0.0034 −0.0008 0.0003 0.0018 −0.0036 −0.0002 −0.0014 −0.0006

42 (5,3) 0.0000 0.0008 0.0000 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000

43 (6,3) 0.0000 0.0000 0.0026 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

44 (7,3) 0.0000 0.0000 0.0026 0.0000 0.0000 0.0000 0.0000 0.0000 −0.0100

45 (8,3) 0.0000 0.0001 0.0000 0.0000 0.0037 0.0001 0.0000 0.0000 0.0000

46 (9,3) 0.0000 0.0000 0.0000 0.0000 −0.0075 0.0000 0.0000 0.0087 0.0000

47 (10,3) 0.0000 0.0015 0.0000 0.0324 0.0000 0.0000 −0.0090 −0.0009 0.0000

48 (11,3) −0.0100 −0.0100 −0.1981 −0.0100 −0.0100 −0.1090 0.0819 −0.1000 −0.1090

49 (0,4) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

50 (1,4) −0.0100 −0.0100 −0.1089 −0.1008 −0.0197 −0.0199 −0.1022 −0.0100 −0.0100

51 (2,4) −0.0173 −0.0199 −0.1156 −0.0989 −0.0284 −0.1090 −0.1179 −0.0986 −0.0199

52 (3,4) −0.0093 −0.0100 −0.1066 −0.0181 −0.0485 −0.2078 −0.2061 −0.0100 −0.1089

53 (4,4) −0.2158 −0.1138 −0.2159 −0.1056 −0.2154 −0.1154 −0.1081 −0.1146 −0.1090

54 (5,4) −0.0100 −0.0907 −0.1088 −0.1000 −0.1014 −0.1000 −0.0100 −0.1000 −0.0100

55 (6,4) −0.0100 −0.1000 −0.0100 −0.0179 −0.1511 −0.0090 −0.0100 −0.0073 −0.0100

56 (7,4) 0.0000 0.0000 0.0000 0.0000 −0.0100 −0.0100 0.0000 −0.1000 −0.0081

57 (8,4) −0.0100 0.0002 0.0000 −0.0100 −0.0100 −0.1900 −0.0100 −0.0100 0.0000

58 (9,4) 0.0000 0.0000 0.0000 0.0000 −0.0100 −0.0001 −0.1000 −0.0006 0.0000

59 (10,4) −0.1000 −0.1008 −0.0100 −0.1000 −0.1089 −0.0100 −0.0100 −0.0100 −0.1000

60 (11,4) −0.0100 −0.1000 −0.1000 −0.1000 −0.0199 −0.0100 0.0000 −0.1000 −0.0100

7. Conclusions

In this paper, the Q-Learning algorithm was applied to learn a straightforward gait pattern for
a humanoid robot based on an automatic training platform. There were four main contributions
of this research. Firstly, an automatic training platform, which was an original idea, was proposed
and implemented so that the humanoid robot could learn the straightforward walking gait in a real
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situation. Moreover, it could be used to reduce human resources and protect the humanoid robot in
the training process. Secondly, a learning framework was proposed for the humanoid robot based on
the proposed automatic training platform. Thirdly, an oscillator-based gait pattern was designed and
combined with the proposed learning framework to reduce the number of learning parameters and
speed up the learning process. Lastly, the Q-learning algorithm was applied in the proposed learning
framework to allow the humanoid robot to learn the straightforward walking gait in a real situation.
The proposed learning framework and automatic training platform were completely tested on a real
small-sized humanoid robot, and an experiment was set up to verify its performance. In the learning
process, the walking distance kept increasing, which shows that the humanoid robot could learn to
walk toward the target region. Similarly, the lateral offset distance kept decreasing, which represents
that the humanoid robot could walk in a straightforward pattern. From the experimental results of
successful bipedal locomotion with a straightforward gait pattern, the feasibility of the proposed
learning framework and automatic training platform could be validated. Hence, the desired behavior
could be learned for the intrinsically unstable humanoid robot using the proposed learning framework,
which could reduce human resources by using the automated learning process based on the proposed
automatic training platform. The main purpose of this paper was to enable the robot to learn the
straightforward gait pattern. When the robot is able to walk straight, it can then be combined with
localization algorithms, such as Simultaneous Localization And Mapping (SLAM) and particle filter,
in the future. The successfully learned straightforward gait pattern can be used in the localization
algorithm to enable the robot to actually reach a specified position. Moreover, deep reinforcement
learning can be designed and deployed in the proposed learning framework via the FPGA chip.
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