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Abstract: The k-nearest neighbor (kNN) rule is one of the most popular classification algorithms
applied in many fields because it is very simple to understand and easy to design. However, one of
the major problems encountered in using the kNN rule is that all of the training samples are
considered equally important in the assignment of the class label to the query pattern. In this paper,
an evidential editing version of the kNN rule is developed within the framework of belief function
theory. The proposal is composed of two procedures. An evidential editing procedure is first proposed
to reassign the original training samples with new labels represented by an evidential membership
structure, which provides a general representation model regarding the class membership of the
training samples. After editing, a classification procedure specifically designed for evidently edited
training samples is developed in the belief function framework to handle the more general situation
in which the edited training samples are assigned dependent evidential labels. Three synthetic
datasets and six real datasets collected from various fields were used to evaluate the performance of
the proposed method. The reported results show that the proposal achieves better performance than
other considered kNN-based methods, especially for datasets with high imprecision ratios.

Keywords: pattern classification; k-nearest-neighbor classifier; fuzzy editing; evidential editing;
belief function theory

1. Introduction

Classification of patterns is an important area of research and practical applications in a variety
of fields including biology [1], psychology [2], medicine [3], electronics [4], marketing [5], military
affairs [6], etc. In the past several decades, a wide variety of approaches has been developed towards
this task [7]. As a type of lazy learning algorithm, the k-nearest neighbor (kNN) rule introduced by Fix
and Hodges [8] has been one of the most popular and successful pattern classification techniques due
to its simplicity and validity. The basic idea of the kNN rule is that patterns close in feature space are
likely to belong to the same class. Though the kNN rule is suboptimal, it has been shown that as k
increases, its error rate approaches the optimal Bayes error rate asymptotically in the infinite sample
situation [9].

However, in the practical cases of a finite number of samples, the classical k-NN rule is not
always the optimal way of utilizing the information contained in the neighborhood of query patterns,
and therefore, a large number of research works focused on the improvement of this rule in the past
60 years [10–15]. One of the major concerns when using the kNN rule is that all of the training samples
are considered equally important for assigning the class label of the query pattern. This limitation will
result in great difficulty for classification in regions where the samples from different classes overlap.
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Atypical samples in overlapping regions may be assigned as much weight as those that are truly
representative of the clusters. Furthermore, it may be argued that training samples with great noise
should not be given equal weight. In order to overcome this difficulty, many editing procedures have
been proposed to preprocess the original training samples and then to make classification based on the
edited training set [16–29].

Based on different structures of the edited labels, the editing procedures can be divided into two
groups: crisp editing and soft editing. The editing procedure was firstly developed by Wilson [17]
to preprocess the training samples. In this procedure, a training sample xi is classified using the
kNN rule with the remainder of the training set and is then deleted from the original training set
if its original label does not agree with the classification result. After that, many others followed
Wilson’s work and proposed some variants [18–22]. One of the representatives is the generalized
editing procedure developed by Koplowitz and Brown [19], aiming to overcome the limitations of
large amounts of samples being removed from the training set. In their work, instead of deleting
all the conflicting samples as Wilson’s work, if a particular class (excluding the original class) has
at least k′ ((k + 1)/2 ≤ k′ ≤ k) representatives among these k nearest neighbors, then xi is labeled
according to that majority class. Essentially, both Wilson’s editing and its variants are crisp editing
procedures, in which each edited sample is either removed or assigned to a single class. In order to
overcome the weakness of the crisp editing methods, a fuzzy editing procedure was then proposed to
reassign fuzzy membership to each training sample xi based on its k nearest neighbors [25]. Several
different realizations of this fuzzy editing procedure have been also developed [26–28]. As a type
of soft editing procedure, fuzzy editing makes it possible for each edited sample to be assigned to
several classes with different fuzzy memberships, which provides more detailed information about
the samples’ membership than the crisp editing procedures.

