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Abstract: Software Defined Networking (SDN) as an innovative network paradigm that separates
the management and control planes from the data plane of forwarding devices by implementing both
the management and control planes at a logically centralized entity, called controller. Therefore, it
ensures simple network management and control. However, due to several reasons (e.g., deployment
cost, fear of downtime) organizations are very reluctant to adopt SDN in practice. Therefore, a viable
solution is to replace the legacy devices by SDN devices incrementally. This results in a new network
architecture called hybrid SDN. In hybrid SDN, both SDN and legacy devices operate in such a way
to achieve the maximum benefit of SDN. The legacy devices are running a traditional protocol and
SDN devices are operating using Open-flow protocols. Network policies play an essential role to
secure the entire network from several types of attacks like unauthorized access and port/protocol
control. In a hybrid SDN, policy implementation is a tedious task that requires extreme care and
attention due to the hybrid nature of network traffic. Network policies may be implemented at
various positions in hybrid SDN, e.g., near the destination or source node, and at the egress or ingress
ports of a router. Each of these schemes has some trade-offs. For example, if policies are implemented
near the source nodes then each packet generated from the source must pass through the filter and,
thus, requires more processing power, time, resources, etc. Similarly, if policies are installed near
the destination nodes, then a lot of unwanted traffic generated causing network congestion. This
is an NP-hard problem. To address these challenges, we propose a systematic design approach to
implement network policies optimally by using decision tree and K-partite graph. By traversing all
the policies, we built up the decision tree that identifies which source nodes can communicate with
which destination. Then, we traverse the decision tree and constructs K-partite graph to find possible
places (interfaces of the routers) where ACL policies are to be implemented based on the different
criteria (i.e., the minimum number of ACL rules and the minimum number of transmissions for
unwanted traffic). The edge weight represents the cost per criteria. Then, we traverse the K-partite
graph to find the optimal place for ACL rules implementation according to the given criteria. The
simulation results indicate that the proposed technique outperforms existing approaches in terms of
computation time, traffic optimization and successful packet delivery, etc. The results also indicate
that the proposed method improves network performance and efficiency by decreasing network
congestion and providing ease of policy implementation.

Keywords: Hybrid SDN; Policy Implementation; Graph Computation; Traffic Optimization

1. Introduction

In a traditional computer network, both control and data planes are vertically implemented at
each forwarding device, thus, a traditional computer network is distributed in nature. To control a
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traditional computer network, the operators usually implement fine-grained network policies known
as Access Control Lists (ACL) at the network interfaces of switches/routers [1,2] by using low-level
commands. The operators manually plane, design, and then implement these ACL policies according
to network requirements. The present approach for implementing ACL is very complicated and
error-prone [3–5]. A misconfiguration can drastically degrade the network performance by enabling
unauthorized users to access confidential resources [6]. Moreover, it is also a costly process requiring a
team of 10–30 members to handle a network of a hundred switches [7].

More recently, Software Defined Networking (SDN) has emerged as a new network architecture
which decouples control plane from data plane by implementing a control plane at a logically centralized
controller [8]. This induces that SDN has a centralized architecture. In SDN, the network operator can
easily control packet forwarding by implementing ACL policies at the controller [9–11]. In this way,
specific applications can be used to configure switches automatically for packet forwarding and policy
implementation that eliminates the path misconfigurations [12] and other security attacks [13]. By using
an OpenFlow protocol, network operators can implement action like forward, drop and modification
of packet header [14], etc., as well as flow entries on the switches to drop the malicious packets based
upon the network policy.

Nowadays, SDN is not widely adopted by organizations in practice except for some big companies
like Google [15,16], Microsoft [17], VMware [18].

The main reason is the large budget that is required to establish a new network infrastructure from
scratch [19], and another reason is fear of downtime when new infrastructure is being installed [20].
To accommodate these problems, an alternate solution is to deploy a limited number of OpenFlow
switches alongside the legacy switches [21]. The remaining legacy switches can gradually be replaced
with OpenFlow switches and finally realizing entire SDN deployment. A network having both types
of network devices (i.e., OpenFlow switches and legacy switches) is known as a hybrid SDN [19,22].
In addition to the above, the following advantages can be achieved by using hybrid SDN:

1. As already discussed, the SDN establishment is costly. A large amount is needed to buy new
SDN devices. Even after the establishment of pure SDN, network operators, administrators,
and staff need the training to develop, configure and operate the SDN which also requires a large
budget [23]. Hybrid SDN can easily relax these budgets.

2. By using Hybrid SDN, some benefits of the SDN model can adhere to [24]. For example, in an
Internet Service Provider (ISP), there are millions of forwarding entries while OpenFlow network
switches can support tens of thousands of forwarding entries [24]. In an ISP distribution network,
OpenFlow devices can be used while the ISP access network can use legacy network devices
as shown in Figure 1. In this way, ISP can observe a hybrid SDN in which OpenFlow switches
are deployed in the distributed network to obtain the benefits of pure SDN while millions of
forwarding entries are handled in the access network by using the legacy devices.

3. SDN provides fine-grained control for data traffic flows. If we require fine-grained control for a
small portion of the network, then hybrid SDN can be deployed by using SDN devices in a small
portion of the network [24]. For example, if a company, having network infrastructure shown in
Figure 2, needs fine-grained control for the small part of the network in as indicated using the
blue box, then only that portion will be upgraded to an SDN.

4. In case of in-band connection between SDN switches and the SDN controller and connectivity
among SDN controllers, traditional routing protocols are very useful. Thus, by using a hybrid
SDN, an SDN controller can be released from these tasks that can be handled by traditional
protocols effectively.

5. The SDN infrastructure has recently appeared. OpenFlow switches are not as mature as traditional
switches. So, network administrators vacillate to replace traditional network device with SDN
devices at once. Hybrid SDN can comfort the transition from traditional network devices to
SDN devices. For instance, Google [16] has deployed SDN in several steps over several years for
management and control of their data centers.
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6. In some scenarios, two SDNs are interconnected by traditional network switches. For these
scenarios, hybrid SDN is required to allocate resources for the SDN interconnection suitably.

Figure 1. An Example of hybrid SDN scenario: OpenFlow switches are deployed in the distribution
network to obtain the benefits of SDN while millions of forwarding entries are handled in the access
network by using legacy devices.

Figure 2. Example of hybrid SDN in an enterprise network: The network portion in the blue box needs
fine-grained control and is upgraded to SDN, while the rest of the network continues to operate with
legacy switches.

