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Abstract: Multi-object tracking aims to estimate the complete trajectories of objects in a scene.
Distinguishing among objects efficiently and correctly in complex environments is a challenging
problem. In this paper, a Siamese network with an auto-encoding constraint is proposed to
extract discriminative features from detection responses in a tracking-by-detection framework.
Different from recent deep learning methods, the simple two layers stacked auto-encoder structure
enables the Siamese network to operate efficiently only with small-scale online sample data.
The auto-encoding constraint reduces the possibility of overfitting during small-scale sample training.
Then, the proposed Siamese network is improved to extract the previous-appearance-next vector
from tracklet for better association. The new feature integrates the appearance, previous, and next
stage motions of an element in a tracklet. With the new features, an online incremental learned
tracking framework is established. It contains reliable tracklet generation, data association to generate
complete object trajectories, and tracklet growth to deal with missing detections and to enhance the
new feature for tracklet. Benefiting from discriminative features, the final trajectories of objects can
be achieved by an efficient iterative greedy algorithm. Feature experiments show that the proposed
Siamese network has advantages in terms of both discrimination and correctness. The system
experiments show the improved tracking performance of the proposed method.

Keywords: multi-object tracking; Siamese network; discriminative feature; online learning

1. Introduction

As a key technology in computer vision, multi-object tracking (MOT) has received growing
attentions from researchers all over the world. In recent years, with the improvements in object
detecting techniques [1–3], tracking-by-detection (TBD) has become one of the most successful
strategies. It applies an object detector to produce detection responses in each frame, which are then
used to generate complete trajectories. The data association process mainly depends on object features
including appearance, motion, and other factors. It is often solved by Hungarian algorithms [4,5],
network flows [6–8], minimum energy models [9,10], conditional random field approaches [11,12],
hyper-graph model [13], deep learning methods [14–17], and so on.

Object feature expression is the basis of data association. Handcrafted features, such as the
histogram of oriented gradient (HOG) [18], local binary patterns (LBP) [19], and the histogram of
color (HOC) are widely used in computer vision researches [8,11,13,20]. These features were originally
designed to distinguish objects from various backgrounds. Although a combination of different
handcrafted features [11,13] is often used to improve discrimination, it is still not robust enough.
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Meanwhile, detection responses given by object detectors are not always accurate and sometimes
even false due to complex backgrounds, poor image quality, complicated movements, or occlusions of
objects. Thus, how to better distinguish targets by online detection responses, how to deal with noise
due to detection inaccuracy, and how to combine various cues of a target to enhance discrimination
remain key issues that limit tracking performance.

With the developments of deep learning in image classification, segmentation, and other
applications, researchers used deep architectures to learn discriminative features for multi-object
tracking, and they achieved good results. In [12,15,17,21–23], deep Siamese networks were adopted
instead of traditional handcrafted methods [11,13]. A contrastive loss function was used with the aim
of decreasing the feature distances for the same object pairs while increasing distances for the different
pairs. Due to the shortage of online samples, training of such deep neural network mainly depends
on offline learning. Although online fine-tuning measures are often adopted, the online data are too
limited to run a deep network effectively.

In this paper, a Siamese network with an auto-encoding constraint (SNAC) is proposed, which
is able to work well with a small-sized sample set. Different from previous deep Siamese networks,
the SNAC has a simple structure with two fully-connected layers, an auto-encoder layer, and a code-mix
layer. The simple network can be easily learned by online limited samples to extract discriminative
features to distinguish objects on the scene. Inspired by stacked auto-encoder methods [24,25],
the output of the encoder layer tries to represent the input detection response as accurately as possible.
This is done by adding a constraint term to the loss function, called the auto-encoding constraint,
which effectively prevents the network from overfitting while training with limited samples. To deal
with inaccurate detection responses (red bounding box in Figure 1a), Gaussian distribution training
samples are generated around detection responses to suppress noises. For each detection response,
one SNAC is trained to distinguish it from others in adjacent frames. Meanwhile, in order to enhance
robustness, following [22], the HOC is used as the input instead of raw pixels. With the discriminative
detection features extracted by SNACs, reliable tracklets are generated.

To better distinguish tracklets, SNAC is improved to extract a composite previous-appearance-next
(PAN) feature for each tracklet, which combines previous and next step motions with the appearance
of the tracklet element. Following [11,26], elements in the same tracklet can be treated as positive
samples, and the negative samples are obtained from time overlapped tracklets. The distribution is
proposed to express motion that can suppress motion noises, and this is also compatible with the
appearance for joint learning of the PAN feature.

In order to solve the MOT problem by the proposed SNAC, an online incremental learned tracking
framework is established. First, one SNAC is trained for each detection response online, and reliable
tracklets are generated mainly by the extracted features. Then, the PAN features are learned from
tracklets by improved SNACs. To improve the training efficiency, SNACs are trained by incremental
learning. During tracklet generation, the parameters of SNAC for detection in the new frame are
inherited from the predecessor tracklet element, and the training samples are updated frame by frame.
To extract PAN, the parameters are initialized by the SNAC of the related detection response. A tracklet
growing process is used to deal with missing and partial detections (Figure 1b,c) before tracklet
association. With the discriminative PAN feature, complete trajectories are solved efficiently by an
iterative greedy algorithm. The main contributions of this paper are summarized as follows:

(1) A simple structure Siamese network with an auto-encoding constraint is proposed to extract
discriminative features efficiently for objects on the scene. An auto-encoding constraint is added
to prevent overfitting when training data are limited.

(2) A composite feature of tracklet, PAN, is defined, which combines appearance and motion through
joint learning. To describe the sequential features of tracklets better, data association based on
PAN is more reliable.
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(3) A tracking framework is established that includes reliable tracklet generation by incremental
learning with SNAC for the detection response, tracklet growth to enhance PAN performance and
deal with missing detections, and tracklet association with PAN to generate complete trajectories.

(a) Inaccurate detection (b) Missing detection (c) Partial detection

Figure 1. Illustrations of detection failures in three consecutive frames. The solid yellow bounding
boxes represent the correct detection responses, and the red boxes are error cases. (a) The red bounding
box is a deviation detection that does not exactly match the target. (b) The red dashed bounding box
indicates a missing detection. (c) The detection response only includes the upper body of the target.

