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Abstract: This paper explores a set of learned convolutional kernels which we call Jet Features. Jet
Features are efficient to compute in software, easy to implement in hardware and perform well on
visual inspection tasks. Because Jet Features can be learned, they can be used in machine learning
algorithms. Using Jet Features, we make significant improvements on our previous work, the
Evolution Constructed Features (ECO Features) algorithm. Not only do we gain a 3.7× speedup in
software without loosing any accuracy on the CIFAR-10 and MNIST datasets, but Jet Features also
allow us to implement the algorithm in an FPGA using only a fraction of its resources. We hope to
apply the benefits of Jet Features to Convolutional Neural Networks in the future.

Keywords: visual inspection; object classification; hardware implementation; evolutionary
constructed features; jet features

1. Introduction

The field of computer vision has come a long way in solving the problem of image classification.
Not too long ago, handcrafted convolutional kernels were a staple of all computer vision algorithms.
With the advent of Convolutional Neural Networks (CNNs), however, handcrafted features have
become the exception rather than the rule, and for good reason. CNNs have taken the field of
computer vision to new heights by solving problems that used to be unapproachable or unthinkable.
With deep learning, convolutional kernels can be learned from patterns seen in the data rather than
pre-constructed by algorithm designers.

While CNNs are the most accurate solution to many computer vision tasks, they require many
parameters and many calculations to achieve such accuracy. Efforts to reduce model size and operation
complexity include binarization [1] and kernel separation [2]. In this work, we seek speed up image
classification on simple tasks by leveraging some of the mathematical properties found in classic
handcrafted kernels and applying them in a procedural way with machine learning. While this paper
does not explore how these properties can be applied to CNNs using deep leering, we leave it for
future work.

In this paper, we present Jet Features, a set of learned convolutional kernels. Convolutions with
Jet Features are efficient to compute in both hardware and software. They take advantage of redundant
calculations during convolutions and use only the simplest operations. We apply these features to our
previous machine learning image classification algorithm, the Evolution Constructed Features (ECO
Features) algorithm. We call this new version of the algorithm the Evolution Constructed Jet Features
(ECO Jet Features) algorithm. It is accurate on simple image classification tasks, and can be efficiently
run on embedded computer devices without the need for GPU acceleration. We specifically use Jet
Features to allow the algorithm to be implemented in hardware.
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We evaluate a software implementation and a hardware implementation of our algorithm to show
the speed and compactness of the algorithm. Our hardware design is fully pipelined and gives visual
inspection results as soon as an image reaches the end of the data pipeline. This hardware architecture
was implemented on a Field Programmable Gate Array (FPGA), but could be integrated into a system
on a chip in custom silicon, where it could perform at an even faster rate while using less power.

The original ECO Features algorithm [3,4] has been used in various industrial applications.
Many of these applications require high-speed visual inspection, where speed is important but the
identification task is fairly simple. In this work we speed up the ECO Features algorithm, allowing
it to run 3.7 times faster in a software implementation, while maintaining the same level of accuracy
on the MNIST and CIFAR-10 datasets. These improvements also make the algorithm suitable for
full parallelization and pipelining in hardware, which runs over 70 times faster in an FPGA. The key
innovations we make here are the development and use of Jet Features and development of a hardware
architecture for our design.

Related Work

Convolutions are at the heart of almost all image processing techniques. FPGA platforms provide
high parallelism, pipelining and distributed memory which has proved to be a good match for image
convolutions and image processing in general [5–9]. In this work we use small, yet efficient, kernels
for convolutions that use less memory then traditionally sized kernels.

Convolutions and other local image operators are commonly implemented by buffering an input
steam of pixels, storing lines of the image [10–13]. Pixels from these buffers can be combined into
sliding windows that form a neighborhood around a moving point from the image. This allows for
image processing in local neighborhoods. Our work presented here explores the use of very small
neighborhoods (2 × 1 and 1 × 2 windows) that are combined to efficiently process larger regions.

Efficient image processing on FPGAs has also been used to speed up image classification
algorithms. Convolutional Neural Networks (CNNs) consist of sequences of convolutions that can
be pipelined and performed in parallel with each other. While FPGAs can provide parallelism and
pipelining to CNN algorithms, CNNs are traditionally trained with floating point values. FPGAs are
not as well suited for floating point operations as GPUs and CPUs are. Courbariaux et al. explore the
trade-offs in using fixed-point and low precision values over floating point values in deep learning [14].
They show that fixed-point and low precision values can be used in deep neural networks (DNNs)
and achieve comparable accuracy as full precision floating point networks.