Network policies, like Access Control List (ACL), control the network behavior and are used
by the operators to specify the network requirements [25,26]. The approach for implementation of
ACL policies is different in SDN and traditional networsk as follows. In a traditional computer
network, the operators usually implement ACL at the interfaces of switches/routers [1,2] by using
low-level commands. The operators manually plan, design, and then implement these ACL policies
according to network requirements. Thus, this approach for implementing ACL is very complicated
and error-prone [3–5]. A misconfiguration can drastically degrade the network performance by
enabling unauthorized users to access confidential resources [6]. Moreover, it is also a very expensive
process requiring a team of 10–30 members to handle a network of hundred switches [7].

In SDN, ACL policies are specified at the controller, and thus, it is easy to do. Due to the different
architecture of hybrid SDN from both SDN and traditional network, hybrid SDN needs new approaches
to implement ACL policies. Recently, we have proposed a tree-based approach to implement the ACL
policies at legacy network devices through an SDN controller in case of a topology change in hybrid
SDNs, the detail of this approach is given in “Related Work”. However, in this approach, a tree is
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computed and traversed for each policy. It causes high processing overhead and large memory for a
network having a large number of policies.

In this paper, we propose a single tree construction and traversal for all policies by reducing the
processing overhead and reducing memory storage. Moreover, ACL policies may be implemented at
the interfaces of legacy network devices in many ways, e.g., near the source nodes, near the destination
nodes, at the egress ports and at the ingress ports [27], etc. All these ways for policy implementation
have some tradeoffs as follows. If policies are implemented near source nodes, then they require
filtration of each packet generated by source nodes. This method incurs extra processing overheads at
the switches are attached directly to the source nodes for the packets that do not contradict with the
policy. Similarly, if policies are implemented near destination nodes, then we require a large number
of implementations according to destination nodes. Furthermore, any change in policy requires much
effort and struggle from network operators. It will be explained through examples in the “Problem
Statement”. Therefore, besides using single tree construction and traversal for all policies, we also
embed the policies in the tree that the overall network performance is improved by reducing the
processing and transmission overheads in the network and avoiding the ACL policies violation.

The rest of the paper is organized as follows. Section 3 presents the problem statement. The detail
of the Proposed Solution is explained in Section 4. In Section 5 Simulation results are presented and
Section 6 concludes the paper.

2. Related Work

In this section, we provide literature related to ACL policy implementation in traditional network,
SDN and hybrid SDN.

2.1. ACL Implementation in Traditional Network

This section provides a thorough overview of the work related to the policy implementation
mechanism in traditional networks. Zhang et al. [28] discuss the implementation of multiple packet
filters like firewall, load balancer, etc., on the network devices to achieve required control and security
of the network. HyperCuts decision trees [29] are used to handle the individual packet filter, but these
are not efficient as a lot of memory is required to store them. In this approach, shared HyperCuts
decision trees are introduced that are used to manipulate multiple packet filters as shown in Figure 3.
To use shared HyperCuts decision trees, firstly, different packet filters are sorted that share some
common features. Secondly, a machine learning mechanism is used to check which packet filters
can be used in a shred form. For these shared packet filters, shared HyperCuts decision trees are
classified based on a greedy algorithm. Experiment results indicate that shared HyperCuts decision
trees consume less memory. However, the authors do not consider policy traversing optimization.

Diplomat [30] deliberates the problem of increasing number of ACL for network security and
control. It is quite difficult to manage this large number of ACLs. To reduce the number of ACLs,
compression is applied to these ACLs. In this mechanism, higher dimensional target patterns are
transformed into lower dimensional patterns gradually. These patterns are firstly divided into a series
of hyperplanes, then two adjacent hyperplanes are joined by resolving their differences. The differences
are resolved by adding rules where they differ from each other. After this, two planes are merged
into a single plane and this process is repeated for all planes. In the end, a single plane is formed,
and Diplomat then repeats this process for each pattern; finally, a one-dimensional pattern is obtained
that is executed by an existing optimal algorithm.
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Figure 3. Example of Shared HyperCuts tree: (Left) Two separate HyperCuts trees. (Right) The
corresponding shared HyperCuts tree.

2.2. ACL Implementation in SDN

This section provides a thorough overview of the work related to policy implementation
mechanism in Software Defined Networks. Liu et al. [31] proposed a scalable two-layers mechanism
for implementing ACL policies. In the first layer, data packets are divided into different classes and
forwarded to switches according to ACL policies. A class denotes the packets with some common
properties i.e., having the same Destination IP address or same source subnet. Secondly, network
security policies for different classes are deployed on different switches. These two-layer switches
are known as a classified switch, i.e., to classify traffic and filter switch, i.e., to implement policy.
By using this technique, the total number of flow entries are reduced by using the specific class to
install policy. The entire system can be scaled easily by adding more switches and assigning a proper
traffic class. Simulation results indicate that this mechanism is effective for moderate traffic load and
robust. The limitation of this approach is the classification of traffic because traffic behavior changes
dynamically which requires more intelligent traffic classification. Moreover, this technique does not
consider the policy deployment for hybrid SDN.

NetEgg [32] is a programmable framework that facilities the network operators to implement
different network policies to manage the network. It provides flexible and efficient ways to deploy
network policies using example behaviors. In this approach, different example policies are designed
based on the network operator’s response implementing actual policies on the network devices as
shown in Figure 4. An algorithm is used to automatically synthesize policy implementation from these
examples of policies. NetEgg [32] observes the operator’s behavior for the creation of network policies
using time-line and topology. This algorithm infers the states that are required to be maintained to
exhibit the desired behavior as well as the rule to process network packets according to policies. Most
of the examples are taken from the literature to stipulate different policies, and later, these are used
to infer other policies. The model results indicate that implementation scenarios exhibit the example
used for policies. However, the overhead for this implementation is a significant issue that needs to
be lowered.
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Figure 4. NetEgg Design layout using Generic SDN Controller.

In [33], behavior of different distributed routing protocols in traditional networks, such as
OSPF [34] and IS-IS [35], are studied. It is concluded that these are robust and scalable, however, they
lack flexibility. By using a centralized control plane, SDN provides fine-grained routing control and
management. The paper [33] proposes a technique, known as fibbing [36,37], which combines the
advantages of SDN route control and traditional routing protocols. Fibbing offers central control of the
distributed computation of forwarding paths while striving for both flexibility and scalability. Fibbing
introduces fake nodes, fake links, and fake routes to achieve load balancing. Through this fibbing,
the SDN controller can persuade the legacy routers into computing desired paths by presenting the
routers with carefully crafted network topologies. Fibbing does not require the installation of low-level
rules in the legacy forwarding devices. Instead, the legacy routers simply run the legacy routing
protocols based on their link state knowledge (which includes the fake nodes and links). A limitation
of this approach is the computational effort for finding the fake nodes and links. If the network
topology changes, then the fake nodes and links need to be recalculated.