2. Related Works

Tracking by detection (TBD) has been one of the most promising methods developed to solve the
multi-object tracking (MOT) problem in recent years. It generates object trajectories based on detection
responses given by pre-designed detectors. For reliable data association, most recent researches were
based on tracklets. In [26], the dual-threshold method was proposed to generate reliable tracklets and
utilize them to get the final trajectories hierarchically. In [27], a prototype of a three frames triplet,
which is a type of three members tracklet, was designed to extract high-level features. The Hungarian
algorithm was also used to generate reliable tracklets in [12,15]. On the basis of tracklets, [11] built an
online learning conditional random field (CRF) model focused on distinguishing the difficult pairs of
objects. In [13], a hyper-graph model was developed to explore more complex relations among objects.
The latest MOT methods [12,21] also focused on using tracklets. In these studies, tracklet building
and feature expression are important to achieve reliable data association. In this section, MOT object
feature extraction methods are mainly introduced.

From handcrafted methods to deep learning techniques, many studies have achieved significant
improvements in extracting appropriate object features for MOT. In [11,13], a combination of multiple
handcrafted features was proposed to distinguish objects by appearance. Their sample collection
schemes were used in many following studies. The developments of deep learning have introduced
new ideas for feature description in tracking areas. In [24,28–30], deep neural networks were adopted
for single object tracking (SOT), and achieved significant improvements. In SOT problems, features
of objects were used to distinguish them from the background. Different from SOT, MOT mainly
distinguishes objects from each other. Due to this difference, the deep learning scheme of SOT cannot
provide good results for MOT problems.

The deep learning methods for MOT can be summarized into two categories. The first builds
a deep learning based tracking model to form the whole MOT system. Milan et al. [31] proposed
a tracking model based on recurrent neural networks (RNN). The proposed RNN model described
the whole tracking system including motion prediction, updating, object state judgment, and data
association. It was trained online in an end-to-end manner to track various objects. Schulter et al. [14]
proposed a deep network flow model for MOT, which instead of empirically hand-crafting costs,
learned the parameterized costs of the network flow model by end-to-end training. This dynamic
parameter setting method improved the robustness and accuracy of tracking. Zhou et al. [12]
proposed a deep continuous conditional random field (DCCRF) model for solving online MOT
problems. The unary term was used to provide a deep discriminative appearance feature for tracklet
association, and a pairwise term was used to deal with inter-object relations. In [16], a deep neural
network consisting of an encoder and a decoder was proposed. In their method, an encoder was
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a fully-connected network and a decoder was a bidirectional long short-term memory (LSTM).
This network was able to learn the association matrix to solve MOT.

The second group uses a deep neural network to extract discriminative feature for each object.
Unlike the previous kind, this method deals with the object feature extraction problem directly,
and many researchers have followed this idea. Sadehgian et al. [32] proposed an RNN model jointly
used the appearance, motion, and interactions of an object to encode a discriminative long-term
temporal relationship using these cues. Their discriminative appearance features were extracted by
a deep CNN. Son et al. [33] designed a quadruplet CNN (QCNN) network to learn the affinities
among objects based on appearance and motion. The proposed quadruplet loss function guided the
network to learn a temporally-smooth appearance model with motion-aware constraints. Features
extracted from the QCNN included time continuity, which enhanced the discrimination. In addition,
Siamese networks, first defined and used for signature verification, played an important role and have
achieved good results in face identification [34], people re-identification [35], and many computer
vision applications. Siamese networks are more suitable for distinguishing objects due to their
symmetrical structures. Wang et al. [15] applied a Siamese CNN (SCNN) to construct an appearance
affinity model for tracklets. They embedded a temporally-constrained multi-task mechanism in their
training process. Leal-Taixé et al. [22] used an SCNN to estimate the likelihood of two objects using a
multi-modal inputs including image and optical flow. Following [22], Yoon et al. [23] proposed the
historical appearance matching method and trained a Siamese network by a two-step process to deal
with noisy detections. In [17], a speeding method was proposed to remove redundant appearance
matchings of SCNN for real-time tracking. In the DCCRF model [12], SCNN was also used to extract
discriminative features. Based on SCNN, Bae et al. [21] proposed a confidence-based data association
method for MOT. They utilized the SCNN to learn a discriminative appearance model from offline
training datasets.

3. Online Learned Siamese Network with Auto-Encoding Constraint

In this section, a new Siamese network with an auto-encoding constraint (SNAC) is proposed. It is
better at distinguishing objects in MOT. Benefiting from the simple structure of two fully-connected
layers, an auto-encoder layer and a code-mix layer, the SNAC can be learned effectively. Meanwhile,
with an auto-encoding constraint in the loss function, SNAC can prevent overfitting while training
with limited online samples. In order to suppress detection noises, Gaussian distribution samples were
generated around detection responses to make up the training set and HOC was used as the input
instead of raw pixels. Then, an incremental learning algorithm was proposed to train the SNAC to
generate reliable tracklets. Mathematical notations are listed in Table 1.

Table 1. Notations.

Symbol Definition

SNAC Siamese network with an auto-encoding constraint
dt

i the ith detection response in frame t
Dt detection responses set in frame t
D = {D1, ..., Dt} sequence of Di for i = 1, 2, . . . , t
Tt

k the kth tracklet up to frame t
Tt = {T1, ..., Tt} set of all tracklets up to frame t
Fk

t feature vector of SNAC for Tt
k

{d} a set consisting of an element d
Dt − {d} the set Dt with d deleted
Ψ(.) the sample set
Λa(T, d) appearance similarity between T and d
Λ(T, d) overall affinity between T and d
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3.1. The Structure of SNAC

The two-layer structure of SNAC is shown in Figure 2a. Bounding boxes of detection responses
were first resized to 48 × 32 as the inputs of the Siamese network. The two sub-networks (dashed
boxes in Figure 2a) were identical in structure and share parameters including weights and biases.
A contrastive loss function was employed to learn the Siamese network.