A variety of works have implemented CNNs in FPGAs with fixed-point values [15–19]. Not only
do many FPGA implementations feature fixed-point values, but a class of CNNs focus on using low
bit width values, called quantized neural networks [20–22].

Binarized Neural Networks (BNNs) are the most extreme form of quantized networks,
where values are represented with a single bit for +1 or −1 [1]. BNNs can utilize bitwise operations
which make them well suited for FPGAs [23–27]. Xilinx Research Labs developed a framework for
training BNNs and implementing them in and FPGA called FINN [28] with a follow called FINN-R for
general fixed point precision [29]. Our method presented in this paper uses binarized weights similar
to BNN, but uses full precision fixed-point pixel values and small convolutions. We also combine the
results of our parallel image processing with a more traditional machine learning algorithm.

2. Jet Features

Jet Features are convolutional kernels with special structure that allow for efficient convolutions.
They are meaningful features in the visual domain and allow for elegant hardware implementation. In
fact, some of the most popular classical handcrafted convolutional kernels qualify as Jet Features, like
the Gaussian, Sobel and Laplacian kernels. However, Jet Features are not handcrafted, they are learned
features that leverage some of the intuition behind these classic kernels. Mathematically, they are
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related to multiscale local jets [30], which is reviewed in Section 2.2, but we introduce them here in a
more informal manner.

2.1. Introduction to Jet Features

Jet Features are convolutional kernels that can be separated into a series of very small kernels.
In general, separable kernels are kernels that perform the same operation as a series of convolutions
with smaller kernels. Figure 1 shows an example of a 3 × 3 convolutional kernel that can be separated
into a series of convolutions with a 3 × 1 kernel and a 1 × 3 kernel. Jet Features take separability
to an extreme, being separated into the smallest meaningful sized kernels with only 2 elements.
Specifically, all Jet Features can be separated into a series of convolutions with kernels from the set
{[1, 1], [1, 1]T , [1,−1] and [1,−1]T}, which are also shown in Figure 2. We will refer to these small
kernels as the Jet Feature building blocks. Two of these kernels, [1, 1] and [1, 1]T , can be seen as blurring
factors or scaling factors. We will refer to them as scaling factors. The other two kernels, [1,−1] and
[1,−1]T , apply a difference between pixels in either the x or y direction and can be viewed as simple
partial derivative operators. We will refer to them as partial derivative operators. All Jet Features are a
series of convolutions with any number of these basic building blocks. With these building blocks,
some of the most popular classic filters can be constructed. In Figure 3 we show how the Gaussian and
Sobel filters can be broken down into Jet Feature building blocks.

Figure 1. An example a separable filter. A 3× 3 Gaussian kernel can be separated into two convolutions
with smaller kernels.

Figure 2. The four basic kernels of all Jet Features. The top two kernels can be thought of as scaling
or blurring factors. The bottom two perform derivatives in the either the x or y direction. Every Jet
Feature is simply a series of convolutions with any number of each of these kernels. The order does
not matter.

It is important to note that the convolution operation is commutative and the order in which
the Jet Feature building blocks are applied does not matter. Therefore, every Jet Feature is defined
by the number of each building block it uses. For example, the 3 × 3 x-direction Sobel kernel can be
defined as 1 x-direction and 2 y-direction scaling factors and 1 x-direction partial derivative operator
(see Figure 3).
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Figure 3. These examples demonstrate how the Gaussian kernel and Sobel kernels are examples of
Jet Features. These 3 × 3 kernels can be broken down into a series of four convolutions with the two
cell Jet Feature kernels. The Sobel kernels are similar to the Gaussian, but one of the scaling factors is
replaced with a partial derivative.

2.2. Multiscale Local Jets

We can more formally define a jet feature as an image transform that is selected from a multiscale
local jet. All features for the algorithm are selected from the same multiscale local jet. Multiscale
local jets were proposed by Florack et al. [30] as useful image representations that could capture
both the scale and spatial information within an image. They have proven to be useful for various
computer vision tasks such as feature matching, feature tracking, image classification and image
compression [31–33]. Manzanera constructed a single unified system for several of these tasks using
multiscale local jets and attributed its effectiveness to the fact that many other features are implcitly
contained within a multiscale local jet [33]. Some of these popular features include the Gaussian blur,
the Sobel operator and the Laplacian filter.