In real-world classification problems, different types of uncertainty may coexist due to the
environments or other interference factors, e.g., fuzziness may coexist with imprecision. The fuzzy
editing procedure, developed based on fuzzy set theory [30], cannot address imprecise or partial
information effectively in the modeling and reasoning processes. In contrast, the belief function
theory [31–33], also known as Dempster–Shafer theory or evidence theory, offers a well-founded and
effective framework to represent and combine a variety of uncertain information. This theory has
already been used in kNN-based classification [34–39]. In [34], an evidential version of kNN, called
EkNN, has been proposed by the introduction of the ignorance class to model the uncertainty. Then,
this classification method was further extended to deal with uncertainty using the rejection class and
meta-classes in [37]. In [38], Dempster’s rule of combination used in EkNN was replaced by a class
of parametric combination rules. However, neither the EkNN method nor its extensions consider
any editing procedure in the classification process. Recently, an editing procedure for multi-label
classification was developed in [29] based on the belief function theory, but it is essentially a crisp
editing procedure, as each edited sample is just assigned a single set of classes without considering the
membership degrees.

In this paper, an evidential editing version of the kNN classifier (EEkNN) is proposed based on
the belief function theory (A preliminary version of some of the ideas introduced here was presented
in [40,41]. The present paper is a deeply revised and extended version of this work, with several
new results.). The proposed EEkNN classifier is composed of two procedures: evidential editing
for the original training samples and classification based on the evidently edited training samples.
First, an evidential editing procedure is developed to reassign the original training samples with
new labels represented by an evidential membership structure. Compared with the crisp label or
the fuzzy membership, the evidential membership provides more expressiveness to represent the
imprecision and uncertainty for those samples in overlapping regions or with great noise. After the
editing procedure, a kNN classification procedure specifically designed for evidently edited training
samples is developed in the belief function framework. This classification procedure can well handle
the more general situation where the edited training samples are assigned dependent evidential labels.



Electronics 2019, 8, 592 3 of 17

The rest of this paper is organized as follows. In Section 2, the basics of the belief function
theory are recalled. Then, the evidential editing procedure is developed in Section 3. After that,
the classification procedure is designed and realized based on the edited training samples in the belief
function framework in Section 4. Section 5 provides several experiments to test the proposed method.
Finally, Section 6 concludes the paper. To facilitate reading, Table 1 gives a list of the symbols used and
their definitions.

Table 1. List of symbols and definitions.

Symbol Definitions

kNN k nearest neighbor
EkNN evidential k nearest neighbor
EEkNN evidential editing k nearest neighbor
FEkNN fuzzy editing k nearest neighbor
GEkNN generalized editing k nearest neighbor
k number of nearest neighbors in the classification process
kedit number of nearest neighbors in the editing process
m mass function
s Frank t-norms parameter
T original training set
T ′ edited training set
Ti training set with xi excluded
x input feature vector
y query pattern
ω class label
Ω frame of discernment

2. Basics of the Belief Function Theory

In belief function theory [31–33], a problem domain is represented by a finite set
Ω = {ω1, ω2, · · · , ωM} of mutually exclusive and exhaustive hypotheses called the frame of discernment.
A mass function expressing the belief committed to the elements of 2Ω by a given source of evidence is
a mapping function m: 2Ω → [0, 1], such that:

m(∅) = 0 and ∑
A∈2Ω

m(A) = 1. (1)

Elements A ⊆ Ω having m(A) > 0 are called the focal sets of the mass function m. The mass
function has several special cases to encode different types of information. A mass function is said
to be:

• Bayesian, if all of its focal sets are singletons. In this case, the mass function just reduces to the
classical probability distribution.

• categorical, if the whole mass is allocated to one focal set A. This indicates that the truth lies in A
with certainty.

• certain, if the whole mass is allocated to a unique singleton. This indicates that we have complete
knowledge about the truth.

• vacuous, if the whole mass is allocated to Ω. This situation corresponds to complete ignorance.
• simple, if it has at most two focal sets and one of them is Ω if it has two. It is usually denoted as

Aw, where A is the focal set different from Ω and 1− w is the confidence that the truth lies in A.

After representing the available pieces of evidence as mass functions, the next step is to combine
these mass functions into a single one for decision making. Many combination rules have been
developed. The differences among them mainly depend on two issues: the dependence and the conflict
among the available pieces of evidence.
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Dempster’s rule is the most popular choice to combine several distinct pieces of evidence [31].
Its combination of two mass functions m1 and m2 defined on the same frame of discernment Ω is:

m1 ⊕m2(A) =


0, A = ∅

∑
B∩C=A

m1(B)m2(C)

1− ∑
B∩C=∅

m1(B)m2(C)
, A ∈ 2Ω \∅.