As shown in Figure 2b, each sub-network consisted of an auto-encoder layer and a code-mix
layer. The first layer contained three parallel auto-encoders corresponding to the red, green, and blue
channels of the input RGB image, respectively. Similar to [22], the inputs were R, G, and B histograms,
not pixel values, and they were denoted as 256 dimensions vectors: x0, x1, and x2. Because of limited
samples, training based on pixel values may lead to overfitting. Meanwhile, the histogram can also
suppress the detection noises. Each auto-encoder contained a forward encoder, a backward decoder,
and an auto-encoding error evaluator. The encoder and decoder were fully-connected networks.
The output of the encoder was a vector with 100 dimensions, and the output of the decoder was a
reproduction of the corresponding input. The code-mix layer was fully connecting and combined
three code vectors of the first layer to produce a feature vector with 100 dimensions as the final output.
Mathematically, the sub-network can be written as:

yk
m = σ(Wk

Exk
m + bk

E), m = p, q, k = 0, 1, 2

x̂k
m = σ(Wk

Dyk
m + bk

D), m = p, q, k = 0, 1, 2

zm = σ(WM(y0
m, y1

m, y2
m) + bM), m = p, q

(1)

where subscript m indexes the upper p or lower q sub-network, the upper-script k indexes the channel,
y is the code vector from an encoder, x̂ is the reproduction of y by the decoder, and z is the final feature
vector. W, b, and σ are the weights, biases, and activation functions of the neural networks, with the
subscripts E, D, and M indicating the encoder, decoder, and code-mix layer.

(a) The overall framework (b) Internal details

Figure 2. Structure of SNAC: (a) shows the overall structure of SNAC, including its symmetrical
structure and parameter sharing. Here, AEL stands for auto-encoder layer, superscripts 0, 1, and 2
indicate image channel numbers, and ML stands for the code-mix layer. (b) is the internal anatomical
diagram of the SNAC structure, showing its auto-encoder layer and code-mix layer.
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3.2. Loss Function and Auto-Encoding Constraint

To learn a Siamese network, a contrastive loss function was formulated based on similarity or
difference measurements between input pair. The objective was to train the network to sufficiently
reduce differences between pairs of the same inputs and to increase feature distances of different ones.
The distance of input training pair is denoted as:

D(xp, xq) = ||xp − xq||22 (2)

where xp and xq are feature vectors from the two sub-networks in SNAC. Instead of using the Euclidean
distance here, other measures, like Mahalanobis and Bhattacharyya distances, can be used.

Given a group of training samples, the loss function of SNAC to be minimized consists of three
terms, L1, L2, and L3, as follows:

L = αL1 + βL2 + γL3

= α ∑
p,q

max(0, δ− lpq[1− ||zp − zq||22])

+ β ∑
k=0,1,2

||xk
j − x̂k

j ||22

+ γ( ∑
k=0,1,2

||Wk||22 + ||bk||22)

(3)

where α, β, and γ are weight coefficients between zero and one. The first term, L1, is a margin-based
loss of difference of sample pairs; δ is the decision margin, which satisfies (0 ≤ δ ≤ 1); lpq is the sample
indicator; lpq = 1 denotes a positive pair; and lpq = 0 denotes a negative pair. The L3 term is the
regularization constraint.

However, deep neural networks contain a large number of parameters and require huge sample
sets for training. For the case of using limited online samples, parameters of a deep model will often
be overfitting after training, and the network will not work. This method often pays more attentions to
some local details of training samples and does not balance the general features. Subsequently, inspired
by the stacked auto-encoder in [24,25], the L2 term was added, an auto-encoding constraint (AC) to the
loss function in Equation (3), to prevent overfitting, even when training with limited online samples.

3.3. Denoising through the Collection of Training Samples

Dt = {dt
i , i = 1, 2, ...Nt} is the detection set at frame t. Each detection response dt

i was associated
with the SNAC(dt

i). Training samples were collected around dt
i . The purpose of SNAC(dt

i) is to
distinguish dt

i from other object detection responses in adjacent frames, not over a longer time
period. The training samples of SNAC(dt

i) were collected online. Inspired by [11], dt
i is the only

one positive sample, and the remaining detection responses at frame t constitute the negative sample
set. Although SNAC(dt

i) can be trained by small-sized samples, an unbalanced sample set with only
one positive sample cannot drive it. To solve this problem, more samples are needed, which means
additional detection responses of dt

i .
There is a fundamental issue whereby detection responses are not always perfect, and their

bounding boxes are often inaccurate, as explained before in Figure 1a. When a noisy detection is used
as a training sample, it will impair the parameters of SNAC. However, detection noise is inevitable,
so this error can be suppressed through more dt

i with random noise. This noise processing is just
enough to solve the positive sample shortage problem.

Detection noise was assumed to be modeled as additive noise as follows:

pn = p + np, sn = s + ns (4)
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where p = (x, y) is the center position of the detection response, s = (w, h) is the size vector of width
and height, and np and ns are additive noises that refer to position and size, respectively. np and ns are
assumed to follow a Gaussian distribution, G(0, σp) and G(0, σs), where σp and σs are corresponding
covariances obtained by prior analysis.

A group of random bounding boxes Ψ({dt
i}) was generated around dt

i according to Equation (4)
with distributions of np and ns. In the same way, Ψ(Dt − {dt

i}) was obtained. Ψ({dt
i}) and

Ψ(Dt − {dt
i}) are the positive and negative sample sets, respectively. Using these online collected

samples, SNAC(dt
i) not only can extract discriminative features for dt

i , but it also can suppress
detection noises.

3.4. Iterative Tracklet Generation with SNAC by Incremental Learning

The above sections discussed the establishment and training of SNAC. Each detection response
dt

i is associated with SNAC(dt
i), which extracts discriminative features to better distinguish dt

i from
other detections belonging to Dt+1. Moreover, connecting these original independent networks not
only increases the number of samples, but can also improve the training efficiency. On the one
hand, SNAC(dt

i) can obtain more training samples from dt−1
j in the adjacent frame t− 1 through a

relationship. On the other hand, with this relationship, SNAC(dt
i) does not need random initialization

parameters for training, but inherits them from SNAC(dt−1
j ), which can reduce the training time to

improve the efficiency. This relationship is the principle of tracklet linking, that is the two detection
responses between adjacent frames belong to the same object. Incremental learning of SNACs through
this inheritance relationship can effectively match adjacent frame detection responses. To generate
reliable tracklets, an iterative algorithm with SNAC by incremental learning is proposed as shown in
Algorithm 1.

Algorithm 1 Iterative tracklet building with SNAC by incremental learning.