Multiscale local jets are a set of partial derivatives of a scale space of a function. Members of
a multiscale local jet have been previously defined in [30,31,33] as

Lxmynσ(A) = A ∗ δxmyn Gσ, (1)

where A is an input image, δxmyn is a differential operator to the degree of m with respect to x and
degree n with respect to y and Gσ is the Gaussian operator with a variance of σ. A multisacle local jet
is the set of outputs Lxmynσ(A) for a given range of values for m,n and σ:

Λxayb [σc ,σd ]
(A) = {Lx0y0σc

(A), ..., Lxaybσd
(A)}︸ ︷︷ ︸

for all combinations between

(2)

3. The ECO Features Algorithm

We developed the original ECO Features algorithm in [3,4]. Its main purpose is to automatically
construct good image features that could be used for classification. This eliminates the need for man
experts to hand craft features for specific applications. This algorithm was developed as CNNs were
gaining popularity, which solved similar problems [34]. We recognize that CNNs are able to achieve
better accuracy than the ECO Features algorithm in most tasks, but ECO Features are smaller and
generally less computationally expensive. In this paper we are interested in the effectiveness of Jet
Features in the ECO Features algorithm. The impact of Jet Features are fairly straightforward to
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explore when working with the ECO Features algorithm. Exploration of Jet Features in CNNs is left
for future work.

An ECO Feature is a series of image transforms performed back to back on an input image. Figure 4
shows an example of a hypothetical ECO Feature. Each transform in the feature can have a number of
parameters that change the effects of the transform. The algorithm starts with a predetermined pool of
transforms which are selected by the user. Table 1 shows the pool of transforms used in [4].

Figure 4. An example of a hypothetical ECO Feature made up of three transforms. The top boxes
represent the type of each transform. The boxes below show each transform’s associated parameters.
The number of transforms, transform types and parameters of each transforms are randomly initialized
and then evolved through a genetic algorithm.

Table 1. The pool of possible image transforms used in the ECO Features Algorithm.

Transform Parameters Transform Parameters

Gabor filter 6 Sobel operator 4

Gradient 1 Difference of Gaussians 2

Square root 0 Morphological erode 1

Gaussian blur 1 Adaptive thresholding 3

Histogram 1 Hough lines 2

Hough circles 2 Fourier transform 1

Normalize 3 Histogram equalization 0

Log 0 Laplacian Edge 1

Median blur 1 Distance transform 2

Integral image 1 Morphological dilate 1

Canny edge 4 Harris corner strength 3

Rank transform 0 Census transform 0

Resize 1 Pixel statistics 2

The genetic algorithm initially forms ECO Features by selecting a random series of transforms and
randomly setting each of their parameters. The parameters of each transform are modified through the
process of mutation in the genetic algorithm. New ordering of the transforms are also created as pairs
of ECO Features are joined together in genetic crossover, where the first part of one series is spliced
with the latter portion of a different series. A graphical representation of mutation and crossover are
shown in Figure 5.

Figure 5. An example of mutation (top) and crossover (bottom). Mutation will only change the
parameters of a given ECO Feature. Crossover takes the first part of one feature and appends the latter
part of another feature to it.
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Each ECO Feature is paired with a classifier. An example is given in Figure 6. Originally, single
perceptrons were used as the classifiers for each ECO Feature. Since perceptrons are only capable of
binary classification, we seek to extend the algorithms capabilities to multiclass classification and we
use a random forest [35] in this work. Inputs are fed through the ECO Feature transforms and the
outputs are fed into the classifier. A hold set of images is then used to evaluate the accuracy of each
ECO Feature. This accuracy is used as a fitness score when performing genetic selection in the genetic
algorithm. ECO Features with high fitness scores are propagated to future rounds of evolution while
weak ECO Features die off. The genetic algorithm continues until a single ECO Feature outperforms
all others for a set number of consecutive generations. This ECO Feature is selected and saved while
all others are discarded. The whole process is repeated for every ECO Feature produced by the
genetic algorithm.

Figure 6. A example paring of an ECO Feature with a random forest classifier. Every ECO Feature is
paired with its own classifier. Originally, perceptrons were used, but in our work, random forests are
used which offer multiclass classification.

As the genetic algorithm selects ECO Features, they are combined to form an ensemble using
a boosting algorithm. We use the SAMME [36] variation of AdaBoost [37] for multiclass classification.
The boosting algorithm adjusts the weights of the dataset giving importance to harder examples
after each ECO Feature is created. This leads to ECO Features tailored to certain aspects of dataset.
Once the desired number of ECO Features have been constructed, they are combined into an ensemble.
This ensemble predicts the class of new input images by passing the image through all of the ECO
Feature learners, letting each one vote for which class should be predicted. Figure 7 depicts a complete
ECO Features system.

Figure 7. A system diagram of the original ECO Features Algorithm. Each classifier has its own ECO
Feature transform. The outputs of each classifier are collected into a weighted summation to determine
the final prediction.