2.3. ACL Implementation in Hybrid SDN

Fayazbakhsh et al. [12] discussed that network traffic is modified by the dynamic and opaque
behavior of legacy switches that violates the two main promises of SDN. (i) ORIGIONBINDING strong
binding between packet and its “origin” means packet generator (ii) PATHFOLLOWPOLICY Explicit
policies should determine the paths that packets follow. Network Address Translation (NAT) and load
balancing applications modify the packet headers that violate the ORIGIONBINDING. For example,
the response served from a proxy’s cache may violate PATHSFOLLOWPOLICY. To cope with this
limitation, the SDN paradigm is extended to adopt FlowTags architecture [38]. FlowTags envisages
simple extensions to middleboxes to add tags that are carried in packet headers. SDN switches use
these tags to modify the flow entries for packet forwarding. FlowTags implementation requires two
prerequisites: (i) adequate header bits with SDN switch support to match on tags, and (ii) extensions
to middlebox software. These Flowtags enable ACL policy implementation and verification for
middleboxes as well as SDN switches. The limitation of this approach is that Flowtags need to add an
additional component in the middleboxes which is tedious work for vendor-specific devices.

Amin et al. [6] investigated the problems and issues that occurred upon policy implementation
due to a change in topology of the network. These issues may include unauthorized access to data,
restricting access network resources, etc. To handle these problems, an automatic Policy Violation
Detection for Topology Change (auto-PDTC) policy configuration technique is proposed. The network
topology gets updated due to the addition or exclusion of network links or devices in an enterprise
network. These changing topologies severely affect the configurations of network policies that are
implemented on switches or router interfaces. When topology changes, it is time to verify the
effectiveness of network policies to adhere to the organization objectives. Auto-PDTC offers an



Electronics 2019, 8, 604 7 of 28

automatic mechanism that detects the topology change and validates the policies for the respective
interfaces. The change in network topology is computed using the graph difference method. In the
case of topology change, affected interfaces are indicated where policies need to be re-configured.
The limitations of this study [6] are that only a single ACL policy is considered by using tree traversing.
If we have multiple policies, then for each policy, multiple trees need to be traversed. There is a need
to adopt some mechanism to reduce the overhead imposed by these separate tree-traversing method.

It is clear from the above research that optimal policy implementation is not discussed properly
in the literature. It is a big issue because the proper implementation of network policies requires much
effort and determination. It affects the entire network performance as well as switches, routers and
other networking devices efficiency [39]. The following are the research challenges that need to be
addressed to implement policies optimally.

• In case of hybrid SDN, legacy network devices need to be configured for ACL implementation.
There is a need for a mechanism that can automatically enforce commands on legacy devices to
configure policies.

• If there is a large number of nodes to implement policies, then what are the the optimum ways for
policy implementation?

• If there are multiple policies, then these policies cannot be implemented in one go. It needs any
mechanism to simplify these policies so that we can implement these in a single iteration.

• Network Loops may occur when policies are implemented; how to deal with these network loops.
• Due to complex policy implementation, some network nodes may not be reachable.
• During policy implementation, load balancing should be considered, so that no network devices

are overwhelmed.

3. Problem Formulation

There are many ways to implement policies in the entire network, i.e., near the source nodes or
near the destination nodes, and at the ingress ports of devices or at the egress port of devices, etc.
Each implementation has some trade-offs as follows.

3.1. Different Ways of ACL Policy Implementation

i Near the source policy implementation: Near the source policy implementation is more efficient
by blocking the unwanted traffic as generated by the source node; if the source nodes are
distributed then this way of policy implementation requires a large number of ACL policies and,
in turn, causes a longer packet process at switches.
Suppose that a company has an enterprise network shown in Figure 5. This network contains
eight legacy switches LE1-LE-8, and three OpenFlow switches OF1-OF3. Users are connected to
switches, i.e., LE1, LE3, LE5 and LE7, and data centers are connected to switches, i.e., LE2, LE4,
LE6, and LE8 as shown in Figure 5. The company has the network policy, say P1, that the traffic
generated by only subnet A1–A2 is allowed to reach the data center AD1–AD2. Near the source,
policy implementation requires to implement Eight number of policies at the switches LE1, LE3,
LE5 and LE7 that the traffic destined for AD1–AD2 should be blocked as shown in Figure 5. Now
every packet generated by the nodes attached to the switches (LE1, LE3, LE5, LE7) will have to
pass through these policies. Consequently, it causes a longer delay for the packets.

ii Near the destination policy implementation: Continuing with the previous paragraph, we can
implement P1 by using near to the destination policy implementation as follows. We implement
at the egress interface of switch LE2 to allow the packets generated by A1–A2 and to drop all
other packets as shown in Figure 5. This requires only two policies implemented at one switch.
Thus, the packets generated by the nodes attached to the switches LE3 to LE7 will not have to
pass through ACL policies and, subsequently, reducing the packet delay. However, in this case,
unwanted traffic traverse through the entire network. That is, the traffic generated by D1 would
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traverse up to LE2 and then will be dropped here. This consumes more network resources like
bandwidth, energy and processing power on the path from D1 to LE2 as shown is Figure 6 using
a red dotted line.

Figure 5. An example Scenario containing SDN and Legacy switches connected with end Nodes.

Figure 6. An example Scanrio containing SDN and Legacy switches connected with end Nodes.

iii Egress port policy implementation: Similarly, we can implement policies at the egress ports of
the switch LE2 where data centers AD1 and AD2 are attached. In the case, if destination nodes
are less, e.g., 5–10 nodes, then it may be feasible to configure all the ports but if nodes are greater
in number, e.g., more than 100 then it is challenging and sometimes impossible to configure all
the ports for the desired policy. Similarly, any update in that policy is also quite cumbersome
to configure.

iv Ingress port policy implementation: we can implement policies at the ingress port of the switch
LE2 where it is connected with LE1. In this case, we have to implement only two policies to block
the traffic from all other subnets, i.e., B, C, and D, but in case of topology updates, this scheme
may not be more feasible. So, optimum policy implementation is required that has less number
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of rules, on less number of interfaces, stop unwanted traffic as soon as possible, load balancing
strategy for all routers, etc.