Input: D = {D1, D2, ..., Dt}, detection set of each frame
Output: Tt = {Tt

k}, tracklet setup to frame t
1: Initialization: t = 1, T1 = ∅
2: for each d ∈ D1 do
3: T1

k = d
4: Initialize F1

k with random parameters
5: Set P = Ψ(d), N = Ψ(D1 − d)
6: Train F1

k with P and N
7: end for
8: while t ≥ 2 do
9: for each Tt−1

k ∈ Tt−1 and each d ∈ Dt do
10: Compute Λa(Tt−1

k , d) as Equation (6)
11: Compute Λ(Tt−1

k , d) as Equation (5)
12: end for
13: For all Λ(Tt−1

k , d) meeting the link requirement, select
14: pairs of Tt−1

k and d by the Hungarian algorithm.
15: Tt = renewed Tt−1 by linking the selected pairs.
16: DR

t = Dt
17: for each Tt

k ∈ Tt having a new detection added do
18: d = the new detection of Tt

k
19: Set P = Ψ(d), N = Ψ(Dt − d)
20: Ft

k = Ft−1
k incrementally trained with P and N

21: DR
t = Dt − d

22: end for
23: for each d ∈ DR

t do
24: Add a new single member tracklet Tt

k = d,
25: and set its Ft

k as above.
26: end for
27: end while
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At the first frame t = 1, a new tracklet T1
i was established by a single member of d1

i in D1, and the
current total number of tracklets was N1. To match the detection response belonging to the same object
(or inexistence) in the next frame, a randomly initialized network, SNAC(d1

i ), was associated with
d1

i . After SNAC(d1
i ) training, the appearance similarity Λa(T1

i , d2
j ) can be calculated by T1

i , which

is equal to d1
i and d2

j . Together with the position similarity Λp(T1
i , d2

j ) based on position and size,

the total similarity Λ(T1
i , d2

j ) can be calculated. When similarities of all detection responses in Frame

1 have been calculated, the Hungarian algorithm was used to determine if there was a d2
j that could

be combined with T1
i . If d1

i and d2
j belong to the same object, d2

j joins with T1
i , and tracklet T1

i is

updated to T2
i . Otherwise, a new tracklet T2

N1+1 of d2
j is generated. Then, the processing went into

Frame 2, and tracklets that contained the detection responses in Frame 2 needed to train. Taking T2
i

as an example, its last element was d2
j . If d1

i exists as a former element of d2
j in tracklet T2

i , the initial

parameters of SNAC(T2
i ) equal to SNAC(d2

j ) will be inherited from the trained SNAC(d1
i ). In addition,

the positive and negative training sets can be expanded through the samples of SNAC(d1
i ). Training of

SNAC(T2
i ) can be done with fewer iterations in this incremental manner. If T2

i is a new added tracklet
that only contains d2

j , SNAC(T2
i ) will be trained similarly to SNAC(d1

i ). Finally, all reliable tracklets T
will be produced frame-by-frame.

Now, the calculation of similarities between a tracklet and a detection response is explained.
Λ(Tt−1

k , dt
j) is given as follows:

Λ(Tt−1
k , dt

j) = Λa(Tt−1
k , dt

j)Λo(Tt−1
k , dt

j). (5)

The appearance similarity was computed by the distance between feature vectors output by the
SNAC(Tt−1

k ). It is given by:

Λa(Tt−1
k , dt

j) = g{‖Ft−1
k ((Tt−1

k (e)))− Ft−1
k (dt

j)‖2
2} (6)

where Tt−1
k (e) denotes the end element of tracklet Tt−1

k , Ft−1
k denotes the output feature vector of the

SNAC for tracklet Tt−1
k , and g is a probability function on the squared distance of feature vectors.

Because of the margin-based loss of SNAC, the definition of function g is as follows:

g(x) =


1
0

(1 + δ− x)/2δ

x < 1− δ

x > 1 + δ

otherwise
(7)

where δ is the decision margin given in the loss function of Equation (3).
Overlapping is widely used to describe the detection position relationship. It takes information

about the coordinates and size into account. The overlapping Λo(Tt−1
k , dt

j) is given as:

Λo(Tt−1
k , dt

j) =
A∩(Tt−1

k (e), dt
j)

min[A(Tt−1
k (e), A(dt

j)]
(8)

where A is the area function on a detection response and A∩ is the area function on the intersection of
two detection responses.
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4. Multi-Object Tracking Framework

4.1. Overall Framework

Based on SNAC, a tracking framework following TBD was established to solve the MOT problem.
A TBD scheme can be described as solving an MAP problem by:

T * = arg max P
T

(T |D) (9)

where D is the set of given detection responses and T is the set of trajectories. In the framework,
tracklets were first generated. Because a tracklet is an ordered combination of detection responses, it is
able to extract higher order features to better describe relations between objects. Then, the problem
can be converted into a more reliable tracklet association as follows:

T * = arg max P
T

(T |T) (10)

where T is the set of all tracklets.
The whole framework is shown in Figure 3. First of all, the inputs were checked, and deformity

detection responses were deleted, such as too large or small bounding boxes. SNAC was proposed
to extract discriminative appearance features for detection responses. The online SNAC incremental
learning method mentioned above was used to generate reliable tracklets. The next step was to
generate tracking results through tracklet association. Similar to detection association based on the
learning method, SNAC was improved to extract a new discriminative composite feature PAN for the
tracklet instead of using traditional handcrafted methods. To enhance tracklet association, the tracklet
growing module was embedded to make tracklets as extended as possible. With the discriminative
PAN feature, tracklet association was converted to a linear programming problem that was solved by
an efficient greedy iterative algorithm, and the final trajectories were achieved. For real-time tracking,
the whole tracking process was carried out in sliding time windows.

Figure 3. Illustration of the overall online tracking by detection (TBD) framework. In addition to
standard inputs and outputs, an online tracking framework is established with new facilities, including
an iterative Siamese network with an auto-encoding constraint (SNAC) to learn the detection responses,
previous-appearance-next (PAN) to represent the composite features of tracklets, and pre-processing of
tracklet growth to cope with short-time detection failures. Finally, a greedy iterative algorithm is used
to output robust trajectories in sliding windows.