(2)

To combine mass functions induced by nondistinct pieces of evidence, a cautious rule and,
more generally, a family of parameterized t-norm based rules were proposed in [42]:

m1 ~s m2 =
⊕

∅ 6=A⊂Ω

Aw1(A)>sw2(A), (3)

where m1 and m2 are separable mass functions, such that m1 =
⊕

∅ 6=A⊂Ω
Aw1(A) and m2 =

⊕
∅ 6=A⊂Ω

Aw2(A).

The operator >s denotes Frank’s parameterized family of t-norms:

a>sb =


a ∧ b, if s = 0
ab, if s = 1

logs

(
1 + (sa−1)(sb−1)

s−1

)
, otherwise,

(4)

for all a, b ∈ [0, 1], with s being a positive parameter. When s = 0, the t-norm-based rule reduces to the
cautious rule, and when s = 1, it reduces to Dempster’s rule.

For the above combination rules, it is assumed that the pieces of evidence to be combined are
fully reliable. However, when this assumption fails, there may exist large conflicts among the pieces of
evidence, in which case the performance of the above combination rules degrades greatly. Dubois and
Prade [43] proposed an alternative rule to the combination of pieces of conflicting evidence as:

m1 }m2(A) =

 0, A = ∅
∑

B∩C=A
m1(B)m2(C) + ∑

B∩C=∅,
B∪C=A

m1(B)m2(C), A ∈ 2Ω \∅. (5)

This rule boils down to Dempster’s rule when there is no conflict between the two combined
pieces of evidence.

For decision making, Smets [33] proposed the pignistic transformation to transform a mass function
into a probability function as:

BetP(A) = ∑
B∩A 6=∅

|A ∩ B|
|B| m(B), A ∈ 2Ω, (6)

where |X| is the cardinality of set X.

3. Evidential Editing Procedure for Training Samples

Let us consider an M-class classification problem in a predefined category Ω = {ω1, · · · , ωM}.
Assuming that a set of N labeled training samples T = {(x1, ω(1)), · · · , (xN , ω(N))} with input
vectors xi ∈ RP and class labels ω(i) ∈ Ω is available, the editing procedure aims to generate a new
edited training set T ′, which is more powerful than the original one for classification. In this section,
we develop an evidential editing procedure for training samples in the belief function framework.
First, in Section 3.1, an evidential membership structure is introduced as a general representation
model for class membership. Then, in Section 3.2, an evidential editing algorithm is proposed to edit
the training samples based on the evidential membership structure.
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3.1. Evidential Membership Structure

The purpose of the evidential editing procedure is to assign to each sample in the training set T a
new soft label represented by an evidential membership structure as:

T ′ = {(x1, m1), (x2, m2), · · · , (xN , mN)}, (7)

where mi, i = 1, 2, · · · , N, are mass functions defined on the frame of discernment Ω.
The above evidential membership modeled by mass function mi provides a general representation

model regarding the class membership of sample xi:

• when mi is a Bayesian mass function, the evidential membership reduces to the fuzzy membership
as a special case.

• when mi is a categorical mass function, the evidential membership reduces to the crisp set of labels
as defined in [29].

• when mi is a certain mass function, the evidential membership reduces to the crisp label.
• when mi is a vacuous mass function, the sample xi is useless for classification and can be considered

as an outlier.

Example 1. Let us consider a set of N = 5 samples T ′ = {(x1, m1), (x2, m2), (x3, m3), (x4, m4), (x5, m5)}
with evidential membership regarding a set of M = 3 classes Ω = {ω1, ω2, ω3}. Mass functions for each
sample are given in Table 2. They illustrate various situations: the case of sample x1 corresponds to the situation
of probabilistic uncertainty (m1 is Bayesian), whereas the case of sample x2 corresponds to the situation of
imprecision (m2 is categorical); the class of sample x3 is known with precision and certainty (m3 is certain),
whereas the class of sample x4 is completely unknown (m4 is vacuous); finally, the mass function m5 models the
general situation where the class of sample x5 is both imprecise and uncertain.

Table 2. Example of the evidential membership.

A m1(A) m2(A) m3(A) m4(A) m5(A)

∅ 0 0 0 0 0
{ω1} 0.2 0 0 0 0
{ω2} 0.3 0 0 0 0.1
{ω1, ω2} 0 0 0 0 0
{ω3} 0.5 0 1 0 0.2
{ω1, ω3} 0 0 0 0 0
{ω2, ω3} 0 1 0 0 0.4
Ω 0 0 0 1 0.3

As illustrated in the above example, the evidential membership is a powerful model to represent
the imprecise and uncertain information existing in the training samples. In the following part, we will
study how to edit each training sample with the evidential membership.