3.2. The Formal Technique to Deploy ACL Policies

In a traditional network, ACL policies are implemented manually. There is no formal
algorithm/technique. For hybrid SDN, we have proposed a decision tree based mechanism to install
ACL policies automatically. We had proposed to construct an individual decision tree for each policy
(Amin et al. [6]). For example, we construct a decision tree to implement P1 as shown in Figure 7.
By using this tree traversing policy, P1 is installed at the interface of LE2 and verifies that other data
centers are not accessed by subnet A. Suppose that we have two other ACL policies, say P2 and P3. P2
describe that data centers BD1 and BD2 are only accessed by subnet B nodes, i.e., B1 and B2. This policy
is implemented by using tree traversing explained in Figure 8. Similarly, policy P3 defines that subnet
C nodes, (i.e., C1 and C2) are only allowed to access data centers CD1 and CD2. P3 is implemented
using the tree traversing method explained in Figure 9. To implement all three policies, we need to
construct and traverse three trees. If we have N number of policies, we will have to construct and
traverse N number of trees. This is a more delicate and sluggish way.

Figure 7. Graph traversing for policy P1.
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Figure 8. Graph traversing for policy P2.

Figure 9. Graph traversing for policy P3.
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We are concerned with the implementation of policies on network device interfaces. Related
problems are the implementation of policy, change in policy (how easily we can make updates in
previously implemented policies), adding new policies along with old policies.

We need to minimize the number of ACL policies and unwanted traffic which is a combinatorial
problem. In a combinatorial problem, such subsets of network interfaces are searched where a
minimum number of ACL policies are required, and unwanted traffic is also minimal. We propose
in this paper to construct a decision tree and traverse by using K-partite graphs for all ACL policies.
Moreover, we add the optimization parameter discussed in Section A in the tree.

4. Proposed Solution

To handle the problems discussed in Section 3, we proposed a systematic and efficient way for
implementing multiple ACL policies in hybrid SDN by using a single decision tree with embedding
optimization parameters (as discussed in Section 4.1). We model the hybrid SDN (HN) as (H) = (V, L),
where L is the set of undirected links and V represents the set of vertices, i.e., switches, routers. V
consists of two types of switches, V = (T ∪O) where T is set of traditional (legacy) switches, and O
represents a set of OpenFlow switches. For this network, a path from a source node c to destination
node d such that c 6= d is presented as a set to traversed edges that is represented mathematically
as p(c, d) = c, v1, v2, ...vk, d and where v1, v2...vkε{T ∪O}. To minimize the number of policies and
number of transmissions is a combinatorial problem, in which we must search such combinations of
ports, where a minimum number of policies are required with a minimum number of transitions for
unwanted traffic. Combinatorial problems involve finding a grouping, ordering, or assignment of a
discrete, finite set of objects that satisfies given conditions. Candidate solutions are combinations of
solution components that may be encountered during a solution attempt but need not satisfy all given
conditions. Implementation of P policies on V vertices (switches) involves a set of combinations switch
ports where policies are installed to secure the network. Furthermore, optimum policy implementation
is also an NP-hard problem as there is no polynomial time algorithm to solve this problem. This
problem is NP-hard like the most famous NP-hard problem (the decision subset sum problem) and the
optimization problem of finding the least-cost cyclic route through all nodes of a weighted graph. We
have to adopt the following strategies to implement policies optimally. Let c(v) represent the limit on
the total number of ACL rules that can be configured on a switch v, including all its interfaces and in
both traffic directions.

Minimum Rules Strategy: The operator wants to use a minimum number of rules on all switches
in the network. Let V = V1, V2, V3, ....Vm represents the number of switches, P = P1, P2, P3, .....Pn

represent number of policies, R(Ui) refers to number of rules on U switches to implement Pi where U
6 V ,and U = U1, U2, U3, ....Uk.

Min
n

∑
i=1

m

∑
j=1

l

∑
k=1

R((Pi)(Vj)) (1)

Minimum Unwanted Traffic Strategy: Let Tr indicate the minimum unwanted traffic, it means
that unwanted traffic should not go around the network. It should be dropped as early as possible.
The operator wants to install rules on switches v in such way so that there is a minimum amount of
unwanted traffic generated. Formally:

Min ∑ Tr(v) (2)

In Figure 10, we have shown the overall design of our system by showing the components and
their interaction with the external environment. Efficient policy configuration systems consist of three
main components. The first component is a decision tree construction showing the interconnection
of network devices through links. The second component declares the policies that governed the
data traffic. The third component considers the multiple policies configuration using decision tree
traversing together with the K-partite graph.
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Figure 10. Entire System Model.

4.1. Decision Tree Construction

We compute the topology of a network having both types of devices, i.e., OpenFlow and legacy at
the SDN controller. An OpenFlow device exchanges its link state information with the SDN controller
while the link state information of legacy devices is obtained by reading the configuration file of
legacy devices remotely. This configuration file contains link state information as well as ACL policies
information implemented on the network devices. Hence, after getting the link state information from
both legacy and OpenFlow devices, i.e., switches and routers, we construct an undirected graph H by
populating the set L with the links information and V with the nodes. More specifically, we use the
Algorithm 1 for this purpose, which works as follows. Algorithm 1 shows that a link (also called edge)
is selected from a set of links along with respective vertices and added to the graph H as shown in
Figure 11. After this, another link along with respective vertices is selected and added to the graph H.
This process continues until all links and edges are finished.
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Algorithm 1 Decision Tree Construction

1: Input: L is a set of links, V is a set of vertices
2: Output: Graph H
3: H= 0 // H is empty
4: while the Instance is not solved do
5: Select the link from the L and vertices from V
6: if the edge connects two vertices in disjoint subsets then
7: merge the subsets;
8: add the edge to H;
9: end if

10: if All the subsets are merged then
11: the instance is solved
12: end if
13: end while

Figure 11. Decision Tree for Multiple Policies.
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4.2. Network Policy Representation