4.2. Previous-Appearance-Next Feature of the Tracklet

A tracklet Tt2
m = {dt1

i , dt1+1
j , ...dt2

k } is an ordered sequence of detection responses that represents

a moving object with a short time from frame t1–t2. To describe Tt2
m , appearance and motion are

indispensable. They are often assumed to be independent of each other in several studies [12,21,36].
Only by weighted summation can they express the similarity between two tracklets. To increase the
flexibility and discrimination, a composite previous-appearance-next (PAN) feature was proposed.
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The new feature combined appearance and motion for the tracklet, and it was extracted jointly by an
improved SNAC.

Taking Tt2
m and Tt4

n as examples, as shown in Figure 4b, Tt4
n is from frame t3–t4 and t2 < t3.

To calculate the similarity between Tt2
m and Tt4

n , it is better to use the tail part of Tt2
m and the head part

of Tt4
n rather than using their whole information. Tt2

m (e) is the last element of tracklet Tt2
m , and Tt4

n (s)
is the first element of Tt4

n . The PAN(Tt2
m (e)) vector integrated the appearance, previous, and next

stage motions of Tt2
m (e) to express the tail part composite feature of tracklet Tt2

m . Correspondingly,
the PAN(Tt4

n (s)) vector was defined for the head part composite feature of Tt4
n . The next stage motion

of tail Tt2
m and the previous of head Tt4

n were computed by estimation methods.
The SNAC for detection response was revised to extract PAN(.) vectors of tracklets. The new

structure is shown in Figure 4a. The previous and next stage motions were used as additional inputs
to the mix-layer. The first layer of the new SNAC was same as the old SNAC. ∆p = (xp, yp) and
∆n = (xn, yn) are the previous and next motion vectors of Tt2

m (e), respectively. As shown in Figure 4b,
∆p represents the x and y axes displacements of Tt2

m from t2− 1 to t2. For the next-stage motion
vector, Tt2

m (e + 1), the estimation of Tt2
m in frame t2 + 1 was computed first, and then, ∆n of Tt2

m (e)
was calculated.

Since ∆p and ∆n are two-dimensional vectors that include displacements with x and y directions
and the output of each auto-encoder in the first layer of SNAC is a 100-dimension feature vector, they
are totally different in type and cannot work together simply. Meanwhile, the existence of detection
noises makes the deterministic motion descriptions inaccurate. A distribution description method
was proposed to represent the motion instead of specific values. Assuming following the Gaussian
distribution, the x axis displacement, xp of ∆p for instance, is described by G(xp, σx), where σx is set by
pre-training. G(yp, σy) is for y displacement, as well. The distribution description was given by sample
vectors of G(xp, σx) and G(yp, σy), and its length was taken to be equal to that of the appearance vector.
For in MOT, the motion feature is as important as appearance. The distribution description for ∆n can
also be obtained. Then, they were merged with the three outputs of the first layer to form one mixed
vector for the second-layer training.

Then, SNAC(Tt2
m (e)) was trained to extract the tail PAN(Tt2

m (e)) feature. Training samples of
SNAC(Tt2

m (e)) were also collected online. Similar to [11], elements in Tt2
m are positive samples. Tracklets

that overlap with Tt2
m in time are positive samples. The parameters of the first layer were inherited

from the corresponding detection SNAC. After training the SNAC(Tt2
m ), discriminative local composite

features can be extracted to distinguish Tt2
m from other subsequent tracklets.

As shown in Figure 4b, similarities between tracklet Tt2
m and Tt4

n were computed. After training,
PAN(Tt2

m (e)) and PAN(Tt4
n (s + 1)), as shown by the blue dashed circle areas in the figure, were

extracted. Then, forward similarity was achieved as follows:

SF
m,n = ||PAN(Tt2

m (e))− PAN(Tt4
n (s + 1))||22 (11)

To get a reliable similarity, the backward relationship was also computed, as shown in
Equation (12).

SB
m,n = ||PAN(Tt2

m (e− 1))− PAN(Tt4
n (s))||22 (12)

The final similarity was given by:

ΛPAN(Tm, Tn) = g(min(SF
m,n, SB

m,n)) (13)

where g is the probability function for the distance of feature vectors, as defined in Equation (7).
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(a) SNAC for PAN (b) Similarity computing by PAN

Figure 4. The generation and application of PAN. (a) SNAC is revised and added two pieces of motion
information of a tracklet member together with the appearance codes from the auto-encoder layer
as the inputs of the code-mix layer. During the online training process, the PAN feature is the final
output of the code-mix layer. (b) Similarities of tracklets are determined by calculating the forward
and backward PAN affinities.

4.3. Tracklet Growing

If the frame gap between Tt2
m and Tt4

n was small, variations in the appearance and motion from
Tt2

m –Tt4
n were not obvious, and the PAN could work well. Otherwise, the long-term frame gap brought

a large variety of appearances, and motions may reduce the performance. PAN considers more local
elements of the tracklet to enhance the performance. In order to make tracklet association more
reliable, it is effective to reduce the time interval in the sliding windows as much as possible. Therefore,
the tracklet growing process was used to extend the tracklet by estimated bounding boxes, which were
missing from the detection. It contained forward and backward growth.

To forward the extended tracklet Tt2
m , the center position p f

1(T
t2
m ) = (x̂, ŷ) in frame t2 + 1 was first

estimated by quadratic fitting. Then, the optimal estimation bounding box was searched as follows:

d* = arg min
d∈C

∥∥∥H(Tt2
m (e))−H(d)

∥∥∥2

2

s.t.
∥∥∥H(Tt2

m (e))−H(d)
∥∥∥ ≤ ε1

(14)

where C is the candidate bounding boxes set, center positions x and y are sampled according to the
distribution of G(0, σm), and the size is equal to Tt2

m (e). H denotes the color histogram of detection
Tt2

m (e). The goal was to find the most similar estimation. If the optimal estimation dt2+1
o was found,

a conflict process was also required to avoid false alarms. If the overlap between dt2+1
o and an existing

dt2+1
i exceeded the threshold, the forward growth of Tt2

m stopped. Otherwise, Tt2
m was updated to Tt2+1

m
with dt2+1

o and the growing process continued to frame t2 + 2. The backward extension was similar
to the forward process. For the isolated tracklets, random sampling was used to form the candidate
estimations. After these missing detection compensation processes, tracklets were extended to improve
the discrimination performance of PAN, and more reliable associations could be made.
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4.4. Tracklet Association in Sliding Windows