3.2. Evidential Editing Algorithm

For each training sample xi, i = 1, 2, · · · , N, we denote the leave-it-out training set as
Ti = T \ {(xi, ω(i))}, i = 1, 2, · · · , N. Now, we will show how the evidential editing procedure
works for one training sample xi based on the other samples contained in Ti. The evidence modeling
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method developed in [34] is used here to generate a mass function for each neighbor xj regarding the
class membership of xi as:

mi({ωq} | xj) = αφq(dij)

mi(Ω | xj) = 1− αφq(dij)

mi(A | xj) = 0, ∀A ∈ 2Ω \ {{ωq}, Ω},
(8)

where dij = d(xi, xj), ωq is the class label of xj (i.e., ω(j) = ωq), and α is a parameter such that 0 < α < 1.
A recommended value of α = 0.95 can be used to obtain good results on average, and a good choice
for φq is:

φq(d) = exp(−γqd2), (9)

where γq is a positive parameter associated with class ωq, and it can be set to the inverse of the mean
squared distance between training samples belonging to class ωq heuristically.

Based on the distance d(xi, xj), we first select kedit nearest neighbors of xi in training set Ti and
construct the corresponding kedit mass functions according to the above way. These kedit mass functions
are then combined to form a resulting mass function mi, synthesizing the final evidential membership
regarding the class of xi. Considering the different degrees of conflict among the constructed mass
functions, we developed a hierarchical combination process that is carried out at two levels: intra-class
combination and inter-class combination.

At the first level, we consider the combination of mass functions derived from the neighbors with
the same class label. As all the mass functions to be combined support the same class, there is no
conflict among them. Besides, as the training samples are usually collected independently, the items of
evidence from different neighbors are independent. In this case, Dempster’s rule is a good choice for
its effectiveness and simplicity. If we denote by Ψq

i the set of the k nearest neighbors of xi belonging to
class ωq and assuming that Ψq

i is not empty, the intra-class combination for mass functions derived
from the neighbors with class label ωq is given by:

mi(· | Ψq
i ) =

⊕
xj∈Ψq

i

mi(· | xj). (10)

As shown in Equation (8), all the mass functions to be combined are simple. Thanks to this
particular structure, the computational burden of Dempster’s rule can be greatly reduced, and the
above intra-class combination can be further formulated analytically as:

mi({ωq} | Ψq
i ) = 1− ∏

xj∈Ψq
i

mi(Ω | xj)

mi(Ω | Ψq
i ) = ∏

xj∈Ψq
i

mi(Ω | xj)

mi(A | Ψq
i ) = 0, ∀A ∈ 2Ω \ {{ωq}, Ω}.

(11)

If Ψq
i is an empty set, then mi(· | Ψq

i ) is simply a vacuous mass function satisfying mi(Ω | Ψq
i ) = 1.

After the intra-class combination for mass functions derived from the neighbors belonging to each
class, at the second level, we combine these sub-combination results to get a global combination result
as the final evidential membership regarding the class of xi. As these sub-combination results support
different classes, large conflicts may exist among them. In this case, Dubois–Prade’s rule is a good
alternative combination method. However, when the number of classes is large, Dubois–Prade’s rule
of combination for all the sub-combination results will generate a great number of focal sets (as many
as 2M − 1), which results in overmuch imprecision for the edited label. Therefore, at the inter-class
combination level, if there is more than one mass function having non-zero mass for the support class,
we only combine those two having largest mass as:
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mi = mi(· | Ψq1
i )}mi(· | Ψq2

i ), (12)

where mi({ωq1} | Ψq1
i ) ≥ mi({ωq2} | Ψq2

i ) ≥ mi({ωq} | Ψq
i ), q = 1, 2, · · · , M, q 6= q1, q 6= q2.

Noting that the sub-combination results shown in Equation (11) are also simple mass functions,
the above inter-class combination can be further formulated analytically as:

mi({ωq1}) = mi({ωq1} | Ψq1
i )mi(Ω | Ψq2

i )

mi({ωq2}) = mi({ωq2} | Ψq2
i )mi(Ω | Ψq1

i )

mi({ωq1 , ωq2}) = mi({ωq1} | Ψq1
i )mi({ωq2} | Ψq2

i )

mi(Ω) = mi(Ω | Ψq1
i )mi(Ω | Ψq2

i )

mi(A) = 0, ∀A ∈ 2Ω \ {{ωq1}, {ωq2}, {ωq1 , ωq2}, Ω}.