Through a 3-tuple <Source IP, Access Policy, Destination IP>, we represent a network-wide policy in
our system. In this tuple, Source IP represents the policy for a packet originated from Source IP, Access
Policy describes the specific actions (like drop (not allowed) or forward (allowed)) for the packet,
and Destination IP represents the policy for the packet with destination address Destination IP. Source
IP and Destination IP can be a particular IP address (like 10.1.1.1, a range 10.0.1.1-10.0.1.3, or wild card
10.0.1.*). Access Policy can be Allowed or Not Allowed. For example, a 3-tuple <10.0.1.1-10.0.1.2,
Allowed, 10.0.4.1-10.0.4.2> means that packets originated from IP address 10.0.1.1-10.0.1.2 are only
allowed to access devices with IP 10.0.4.1-10.0.4.2 and from any other subnet 10.0.4.1-10.0.4.2 cannot
be accessed.
P1 = <10.0.1.1-10.0.1.2,Allowed,10.0.4.1-10.0.4.2>
P2 = <10.0.6.1-10.0.6.2,Allowed,10.0.9.1-10.0.9.2>
P3 = <10.0.12.1-10.0.12.2,Allowed,10.0.13.1-10.0.13.2>
P4 = <10.0.17.1-10.0.17.2,Allowed,10.0.18.1-10.0.18.2>

4.3. Decision Tree Traversing for Multiple ACL Policies

We have constructed a decision tree that represents the entire network topology i.e., switches, end
hosts, routers, etc. We have four policies as discussed in Section 4.2. These policies are implemented
at the network device’s interfaces according to the requirement. Some policies e.g., near the source,
near the destination, implementation schemes are discussed in Problem Statement Section. One
scheme has drawbacks or benefits over other schemes, therefore, none of them is perfect. In near the
source policy implementation scheme, it requires a large number of ACL rules, and more processing
power is required by the network devices to filter the network traffic. In near the destination policy
implementation, the number of ACL rules are also proportional to the number of destination nodes,
and it requires more bandwidth because packets are dropped after traveling the entire network at the
destination nodes, e.g., more unwanted traffic is generated. We need to find such a mechanism which
requires a minimum number of rules as well as minimum unwanted traffic. To implement policies
optimally, we traverse the tree and find such ports by using K-partite graph traversing. We formed a
K-partite Figure 12 for each policy. By computing the shortest path on K-partite graph optimal way of
policy, a placement is found.

Figure 12. K-partite Graph that shows the different combinations of switch port to install ACL policies.
Shortest path for entire K-partite graph is calculated that gives the optimal policy implementation points.

We traverse the decision tree by using a K-partite graph. In this K-partite graph shown in
Figure 12, policies P1, P2, P3, etc., are at the leftmost side of the graph while on the other side partite
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is formed by using appropriate group number, e.g., G1, G2, G10, etc. The values on the edges of the
links represent the number of rules required to implement ACL policy on the respective interface.
The tree is traversed by using the Algorithm 2. In this Algorithm 2, firstly we move to the destination
node in the tree according to given ACL policy then we start traversing the tree by exploring all the
interfaces at each node. If we find source nodes then no rule is installed otherwise we install two
for each interface. If there are multiple outgoing interfaces of the switches then rules are installed
collectively on these interfaces.

We can explore, the different policy implementation ways by traversing the decision tree.
Suppose we have a policy P1 = < 10.0.1.1-10.0.1.2, Allowed, 10.0.4.1-10.0.4.2> in which first tuple
i.e., 10.0.1.1-10.0.1.2 represents the Source IP and last tuple i.e., 10.0.4.1-10.0.4.2 represents the
Destination IP address. According to this policy, only Source IP address, i.e., 10.0.1.1-10.0.1.2 is
allowed to access respective Destination IP and all other subnets are not allowed to access this
destination. To explore all interfaces for policy implementation, we traverse the decision tree DT
by using this policy. Policy can be implemented at a single interface or at multiple interfaces to
secure the Destination IP. We form the groups based on the set of interfaces where policies can be
implemented. So, these groups are formed on the basis of rules implementation, e.g., a group can
have a single interface or multiple interfaces according to the policy. For example, group G1 represent
the Destination IP that contains two IP addresses, i.e., 10.0.4.1-10.0.4.2, group G2, G3 contains single
IP address, i.e., 10.0.2.2., 10.0.2.1 respectively. We need to calculate the number of rules ctrACL and
number unwanted transmissions ctrtrans to implement the policy for these respective groups. G is an
adjacency list that contains the group’s numbers against ctrtrans and ctrACL values. In the end, this
adjacency list forms a K-partite graph.

We traverse the decision tree to find the node linked with the interfaces having Destination IP,
i.e., 10.0.4.1-10.0.4.2, node LE2 is the matching one. After finding the matching node, we find all
the interfaces of LE2, i.e., (10.0.4.1, 10.0.4.2, and 10.0.2.2). For destination IP, i.e., 10.0.4.1-10.0.4.2
group G1 is formed, and two rules are implemented at each interface thus, ctrtrans, and ctrACL values
are counted for G1 as ctrACL = 4 and ctrtrans = 74 as shown in Figure 13a. Actually, ctrtrans value is
calculated from leaf nodes by using a recursive function. Hence we denote the final value. Now
we have single interface 10.0.2.2 remaining, group G2 is formed, and two rules are implemented
thus, ctrACL = 2 and ctrtrans = 74 for this group as shown in Figure 13b. We move to next node
LE1, and two rules are implemented at the connecting interface and group G3 is formed with values
ctrACL = 2 and ctrtrans = 62 as indicated in Figure 13c. There are three other interfaces, i.e., 10.0.1.1,
10.0.1.2, and 10.0.3.1, where interfaces 10.0.1.1 and 10.0.1.2 are connected with source IP, so no rule is
implemented on these interfaces. Only single interface 10.0.3.1 is remaining, so two rules are installed,
and group G4 is formed, and ctrACL = 2 and ctrtrans = 62 for this group and an edge is added to
K-partite graph as shown in Figure 13d. Similarly, other interfaces are processed, and groups G5,
G6, and G7 are added to the K-partite graph shown in Figure 13d. Next we reach node LE2 that is
connected to multiple interfaces, i.e., 10.0.6.1, 10.0.6.2, 10.0.7.1 and 10.0.8.1, where interfaces 10.0.6.1
and 10.0.6.2 are end nodes so a group G8 is formed and two rules are implemented at each interface
thus, ctrtrans, and ctrACL values are counted for G8 as ctrACL = 4 and ctrtrans = 2 as shown is Figure 13e.
For other interfaces i.e., 10.0.7.1 and 10.0.8.1 an individual group is formed for each interface i.e., G9
and G10 ctrACL = 2 for each group while ctrtrans = 4 for G9 and ctrtrans = 32 for G10. It is noted that
we have to install ACL policies collectively on all these groups so in K-partite graph these groups are
added in series as shown in Figure 13e.
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Algorithm 2 Tree Traversing