Tracklet association was the last module in MOT to generate the final trajectories of objects.
The main task was to link tracklets belonging to the same objects into a complete trajectory based on
similarities among tracklets. Solutions such as min-cost networks, energy minimization, successive
shortest paths, and the Hungary algorithm are widely used to generate tracking results. Global
optimization is an ideal scheme because the previous judgments will be revised to achieve the overall
optimal results. In cases where it is difficult to distinguish objects, this dynamic scheme can achieve
better tracking performance than a greedy strategy. Similar to tracking by learning feature extraction
method [15], network flows methods were no longer used to get the tracking result. The MAP problem
shown in Equation (10) was directly mapped to a generalized linear assignment:

max
L

N

∑
i=1

N

∑
j=1

Λ(Ti, Tj)Lij

s.t.
N

∑
i=1

Lij ≤ 1;
N

∑
j=1

Lij ≤ 1

(15)

To solve problem Equation (15), the similarity Λ(Ti, Tj) between tracklets was used; this is equal
to linking probabilities mainly based on PAN features. Λ(Ti, Tj) was computed by Equation (13).
However, PAN features cannot be extracted from tracklets with lengths of less than two elements.
For this particular case, Λ(Ti, Tj) degenerated into the traditional weighted combination of appearance
and motion. Lij is the association indicator, where 1 indicates connection and 0 means disconnection.
The constraints guaranteed the uniqueness of association. As the better discriminative PAN,
the similarity matrix Λ was normalized, and Equation (15) was solved by a greedy iterative algorithm.

5. Experiments

In this section, the performance of SNAC is first evaluated on detection responses and tracklets.
Then, the proposed MOT system is tested on the MOT Challenge Benchmark [37].

5.1. Evaluation of SNAC

In the MOT system, the SNAC was proposed to extract discriminative features for detection
responses and tracklets instead of handcrafted methods. Discrimination and accuracy were used as the
main indicators to evaluate the performance of SNAC. Meanwhile, the effects of histogram inputting
and the auto-encoding constraint were also evaluated. According to the order of the system framework,
the performance of SNAC was first evaluated on detection responses and then tested the SNAC on
tracklets. Since current public platforms do not provide annotation data for tracklets, how to make a
fair comparison is a thorny issue. Therefore, the performance of SNAC was mainly compared with
different constraints and handcrafted methods. In this experiment, the training processes of SNAC
were carried out with graphics processing units (GPUs).

5.1.1. SNAC for Detection Responses

During tracklet generation, an SNAC(dt
i) was established for each detection response dt

i to
implement the explicit frame-by-frame association. Through an online learning process, SNAC(dt

i)

was able to extract features for dt
i and Dt+1. Then, the similarity between dt

i and each detection of Dt+1

could be obtained by the Euclidean distance. Statistical discrimination and variance of SNAC(dt
i) from

these similarities can be calculated. Discrimination reflects the strength of the distinguishing ability,
and variance represents the robustness. To generate the tracklet set in sliding temporal windows,
each SNAC(dt

i) was trained by an incremental learning algorithm. Indicators of discrimination and
variance were computed from the overall results. Another important indicator in evaluating the SNAC
is the tracklet accuracy (TA). To compute TA, tracklets were treated as the final tracking results in a
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time window, so the metrics of MOT [38] could be used to evaluate the accuracy of tracklets. In this
case, the core indicator MOTA was equal to the TA in Equation (15):

TA = 1− ∑t(FNt + FPt + IDst)

∑t GTt
(16)

where t is the frame index in the current time window; FN, FP, and IDs are the number of false negatives,
false positives, and mismatches, respectively; and GT is the number of ground truth tracklets annotated
by us in this experiment.

Three subsequences of the 2DMOT2015 dataset were chosen to do this experiment. TUD-Crossing
is a static camera scene, ETH-Jemoli and EHT-Linthescher are moving camera sequences. Three time
windows are selected from each sequence to create a total of nine video segments for the experiment.
GTs of the nine video segments are annotated.

As shown in Table 2, SNAC_L2 was chosen as the original SN with the L2 regularization constraint,
the SNAC_L2(pixel) with raw pixel input, and the RGB and HOG histogram methods were used for
comparison. The comparison of SNACs with traditional methods is first discussed. In Table 2, the red
number in each column represents the best performance. Compared with the RGB and HOG histogram
methods, the average discriminations of the SNACs were obviously superior, implying that the SNACs
distinguished objects better than traditional RGB and HOG histogram methods. There were lower
variances in the HOC and HOG methods due to lower discrimination. TA curves are shown in Figure 5.
TA values followed the variance of the appearance threshold. From Figure 5, it can be seen that the
SNACs methods were obviously better than HOC and HOG with a large threshold area. This means
that SNACs were more robust. The value of TA was one when the appearance threshold was zero
in these nine testing video experiments. In order to simplify the labeling works and clearly identify
the relationships among objects, these nine segments were relatively simple videos with no complex
interactions between objects. Thus, detections could be correctly associated only through overlapping
relationships. However, it is impossible to work in a complex environment only through position
and size information. Appearance is an essential factor in tracklet generation. In order to reduce the
annotation workload, the experiment selected related simple scenarios. Table 2 and Figure 5 show
that when a histogram was used as input, SNAC_L2 and SN_L2 were superior to the method with
raw pixels as the input for all indicators. This implies that the use of the histogram as input was a
more robust method that was better at suppressing detection noises. In the comparisons between
SNAC_L2 and SN_L2, no significant differences in TA or average discrimination were found, but the
discrimination variance of SNAC_L2 was lower. The auto-encoding constraint was shown to be useful
to enhance the robustness of SNAC and made it adapt to various environments.

Table 2. Performance comparison of different features of detection responses. Red represents the best,
and blue indicates the worst. HOC, histogram of color.