(13)

If there is only one mass function having non-zero mass for the support class, then mi is simply
the same as mi(· | Ψq1

i ). Algorithm 1 shows the pseudocode of the evidential editing algorithm.

Algorithm 1 Evidential editing algorithm.

Require: the original training set T = {(x1, ω(1)), · · · , (xN , ω(N))} with xi ∈ RP and ω(i) ∈
{ω1, · · · , ωM}, the number of nearest neighbors kedit

1: Initialize T ′ ← ∅;
2: for i = 1–N do

3: Find kedit nearest neighbors of xi in T \ {(xi, ω(i))};
4: Generate a mass function mi(· | xj) for each neighbor xj using Equations (8)–(9);
5: for q = 1 to M do

6: Combine mass functions derived from the neighbors belonging to class ωq to get a

sub-combination result mi(· | Ψq
i ) using Equation (11);

7: end for
8: Combine all the sub-combination results to get a global combination result mi using Equation (13);

9: T ′ ← T ′ ∪ {(xi, mi)};
10: end for
11: return the edited training set T ′

Example 2. Figure 1 illustrates a simplified three-class classification example in the two-dimensional plane.
A total number of thirteen training samples was collected with x1–x5 belonging to class ω1, x6–x9 belonging to
class ω2, and x10–x13 belonging to class ω3. We consider the evidential editing process for sample x1 based on
the information from the other samples. In this example, the number of nearest neighbors kedit was set to five.
Based on the Euclidean distance, five samples x3, x5, x6, x8, x12 were selected, and the corresponding five mass
functions were constructed using Equations (8) and (9) regarding the class membership of x1 as:

m1({ω1} | x3) = 0.751, m1(Ω | x3) = 0.249
m1({ω1} | x5) = 0.751, m1(Ω | x5) = 0.249
m1({ω2} | x6) = 0.751, m1(Ω | x6) = 0.249
m1({ω2} | x8) = 0.751, m1(Ω | x8) = 0.249
m1({ω3} | x12) = 0.428, m1(Ω | x12) = 0.572.

The above mass functions were then combined at two levels sequentially. At the intra-class combination
level, we combined those mass functions derived from the neighbors with the same class label using Equation (11)
and obtained the sub-combination results as:

m1({ω1} | {x3, x5}) = 0.938, m1(Ω | {x3, x5}) = 0.062
m1({ω2} | {x6, x8}) = 0.938, m1(Ω | {x6, x8}) = 0.062
m1({ω3} | {x12}) = 0.428, m1(Ω | {x12}) = 0.572.
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Next, at the second level, we combined the above sub-combination results to get a global one. In this step,
only the two mass functions having largest mass for the support class, i.e., m1(· | {x3, x5}) and m1(· | {x6, x8}),
were combined using Equation (13) to get the final evidential membership regarding the class of xi as:

m1({ω1}) = 0.058, m1({ω2}) = 0.058,
m1({ω1, ω2}) = 0.880, m1(Ω) = 0.004.

It can be seen that the focal set {ω1, ω2} obtained the largest mass. This indicates that the sample x1

had a great chance of being in the overlapping region of class ω1 and class ω2, which is consistent with the
actual situation.

X

Y

○

○ ○

○ ○ △

△ △

△

□ □
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x4

x3
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x11

x13

x6

x8

x7

x9
x1

Class 1 Class 2

Class 3

4 8 9 10 14

4

0

6

8

10

14

Figure 1. A simplified three-class classification example.

4. kNN Classification with Evidently Edited Training Samples

After the evidential editing procedure developed in Section 3, the problem now turns into
classifying a query pattern y ∈ RP based on the evidently edited training set T ′. In this section,
a classification procedure specifically designed for evidently edited training samples is developed in
the belief function framework. This classification procedure is composed of the following two steps:
evidence representation for the edited training samples and evidence combination for decision making.

4.1. Evidence Representation for the Edited Training Samples

Assume that the k nearest neighbors of the query pattern y have been selected from the edited
training set. Generally, one training sample xi is a very reliable piece of evidence for the classification
of y if it is very close to y. In contrast, if xi is far from y, then it is not reliable evidence. In the belief
function society, the discounting operation proposed by Shafer [32] is a common tool to address the
partially reliable evidence.