1: Input:
2: P = P1, P2, P3, ..., Pn is set of network policies
3: DT is the decision tree constructed in Section 4.1
4: G is a adjacency list that contains the groups numbers Gi where i=0,1, 2,...,k against ctrtrans and

ctrACL values where ctrtrans and ctrACL indicate the transmissions and rules count.
5: We take a network policy, say Pi <Source IP, Access Policy, Destination IP>. For example, we take

P1 = < 10.0.1.1-10.0.1.2, Allowed, 10.0.4.1-10.0.4.2>
6: We take Destination IP of Pi. In our example Destination IP of P1, it is 10.0.4.1-10.0.4.2.
7: while Node in DT do
8: if node in destination list then
9: Find all similar nodes and create a group Gi

10: Count number of ctrACL and ctrtrans for Gi
11: Pi is connected to Gi forming a K-partite graph
12: if Other Interfaces exist then
13: if Interface in Source IP list then
14: No rule installed
15: else
16: if Single Interface then
17: Group Gi is formed for this interface
18: Count number of ctrACL and ctrtrans for Gi
19: Gi is added to K-Partite graph
20: end if
21: if Multiple Interfaces then
22: Take all interfaces jointly, count two rules for each
23: For each interface separate group Gi is formed
24: Count number of ctrACL and ctrtrans for Gi
25: All Gi is added to K-Partite graph in connecting each other in a series
26: end if
27: end if
28: end if
29: else
30: if Node is leaf then
31: Explore other similar nodes (leaves) connected to the switch
32: if Nodes Interfaces in Source IP list then
33: No rule installed
34: else
35: Create group Gi of all similar leaves connected to the switch
36: Count number of ctrACL and ctrtrans for Gi
37: Gi is added to K-Partite graph
38: end if
39: end if
40: if Other Interfaces exist then
41: if Single Interface then
42: Group Gi is formed for this interface
43: Count number of ctrACL and ctrtrans for Gi
44: Gi is added to K-Partite graph
45: end if
46: if Multiple Interfaces then
47: Take all interfaces jointly, count two rules for each
48: For each interface separate group Gi is formed
49: Count number of ctrACL and ctrtrans for Gi
50: All Gi is added to K-Partite graph in connecting each other in a series
51: end if
52: end if
53: end if
54: end while
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(a) (b) (c)

(d) (e)

Figure 13. Step by step formation of K-partite graph. (a) A group G1 is formed that is attached with
node P1 forming a K-partite graph; (b) A group G2 is formed that is attached with node P1 forming
a K-partite graph; (c) A group G3 is formed that is attached with node P1 forming a K-partite graph;
(d) Multiple groups G4–G7 are added to graph forming a K-partite graph; (e) Groups G8, G9 and G10
are added in the K-partite graph as a series of edges for collective ACL implementations.

For multiple choices, we add edges in K-partite graph in parallel format, i.e., G9, G11, and G12.
For the collective implementation of ACL policies edges are added in series form, i.e., G8, G9, G13.
In this way, all the interfaces are processed, and finally, a complete K-partite graph emerges as shown
in Figure 12.

In K-partite graph, each link has two values, i.e., ctrACL and ctrtrans; by adding these values
a single link value is computed as shown in Figure 14. K-partite graph shows a lot of options to
install network policies on different network devices. By calculating the shortest path for the K-partite
graph using Algorithm 3, a set of options are indicated where policies can be installed. To find actual
policy placement subset of groups, we assume that four transmissions are equal to one policy rule
as policy implementation requires more computation power and resources than transmission. We
have computed the link value by keeping a policy rule similar to four transmissions that are shown in
Figure 15. From Figure 15, the shortest path is 64 for path G8, G11, G16, and G18. If ACL policies are
deployed at these interfaces, one can observe limited unwanted traffic as well as a minimum number
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of ACL rules. Similarly, for other network policies, K-partite graphs are formed, and by applying the
shortest path algorithm, a set of interfaces can be found where policies can be implemented optimally.

Figure 14. K-partite Graph in which link values are combined as a discrete value.

Algorithm 3 Shortest Path for K-Partite graph

1: Set M = m, d(m) = 0
2: for All neighbor nodes u to m, set d(u) = w(m,u) do
3: for All other non neighbor nodes, set d(u) = ∞ do
4: while M 6= V do
5: Choose vertex vεM with d(v) minimum
6: Set M = Mεv
7: for All neighbor nodes q to v such that qεM do
8: if d(q) > d(v) + w(v,q) then
9: Set d(q) = d(v) + w(q,v)

10: end if
11: end for
12: end while
13: end for
14: end for

Figure 15. K-partite Graph with scaled values of number of rules and number of transmissions. Shortest
path for this K-partite graph is calculated that gives the optimal policy implementation points.

Optimum policy implementation is an NP-hard problem as there is no polynomial time algorithm
to solve this problem. This problem is NP-hard similar to the most famous NP-hard problem which is
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the decision subset sum problem and the optimization problem of finding the least-cost cyclic route
through all nodes of a weighted graph.

In Figure 16, interaction among different components of the proposed system is shown. In this
system, we get the network topology information from switches and other network devices in the
form of a topology graph. A 3-tuple network policy is traversed using a decision tree that governs
a K-partite graph. After this step, the shortest path for K-partite graph is computed that indicates
the switch ports were policies can be installed optimally, i.e., less number of rules with minimum
unwanted traffic.

Figure 16. Flow Chart for proposed solution.

5. Simulation Results

To evaluate the performance of our proposed solution, we developed the complete architecture
and algorithms in Mininet [40] and POX controller [41]. We used a random topology generator [42]
to produce a different set of network scenarios. We performed these experiments on 64-bit Ubuntu
Linux 16.01 LTS operating system that is installed on an HP ENVY Notebook with Intel Core Intel(R)
Core(TM) i5-6200U CPU @ 2.30 GHz, 8 GB RAM and 500 GB SATA HDD. The network topology
is created using both type of switches, i.e., legacy switches and OpenFlow switches. OpenFlow
switches can be used as legacy switches by setting the ovs to fail mode as a “standalone,” and these
are disconnected from the SDN controller. Some switches and policies are varied for different network
topologies. All links are assumed to be bi-directional with a bandwidth of 100 Mbps for each direction.
SDN nodes randomly initiate data requests with traffic demands uniformly selected from 512 kbps to
3 Mbps discretely with a step size of 128 kbps. To compute the time for graph traversing, a number
of switches are varied as 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50, Similarly, the number of policies also
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varied as 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. We used the following parameters to evaluate the entire
performance of the proposed approach:

• Graph Computation Time: Graphs are traversed for a specific policy to find appropriate places
(interfaces) for rule installation. Firstly, network policy is traversed on the decision tree, and the
K-partite graph is created. Secondly, the shortest path is computed on a K-partite graph having a
subset of the interface where policies can be installed.