Methods SNAC_L2 SN_L2 SNAC_L2(Pixel) HOC HOG HOC + HOG

Indicators AD Var AD Var AD Var AD Var AD Var AD Var

Sequence 1 0.8152 0.0568 0.8112 0.0600 0.6189 0.0989 0.1315 0.0029 0.1295 0.0030 0.1324 0.0027
Sequence 2 0.7337 0.0490 0.7387 0.0539 0.6589 0.0811 0.1494 0.0041 0.1471 0.0041 0.1503 0.0040
Sequence 3 0.7832 0.0347 0.7930 0.0362 0.7736 0.0397 0.1405 0.0017 0.1426 0.0016 0.1409 0.0017
Sequence 4 0.7983 0.0392 0.8150 0.0295 0.5807 0.0785 0.1656 0.0029 0.1657 0.0031 0.1690 0.0030
Sequence 5 0.8265 0.0194 0.8395 0.0184 0.6435 0.0759 0.1855 0.0032 0.1851 0.0036 0.1869 0.0033
Sequence 6 0.8279 0.0333 0.8232 0.0352 0.8490 0.0358 0.2043 0.0022 0.2084 0.0029 0.2061 0.0025
Sequence 7 0.7662 0.0196 0.7770 0.0280 0.7863 0.0403 0.1358 0.0015 0.1348 0.0015 0.1359 0.0015
Sequence 8 0.8149 0.0200 0.8244 0.0160 0.7813 0.0530 0.1642 0.0021 0.1651 0.0021 0.1626 0.0022
Sequence 9 0.9015 0.0001 0.9000 0.0001 0.9003 0.0001 0.1353 0.0005 0.1423 0.0003 0.1364 0.0001



Electronics 2019, 8, 595 14 of 20

(a) Video Sequence 1 (b) Video Sequence 2 (c) Video Sequence 3

(d) Video Sequence 4 (e) Video Sequence 5 (f) Video Sequence 6

(g) Video Sequence 7 (h) Video Sequence 8 (i) Video Sequence 9

Figure 5. Illustrations of the tracklet accuracy (TA) varying with the appearance threshold. From red to
pink, they represent the SNAC_L2, SN_L2, SNAC_L2(Pixel), HOC, HOG, and HOC + HOG methods.
Nine video sequences were sampled from the 2D MOT 2015 dataset and annotated. The abscissa axis
indicates the appearance threshold from 0–1, and ordinates axis represents the TA up to 100. Through
these curves, it can be seen that learning features are better than traditional methods at distinguishing
objects in multiple object tracking (MOT). The auto-encoding constraint (AC) term and histogram
inputs proposed in this paper also showed reasonable results.

5.1.2. SNAC for Tracklets

To improve the reliability of tracklet association, SNAC was improved to distinguish tracklets,
and its performance is evaluated in this section. To provide fair comparisons, the average
discriminations of PAN features and hand-crafted methods were evaluated. Six testing video sequences
were selected from the 2D MOT 2015 dataset, and the generated tracklets in a time window were
annotated for this experiment. The discrimination was calculated by the GT of tracklets, as shown in
Table 3. In each sequence, there discrimination was significantly enhanced from the appearance
to the composite PAN feature. Thus, PAN can effectively integrate appearance and motion to
enhance discrimination.
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Table 3. Discriminations of different features on tracklets.

Sequence 1 2 3 4 5 6

HOC + HOG 0.076 0.070 0.048 0.230 0.060 0.004
SNAC 0.151 0.256 0.200 0.193 0.128 0.246
PAN 0.208 0.404 0.369 0.289 0.224 0.379

5.2. Evaluation of the MOT System

In this section, the whole MOT system is evaluated using the MOT Challenge Benchmark, and the
2D MOT 2015 dataset was used for testing. Evaluation metrics are given by [38]. Multiple object
tracking accuracy (MOTA) combines false positives, missed targets, and identity switches. Multiple
object precision (MOTP) indicates the misalignment between GTs and tracked bounding boxes. Mostly
tracked targets (MT) is the ratio of GTs that are covered by a track hypothesis for at least 80% of their
respective life span. Mostly lost targets (ML) is the ratio of GTs that are covered by a track hypothesis
for at most 20% of their respective life span. FP and FN are the total number of false positives and
missed targets, respectively. ID switch (IDs) is the total number of identity switches. Frag is the total
number of times a trajectory is fragmented.

The proposed MOT system was developed by the Theano library [39] in a Python environment.
The primary station was equipped with a 4.0-GHz CPU and an NVIDIA GeForce GTX 1070 GPU.

The proposed MOT system was tested on the benchmark and compared with closely related works
and state-of-the-art MOT methods including those using traditional features [8,10,40,41], learning
features [17,22,23,31,42,43], and higher order motion information [44]. The experimental results are
listed in Table 4.

Table 4. Performance comparison of multiple object tracking (MOT) systems. Red represents the best.
The upward arrow indicates the higher the better, and the downward arrow means the lower the better.
MOTA, multiple object tracking accuracy; MOTP, multiple object precision; MT, mostly tracked; ML,
mostly lost; Frag, the total number of times a trajectory is fragmented.

Method MOTA↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDs↓ Frag↓
Proposed 29.3 68.6 12.9% 36.3% 9880 32173 1385 2226

Siamese CNN [22] 29.0 71.2 8.5% 48.4% 5160 37,798 639 1316
HAM_INTP15 [23] 28.6 71.1 10.0% 44.0% 7485 35,910 460 1038

CEISP [40] 25.8 70.9 10.0% 44.0% 6316 37,798 1493 2240
LP_SSVM [42] 25.2 71.7 5.8% 53.0% 8369 36,932 646 849

LINF1 [41] 24.5 71.3 5.5% 64.6% 5864 40,207 298 744
TENSOR [44] 24.3 71.6 5.5% 46.6% 6644 38,582 1271 1304

DEEPDA_MOT [16] 22.5 70.9 6.4% 62.0% 7346 39,092 1159 1538
MTSTracker [43] 20.6 70.3 9.0% 63.9% 15,161 32,212 1387 2357
TC_Siamese [17] 20.2 71.1 2.6% 67.5% 6127 42,596 294 825