Denote as mi the evidential label of the training sample xi and βi the confidence degree of the
class membership of y with respect to the training sample xi. The evidence provided by xi for the class
membership of y is represented with a discounted mass function βi mi by discounting mi with a rate
1− βi as: {

βi mi(A) = βimi(A), ∀A ∈ 2Ω \Ω
βi mi(Ω) = βimi(Ω) + (1− βi).

(14)

The confidence degree βi is determined based on the distance di between xi and y. Generally,
a larger distance results in a smaller confidence degree, and therefore, βi should be a decreasing
function of di. A similar decreasing function with Equation (9) is used here to define the confidence
degree βi ∈ (0, 1] as:
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βi = exp(−λid2
i ), (15)

where λi is a positive parameter associated with the training sample xi and is defined as:

λi =

 ∑
A∈2Ω\Ω

mi(A)dA + mi(Ω)d

−2

, (16)

where d is the mean distance among all training samples and dA is the mean distance among training
samples belonging to class set A, ∀A ∈ 2Ω \Ω.

Remark 1. In calculating the confidence degree, parameter λi is designed by extending the parameter γq in
Equation (9) to the cases of evidential labels. In Equation (16), if the label of the training sample xi is crisp
with ωq, i.e., mi({ωq}) = 1, mi(A) = 0, ∀A ∈ 2Ω \ {ωq}, then the parameter λi just reduces to γq as a
special case.

4.2. Evidence Combination for Decision Making

In this section, we will combine the above generated k mass functions into a single one in order to
make a decision about the class of the query pattern y. The popular Dempster’s rule of combination
relies on the assumption that the items of evidence to be combined are independent. However,
as illustrated in the following example, the k mass functions derived from different edited samples
cannot be regarded as fully independent any longer.

Example 3. Figure 2 illustrates the dependence among different edited training samples, where the training
samples are denoted by “4” and the query pattern is denoted by “�”. In the evidential editing process, kedit = 2
was assumed to search for the nearest neighbors, and in the classification process, the number of nearest neighbors
k = 3 was assumed. We can see that x1, x2, and x3 were the three nearest neighbors used for the classification of
the query pattern y. In the evidential editing process, as the training sample x4 was used to calculate both the
class membership of x1 and x2, the edited training samples x1 and x2 were no longer independent. In contrast,
the edited training sample x3 was still independent of both x1 and x2 as they did not use common training
samples in the evidential editing process. Therefore, the items of evidence from different edited training samples
may have partial dependence.

y

x1 x2

x3

x4

Figure 2. Illustration of dependence among edited training samples.

To account for this partial dependence, we used the parameterized t-norm-based rule shown in
Equation (3) to combine the generated k mass functions to get the final result for query pattern y as:

m = βi1 mi1 ~s
βi2 mi2 ~s · · ·~s

βik mik , (17)
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where k is the number of nearest neighbors with i1, i2, · · · , ik being the indices of the k nearest neighbors
of y in T ′ and s is the Frank t-norms parameter defined in Equation (4). Different values of parameter
s result in a series of combination rules ranging from the cautious rule (s = 0) to the Dempster’s rule
(s = 1). The selection of parameter s depends on the potential dependence of the edited training
samples. A smaller value should be assigned to s for the case of larger dependence. In practice, we can
use cross-validation to search for the optimal t-norm-based rule.

In order to make a decision based on the above combined mass function m, the pignistic probability
BetP shown in Equation (6) was calculated. Finally, the query pattern y was assigned to the class with
the maximum pignistic probability.

5. Experiments

The performance of the proposed kNN classifier with evidential editing procedure (EEkNN) was
evaluated using four different experiments. In the first experiment, the combination rules used in the
classification process were evaluated under different dependence degrees of the edited samples. In the
second experiment, the effects of the two main parameters kedit and k in the editing and classification
processes were analyzed. In the last two experiments, the performance of the EEkNN classifier was
compared with those of other kNN-based methods, including the kNN classifier with generalized
editing procedure (GEkNN) [19], the kNN classifier with fuzzy editing procedure (FEkNN) [25], and the
evidential kNN classifier (EkNN) [34], using synthetic datasets and real datasets, respectively.