• Traffic Optimization: Policy implementation plays important role in traffic optimization.
If policies are deployed at the proper places, then network congestion can be avoided and
traffic losses are eliminated. By using a K-partite graph, we regularized the overall network traffic,
so that the minimum number of rules are installed with the best route for network traffic.

• Number of ACL rule versus Number implementations: To secure the entire network, ACL rules
are implemented on the network devices. If we install ACL rules at the egress ports of the switch
where end nodes are connected, then the number of rules is directly proportional to the number
of nodes. If ACL rules are installed at the ingress port of the switch, then a fewer number of
rules are needed. When policies are implemented at proper places, then a fewer number of rules
are required.

• End-to-End Delay Computation: End-to-End delay defines the total time consumed for a data
packet to be reached across a network from the source node to the destination node. End-to-End
Delay = Number of switches + Transmission of N number of packets − (Transmission delay +
Processing + Queuing).

• Successful Packet Delivery (SPD) ratio: This implies the total number of packets received at
destination nodes according to the specific policy to the total number of packets generated from
the source nodes by considering different policy implementation schemes, i.e., near the source,
near the destination, etc.

We assume that there are a different number of policies and switches that vary from time to time.
The approach adopted in [6] is an existing approach. It is necessary for the network administrator to
implement policies on new interfaces according to specification. For this purpose, firstly, the network
administrator will translate the network policy to corresponding network rules. Secondly, this
policy will be configured on switches using ACL commands. This task requires a lot of time to
implement policies properly on respective interfaces. We considered three different schemes for
policy implementation; the first is policy implementation near the source nodes, the second way is
to implement policy near the destination nodes, and the third one is to find some optimum policy
placements. We perform each experiment about 30 times by varying different parameters like number
of nodes, number of switches and number of policies, etc. We evaluated network traffic for several
network topology combinations and reported the trends among these patterns in the form of results.
Network traffic varies form 1 Mbps to 10 Mbps on the demand of network users.

5.1. Graph Computation Time

In our proposed scheme, graph computation plays an important role. We need to use several
graphs to find an optimization for ACL rules placement. We represent the network topology in
the form of a graph that is transferred to a decision tree. After this step, we traverse this tree by
using network topology for a specific policy to generate a K-partite graph. Then, the shortest path is
computed for this K-partite graph to find a set of interfaces. In the existing technique, most of the work
is done manually, while our approach performs all the operations of policy optimizing automatically.

5.1.1. Graph Computation Time by Varying Number of Switches

Figure 17 shows graph computation time for the existing and proposed techniques. In the existing
technique, for each policy, a separate tree is traversed to install each policy in which allowed and not
allowed options of policy tuple are traversed to restrict the network traffic according to ACL policy.



Electronics 2019, 8, 604 21 of 28

In the proposed techniques, multiple policies are traversed using a single decision tree that saves the
network operator’s time for policy design and placement as well as time for policy computation. We
performed these experiments in two phases; in the first phase, we vary the number of switches from 1
to 10 with a difference of precisely one switch while in second phase number of switches are varied
from 5 to 50 where the difference number of switches is 5.

The graph in Figure 17a shows the variation of switches according to the first phase. Results
indicate that the computation time differs in small values, i.e., 0.1, 0.2, 0.3, etc. With the increase in
the number of switches computation time increases. The graph in Figure 17b represents the execution
time for 50 ACL policies and by varying number of switches in the network form 5 to 50. The graph
curve indicates that in the proposed technique, less time is required to implement the same number of
policies in hybrid SDN.

(a) (b)

Figure 17. Simulation results of proposed and existing approaches for Graph Computation Time.
(a) Computation Time when the Number of switches is varying and the number of policies is constant;
(b) Computation Time when Number of switches is varying and number of policies is constant.

5.1.2. Graph Computation Time by Varying Number of Policies

In Figure 18, graph computation time by the varying number of policies is shown. In this graph,
the number of policies varies from 10 to 100 while the number of switches is kept constant at size 20.
As discussed in Section 5.1.1, due to separate tree traversing for each policy implementation, more
time is required. When policies are varying, it means a large number of policies are being installed, so
more time is required as indicated in the graph. The resulting graph shows that execution time for the
proposed technique and existing technique is fairly less. We present the results using two different
graphs; the first graph represents the results when policies are varying with a single value, i.e., 1, 2, 3,
and so on. The second graph represents the computation time when policies vary by 10 units i.e., 10,
20, 30, etc.

Figure 18a indicates the effects of varying number of policies while the number of switches is
constant. In this graph, variation in policies is very small, so maximum computation time is 3.5 s for
the existing approach while for the proposed approach it is about 1.3 s. Results indicate 40% increase
in computation time when the number of policies are going to increase. In Figure 18b a big change in
computation time can be observed. We change the number of policies with a difference value of 10. So,
the resulting graph shows a 50–60 percent increase in the time for graph computation.
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(a) (b)

Figure 18. Simulation results of proposed and existing approaches for Graph Computation Time.
(a) Computation Time when Number of policies is varying, and the number of switches is constant;
(b) Computation Time when Number of policies is varying and number of switches is constant.

5.2. Traffic Optimization

ACL policies implementation strategies play an important role in traffic optimization. If we
efficiently implement policy, then we can eliminate not only unnecessary traffic but also CPU processing
can be minimized. For example, if policies are implemented near source nodes, then it requires more
processing power because each packet generated from the source node must pass through the filter.
Similarly, if policies are implemented near designation nodes, then packets have to travel through the
network and drop after reaching unauthorized destination nodes. In the second case, more unwanted
traffic is generated. We need to minimize unwanted traffic.