DCO_X [9] 19.6 71.4 5.1% 54.9% 10,652 38,232 521 819
RNN_LSTM [31] 19.0 71.0 5.5% 45.6% 11,578 36,706 1490 2081

DP_NMS [8] 14.5 70.8 6.0% 40.8% 13,171 34,814 4537 3090

The results for the MOT 2015 dataset showed that the proposed MOT system using SNAC
obtained a better performance for MOTA than the other competitors listed in Table 4. The proposed
method showed a comprehensive performance improvement compared with the hand-crafted feature
methods CEISP and DP_NMS. This means that online learned features can better distinguish among
targets and complete data association than traditional hand-crafted methods. Compared with the
deep neural network feature MOT system, it can be seen that learning features is suitable for MOT
applications. A higher MT indicates that tracklet growth can extend the short tracklets to enhance the
PAN feature to make object trajectories as complete as possible. Meanwhile, a lower ML also benefits
from the tracklet growing module. It also has disadvantages, as inaccurate detection compensation
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will lead to increases in FP and FN and reduce MOTP and the performance of PAN to achieve more
IDs. Further improvement is needed in this area. Specific indicators such as MT and ML were superior
for the proposed method than for several deep learning methods, especially the related deep Siamese
network methods [17,22,23]. This implies that the online learned feature extraction method, which
collects samples only from current scenes, can describe objects accurately and distinguish objects
robustly. The feature extraction method with a simple structure and online training is useful for MOT.
Although the proposed method was still no better than the state-of-the art methods detailed in [37],
a pure online solution is possible in terms of time and performance, but this needs to be confirmed by
further research.

Figure 6 demonstrates some tracking results of the proposed method on the 2D MOT 2015 dataset.
For the static camera cases of Figure 6a–e and the upper part of Figure 6f, tracking results showed good
performance. In Figure 6a, there are two pedestrians close in distance and alike in appearance, and
they walk together. This is a difficult situation in MOT as their trajectories are likely to interfere with
each other and produce false tracking results. With the help of discriminative features, the proposed
method correctly tracked them. Figure 6d shows that the method can track the targets of complex
movements robustly. Though scenes of the lower Figure 6f,g–i were difficult due to camera motion,
the proposed method still worked properly and correctly distinguished objects.

(a) Seq 1 (1–20) (b) Seq 2 (200–300) (c) Seq 3 (100–130)

(d) Seq 4 (300–350) (e) Seq 5 (50–100) (f) Seq 6(1–100);7(550–650)

(g) Seq 8 (190–240) (h) Seq 9 (100–230) (i) Seq 10 (200–300)

Figure 6. Tracking results on the 2D MOT 2015 dataset. There are ten sequences in the figure, in which
(f) contains two sequences. The ETH-Crossing sequence is not shown because it has less targets.
The former six sequences (a–e) and the upper one in (f) are static camera cases; the rest are motion
camera cases.

The execution efficiency of the proposed method is shown in Table 5. As the execution efficiency
of MOT methods tested on the MOT Challenge Benchmark were not calculated officially, but uploaded
by the authors themselves, it is hard to make fair comparisons. Multiple object tracking is a
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system including tracklet generation, tracking model establishment, tracklet association, trajectories
generation, and other specific modules. The runtime performance of the main modules in the proposed
MOT system are shown in Table 5, which is conducive to specific analysis. In the proposed MOT
system, tracklet generation, tracklet association, and tracking results generation were executed with a
4.0-GHz CPU, and detection training and tracklet training were ran by a Nvidia Geforce GTX 1070
GPU card. From Table 5, the efficiencies of tracklet generation and trajectory generation basically met
the real-time requirements. However, the training of SNAC consumed much time and reduced the
efficiency of the whole MOT system. The main reason was that the program codes were encoded
only for the purpose of functions evaluation and have not been optimized for running efficiency.
In addition, the hardware was not an engineering-grade graphics card. Further works will be carried
out for real-time implementation of the proposed MOT framework.

Table 5. Specific execution efficiency of proposed MOT system. Time consumption (C) and execution
efficiency (E) of the whole MOT system and main modules are calculated.

Modules Detections Training Tracklets Generation Tracklets Training Trajectories Generation Whole System

Indicators C (sec) E (fps) C (sec) E (fps) C (sec) E (fps) C (sec) E (fps) C (sec) E (fps)

AVG-Town 24.1358 0.0414 0.0255 39.2311 20.2524 0.0494 0.0383 26.1271 44.4519 0.0225
ADL-1 26.9062 0.0372 0.0460 21.7297 12.0443 0.0830 0.0186 53.6481 39.0152 0.0256
Venice 12.0126 0.08328 0.0021 469.7286 3.4141 0.2929 0.0036 278.74 15.4324 0.0648

PETS2L2 28.6360 0.0349 0.0328 30.4669 27.0256 0.0370 0.0622 16.0834 55.7565 0.0179
TUD-Cro 5.1749 0.1932 0.0063 157.8591 0.9073 1.1022 0.0012 840.3361 6.0897 0.1642
KITTI16 14.7907 0.0676 0.0174 57.4918 3.6223 0.2761 0.0160 62.3750 18.4464 0.0542
KITTI19 4.1255 0.2424 0.0059 170.6446 0.6580 1.5198 0.0034 292.0029 4.7928 0.2086
ADL-3 15.1071 0.0662 0.0220 45.5284 1.2581 0.7949 0.0026 389.1656 16.3897 0.0610
ETH-Jel 5.9893 0.1670 0.0083 120.0808 0.6869 1.4559 0.0017 582.0106 6.6862 0.1496
ETH-Lin 4.9171 0.2034 0.0098 101.5885 0.6640 1.5059 0.0011 946.5673 5.5921 0.1788
ETH-Cro 3.6163 0.2765 0.0050 199.2754 0.3902 2.5631 0.0006 1657.8749 4.0121 0.2492

6. Conclusions

In this paper, an SNAC method has been presented to better distinguish objects for MOT.
The online learned SNAC can work well in noisy and small sample environments. An incremental
learning SNAC algorithm was proposed to generate reliable tracklets. SNAC was also improved to
extract an PAN feature that combines appearance and motion for distinguishing tracklets. Tracklet
growth was used to compensate for missing detections to improve the association.

Two sub-experiments were designed to evaluate the performance of SNAC and the PAN feature.
The experimental results showed that SNAC could extract discriminative features from detection
responses and better distinguish them. Meanwhile, in terms of appearance, PAN had a significant
improvement in discrimination over SNAC and could better carry out tracklet association. The whole
tracking system was evaluated over the 2D MOT 2015 dataset, and the results were compared with the
state-of-the-art methods, showing a comparable performance. Experiments showed that this kind of
pure online feature extraction solution is suitable for MOT.

Further research includes two aspects. One is combining more useful information to improve the
proposed feature extraction method to better distinguish objects for MOT. Another is improving the
efficiency of the proposed method to achieve real-time tracking.
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