5.1. Evaluation of the Combination Rules

This experiment was designed to evaluate the combination rules used in the classification
process of the EEkNN classifier. A two-dimensional three-class classification problem was considered.
The following normal class-conditional distributions were assumed:

Class A: µA = (6, 6)T , ΣA = 4I;
Class B: µB = (14, 6)T , ΣB = 4I;
Class C: µC = (14, 14)T , ΣC = 4I.

A set of 150 training samples and a set of 3000 test samples were generated from the above
distributions using equal prior probabilities. The average test classification rate over 30 independent
trials was calculated. In the evidential editing process, kedit = 3, 9, 15, 21 were selected, and in the
classification process, values of k ranging from 1–25 have been investigated. The t-norm-based rules
(TR) with parameter s ranging from 0–1 have been evaluated (the cautious rule (CR) was retrieved
when s = 0, and Dempster’s rule (DR) was retrieved when s = 1).

Figure 3 shows the classification accuracy for different combination rules. We note that the best
combination rule varied with changes of the value of kedit. In other words, the kedit value had great
influence on the dependence of the edited samples, and a larger kedit value tended to result in larger
dependence. For one specific classification problem, the selection of the best combination rule depends
on the potential dependence of the edited samples, which further depends on the utilized kedit value.
Therefore, for the EEkNN classifier, the optimal t-norm-based rule should be searched for each specific
kedit value.
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Figure 3. Classification results for different combination rules under different kedit values with values
of k ranging from 1–25.

5.2. Parameter Analysis

This experiment was designed to analyze the effect of parameters kedit and k for the proposed
EEkNN classifier. The same training and test samples with the previous experiment were used.
The difference was that in the evidential editing process, kedit = 3, 6, 9, 12, 15, 18, 21, 24 were
selected, and the optimal t-norm-based rule for each specific kedit value was used to make the
classification. Average classification accuracy over the 30 trials with values of k ranging from 1–25 has
been investigated.

From Figure 4, we can see that the classification performance can improve clearly as the parameter
kedit increases within an interval ([3, 12] in this example). However, when kedit exceeded an upper
boundary (kedit = 12 in this example), the classification performance no longer improved ideally.
In addition, when kedit took small values, the classification performance could improve as the parameter
k increased. However, when kedit exceeded the upper boundary, the parameter k had little effect on the
classification performance.
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Figure 4. Classification results of the EEkNN classifier for different values of kedit and k.

5.3. Synthetic Data Test

This experiment was designed to compare the proposed EEkNN classifier with other kNN-based
classifiers using synthetic datasets with different class imprecision ratios, defined as the number
of imprecise samples divided by the total number of training samples. A training sample xi is
considered to be imprecise if a non-singleton set gets the largest mass after the evidential editing
procedure. A two-dimensional four-class classification problem was considered. The following normal
class-conditional distributions were assumed. For comparisons, we changed the variance of each
distribution to control the class imprecision ratio.

Case 1 Class A: µA = (0, 0)T , ΣA = I; Class B: µB = (5, 0)T , ΣB = I;

Class C: µC = (0, 5)T , ΣC = I; Class D: µC = (5, 5)T , ΣC = I. Imprecision ratio ρ = 33%
Case 2 Class A: µA = (0, 0)T , ΣA = 2I; Class B: µB = (5, 0)T , ΣB = 2I;

Class C: µC = (0, 5)T , ΣC = 2I; Class D: µC = (5, 5)T , ΣC = 2I. Imprecision ratio ρ = 60%
Case 3 Class A: µA = (0, 0)T , ΣA = 3I; Class B: µB = (5, 0)T , ΣB = 3I;

Class C: µC = (0, 5)T , ΣC = 3I; Class D: µC = (5, 5)T , ΣC = 3I. Imprecision ratio ρ = 79%