5.2.1. Traffic Optimization by Varying Number of Policies

In Figure 19, unwanted traffic generated in the existing approach and proposed approach is
compared. Network traffic can be optimized by using different policy schemes, i.e., near the source
policy implementation scheme, near the destination policy scheme and optimized policy placement.
We keep the number of switches constant at 25, the number of nodes is 50 and we change the number
of policies as 10, 20, 30, 40, 50 and 60. For these three schemes, the ratio of unwanted traffic is measured
for a different number of policies. Figure 19b shows that near the destination policy implementation
scheme, we generate more unwanted traffic than other schemes. Because packets traverse from
source to reach the destination node and then these packets are dropped. Near the source ACL policy
implementation scheme generates less unwanted traffic but requires more processing power and more
delay is observed in this case. Optimum policy implementation scheme decreases unwanted traffic
and minimizes processing power.
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(a) (b)

Figure 19. Simulation results of proposed and existing approaches for Traffic Optimization. (a) Traffic
Optimization when the Number of policies is varying, and the number of switches is constant; (b) Traffic
Optimization when the Number of policies is varying and number of switches is constant.

5.2.2. Traffic Optimization by Varying Number of Switches

In Figure 20a,b, traffic optimizations for different policy schemes, i.e., near the source policy
implementation, near the destination policy implementation and optimum policy placement are
compared by varying the number of switches. We keep the number of policies constant at 20,
and number of nodes is 40 and changes the number of switches as 5, 10, 15, 20, 25, 30, 35, and 40
as shown in Figure 20b. When there is less number of switches, then unwanted traffic ratio is less,
and it is increased when the number of switches are increased. In Figure 20b, we varied the number
of switches with a difference of 2 switches. The graph shows the variation of unwanted traffic for all
three schemes. In our proposed scheme, less unwanted traffic is generated.

(a) (b)

Figure 20. Simulation results of proposed and existing approaches for Traffic Optimization. (a) Traffic
Optimization when Number of switches is varying, and the number of policies is constant; (b) Traffic
Optimization when Number of switches is varying and number of policies is constant.

5.3. Number of ACL Implementations against ACL Policies

ACL policies are implemented on the ports of network devices; however, some ACL policies
implementation varies for different schemes. If near the destination scheme or near the source scheme
is adopted, then a large number of policies are implemented at the ports of network devices. Figure 21b
shows the variation in the number ACL implementations concerning the number of policies. The figure
shows that the optimal policy implementation scheme requires fewer policy implementation. Policy
implementation increases with an increase in the number of policies. Figure 21a shows the policy
implementations with a different number of switches while the number of policies is constant, i.e., 20.
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The figure represents the variation in the policy implementations when the number of switches
is changed. In the case of near the source ACL policy implementation, a large number of policy
implementations are required.

(a) (b)

Figure 21. Simulation results of proposed and existing approaches for No. of ACL Implementations.
(a) Number of ACL implementations against a number of ACL policies when the number of switches
is varying; (b) Number of ACL implementations against number of ACL policies when number of
policies is varying.

5.4. End-to-End Delay Computation

End-to-End delay computation is the key element to evaluate the improvement in the proposed
system. If policies are implanted near the source or near the destination, then packets must traverse
the longer path to reach the destination or to be discarded. In the proposed approach, ACL policies are
implemented at the optimal places in the network, so unnecessary packets travelling is limited. In this
way, the overall efficiency of the system is improved.

5.4.1. When Number of Switches Are Varying

When policies are applied near the source node then it requires a lot of effort to filter the traffic
for a specific flow. So, End-to-End delay is very high for the existing approach. Figure 22a shows that
the existing approach has a high delay when policies are implemented near source nodes or near the
destination nodes. Our proposed approach indicates a relatively small end to end delay because it
automatically implements policies on the optimal places in the network.

5.4.2. When Number of Policies Are Varying

Figure 22b represents the condition when policies are varying while the number of switches is
constant. In this case, when the number of policies is increasing in number, then end-to-end delay
increases. A small number of polices are implemented at a small number of interfaces so the chances
of congestion are very low. Surely, this decreases the time delay for each individual packet to reach the
destination node.
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(a) (b)

Figure 22. SPD for near the Destination policy Implementation Scheme. (a) End-to-End Delay
Computation when number of switch is varying and number of polices is constant; (b) End-to-End
Delay Computation when the number of policies is varying and number of switches is constant.

5.5. Successful Packet Delivery

We study how the different schemes of policy implementation affect the performance of the
network. In this section, we present different performance comparison with a varying number of
policies. We can observe from the results shown in the following sections that when the number of
policies is increased, the successful packet delivery ratio decreases. It is because when the number of
policies is increased then policies implemented on the switches require more effort and time to filter
traffic according to a specific policy.

5.5.1. When Policies Are Placed near the Source

The following Figure 23a shows the successful packet delivery ratio when policies are
implemented near source nodes. In this scheme of policy implementation, we can get less successful
delivery of packets because filters need to process each packet from the source node. So this decreases
the overall successful packets delivery. Form the Figure; it is clear that with an increase in the number
of policies, the successful packet delivery decrease.

5.5.2. When Policies Are Placed near the Destination

Figure 23b indicates that when policies are implemented near destination nodes then successful
packet delivery ratio increases as compared to near-source policy implementation. It happens because
less processing is required by the switches to filter the traffic. The graph shows that with the increase of
number policies successful packet delivery ratio decreases because a large number of policies require
more processing and filtration.

5.5.3. When Policies Are Placed Optimally

We have proposed optimal policy implementation that increases the successful packets delivery.
Figure 23c shows enhanced successful packet delivery as compared to the other two approaches.
Figure 23c shows that with the increase in the number of policies successful packet delivery ratio is
decreased. The existing mechanism has a meager SPD ratio.
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(a) (b)

(c)

Figure 23. SPD for near the Destination policy Implementation Scheme. (a) SPD for near the Source
policy Implementation Scheme; (b) SPD for near the Destination policy Implementation Scheme;
(c) SPD for Optimal policy Implementation Scheme.

6. Conclusions

In this paper, we proposed a novel approach to optimize the implementation of ACL policies in
a hybrid SDN. We modeled the network policies using a 3-tuple, and by traversing all the policies,
a decision tree is built that indicates the possible communication among source and destination nodes.
Then, we traversed the decision tree using the 3-tuple network policy and constructed a K-partite graph
to search for the possible placement of ACL policies. Edge weights on the K-partite graph represented
the sum of the number of rules and number of transmissions for unwanted traffic. By computing the
shortest path for K-partite graph, we got the set of points (i.e., interfaces of routers) where both values
(i.e., number of ACL rules and number of transmissions for unwanted traffic) are minimum. This set
of points is considered for ACL policy implementation. Simulation results show that our proposed
technique outperforms the existing technique in terms of computation time, traffic optimization, SPD,
delay, etc. In the future, we would like to use more sophisticated network policies implementation in
hybrid SDN.
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