A training set of 200 samples and a test set of 4000 samples were generated from the
above distributions using equal prior probabilities. For each case, 30 trials were performed
with 30 independent training sets. The average classification accuracy and the corresponding
95% confidence interval were calculated. For each trial, the best values for the parameters
kedit and s in the EEkNN classifier were determined in the sets {3, 6, 9, 12, 15, 18, 21, 24} and
{1, 10−1, 10−2, 10−3, 10−4, 10−5, 0}, respectively, by cross-validation. For all of the considered method,
values of k ranging from 1–25 have been investigated.
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Figures 5–7 show the training set and the classification results for cases with different imprecision
ratios. From the left three subfigures, we can see that the three cases corresponded to slight, moderate,
and severe class overlapping, respectively. The average classification accuracy rates of different
methods, as well as the corresponding 95% confidence intervals of the proposed one are shown in
the right three subfigures. It can be seen that for all the considered three cases, the proposed EEkNN
classifier provided better classification accuracy than other kNN-based ones, because in our proposed
EEkNN classifier, the uncertainty of samples in overlapping regions can be well characterized with the
introduction of the evidential editing procedure. We also notice that the performance improvement was
more significant for Case 3, where the samples from different classes overlapped severely. Furthermore,
different from other kNN-based classifiers, the proposed one was less sensitive to the value of k, and it
performed well even with a small value of k.
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Figure 5. Training set and classification results for Case 1 with imprecision ratio ρ = 33%.
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Figure 6. Training set and classification results for Case 2 with imprecision ratio ρ = 60%.
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Figure 7. Training set and classification results for Case 3 with imprecision ratio ρ = 79%.

5.4. Real Data Test

This experiment was designed to compare the proposed EEkNN classifier with other kNN-based
classifiers using some real-world classification problems from the well-known UCI Machine Learning
Repository [44]. These datasets covered a variety of applications in many fields, i.e., biology, medicine,
phytology, and astronomy. The main characteristics of the six real datasets used in this experiment are
summarized in Table 3, where “# Samples” is the number of samples in the dataset, “# Features” is the
number of features, and ”# Classes” is the number of classes. To assess the results, we considered the
resampled paired test. A series of 30 trials was conducted. In each trial, the available samples were
randomly divided into a training set and a test set (with equal sizes). For each dataset, we calculated
the average classification rate of the 30 trials and the corresponding 95% confidence interval. For the
proposed EEkNN classifier, the best values for the parameters kedit and s were determined with the
same procedure used in the previous experiment. For all of the considered methods, values of k
ranging from 1–25 have been investigated.

Table 3. Description of the real datasets employed in the study.

Dataset # Samples # Features # Classes

Diabetes 393 8 2
Glass 214 9 6
Ionosphere 214 9 6
Seeds 210 7 3
Transfusion 748 4 2
Yeast 1484 8 10

Figure 8 shows the classification results of different methods for real datasets. It can be seen
that, for most datasets, the EEkNN classifier provided better classification performance than other
kNN-based ones. The reason is that in our proposed EEkNN classifier, the uncertainty of samples in
overlapping regions or noisy patterns can be well characterized with the introduction of the evidential
editing procedure. In the GEkNN classifier, however, each uncertain sample was either removed or
assigned to a single class with great risk. Though in the FEkNN classifier, the fuzzy membership was
reassigned to each uncertain sample, it could not address the involved imprecise information effectively.
For the original EkNN classifier developed based on the belief function theory, the original training set
was just used to make classification without considering any editing procedure. However, for dataset
Glass, the classification performances of different methods were quite similar. The reason is that, for this
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dataset, the best classification performance was obtained when k took a small value, and under this
circumstance, the evidential editing procedure could not improve the classification performance.
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Figure 8. Classification results of different methods for real datasets.

6. Conclusions

An evidential editing version of the kNN classifier (EEkNN) has been developed based on an
evidential editing procedure that reassigns the original training samples with new labels represented
by an evidential membership structure. Thanks to this procedure, noisy patterns or those situated in
overlapping regions had less influence on the decisions. In addition, in the subsequent classification
procedure, the parameterized t-norm-based rule was optimized to combine the k nearest neighbors of
one query pattern by taking into account the potential dependence among them. Experiments based
on both synthetic and real datasets have been carried out to evaluate the performance of the proposal.
From the results reported in the last section, we can conclude that the proposed EEkNN classifier
can achieve higher classification accuracy than other considered kNN-based methods, especially
for datasets with high imprecision ratios. Moreover, the proposed EEkNN classifier was not too
sensitive to the value of k, and it could gain a quite good performance even with k = 1. This is an
advantage in time- or space-critical applications, in which only a small value of k is permitted in the
classification process.

The proposal can be potentially used in many classification applications where the available data
are imperfect. For example, in brain–computer interface (BCI) systems [45], the electroencephalogram
(EEG) signals may contain great uncertainties due to the varying brain dynamics and the presence
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of noise. The proposed EEkNN classifier can minimize the effect of these uncertainties with the
introduction of the evidential editing procedure for the raw data.
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