Since the publications of [3,4] we have applied ECO Features to the problem of visual inspection
where ECO Features were used to determine the maturity of date fruits [38]. This algorithm has also
been used in industry to automate visual inspection for other processes.

4. The ECO Jet Features Algorithm

In this section we look at how Jet Features can be introduced into the ECO Features algorithm.
We call this modified version the ECO Jet Features algorithm. This modification speeds up performance
while maintaining accuracy on simple image classification. It was specifically designed to allow for
easy implementation in hardware.

4.1. Jet Feature Selection

The ECO Jet Features algorithm uses a similar genetic algorithm to the one discussed in Section 3.
Instead of selecting image transforms from a pool and combining them into a series, it simply uses
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a single Jet Feature. The amount of scaling and partial derivatives are the parameters that are tuned
through evolution. These four parameters are bounded from 0 to a set maximum, forming the
multiscale local jet, similar to Equation (2). We found that bounding the partial derivatives, δx, δy ∈
[0, 2], and scaling factors, σx, σy ∈ [0, 6], is effective at finding good features.

In order to accommodate the use of jet features, mutation and cross over are redefined. The four
parameters of the jet feature, δx,δy,σx and σy, are treated like genes that make up the genome of the
feature. During mutation, the values of these individual parameters are altered. During cross over,
the genes of a child jet feature would each be copied from either the father or the mother genome.
This selection is made randomly. This is illustrated in Figure 8

Figure 8. How mutation (top) and crossover (bottom) are defined for Jet Features.

4.2. Advantages in Software

The jet feature transformation can be calculated with a series of matrix shifts, additions and
subtractions. Since the elements of the bases kernels for the transformations are either 1 or −1, there is
no need for general convolution with matrix multiplication. Instead, a jet transforms can be applied
to image A by making a copy of A, shifting it in either the x or y directions by one pixel and then
adding or subtracting it with the original. Padding is not used. Using jet transforms, there is no need
for multiplication for division operations. We do recognize that a normalization is normally used with
traditional kernels, however, since this normalization is applied to all elements equally of an input
image and the output values are fed into a classifier, we argue that the only difference normalization
makes is to keep the intermediate values of the image representation reasonably small. In practice,
we see no improvement in accuracy by normalizing during the jet feature transform.

Another property of Jet Features that allows for efficient computation is the fact that one Jet
Features of a higher order can be calculated using the result of a Jet Feature of a lower order. The outputs
of the lowest order jet features can be used as an input to any other ECO Jet Feature that has parameters
of equal or greater value. Calculating all of the jet features in an ensemble in the shortest amount
of time can be seen as a optimization problem where the order of which features are calculated is
optimized to require the minimum number of operations. We explored optimization strategies that
would find the best order for a given ensemble of jet features. We did not see much improvement when
employing complex scheduling strategies. The most effective and simple strategy was calculating
features with the lowest sum of δx,δy,σx and σy first and working to higher ordered features, reusing
lower ordered outputs where we could.

4.3. Advantages in Hardware

Jet features were developed to make calculations in hardware simpler for our new algorithm than
the original ECO Features algorithm. The original ECO Features algorithm has several attributes that
make it difficult to implement in hardware. Similar to the advantages discussed on Section 4.2, the jet
features are even more advantageous in a hardware implementation.
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First, the original algorithm forms features from a generic pool of image transforms. This is
relatively straightforward to implement in software when a computer vision library is available,
only requiring extra room in memroy for the library calls. In hardware however, physical space in
silicon must be dedicated to units to perform each of these transforms. The jet feature transform
utilizes a set of simple operations that are reused in every single jet feature.

Second, the transforms of the original algorithm are not commutative. The order they are executed
effects the output. Intermediate calculations would need to have the ability to be routed from every
transform to every other transform. This kind of complexity could be tackled with a central memory,
a bus system, redundant transform modules and/or a scheduler. The jet transform is cumulative and
the order of convolutions do not matter. Routing intermediate calculations becomes trivial.

Third, intermediate calculations from the original ECO Feature transformations can rarely be
used in any other ECO Feature. On the other hand, jet features are cumulative. Using this property,
the ECO Jet Features algorithm is easily pipelined and calculations for multiple features can be
calculated simultaneously. In fact, instead of scheduling the order in which features are calculated,
our architecture calculates every possible feature every time an input image is received. This allows
for easy reprogrammability for different applications. The feature outputs required for that specific
model are used and the others are ignored. Little extra hardware is required, and there is no need for
a dynamic control unit.

Forth, calculating jet features in hardware requires only addition and subtraction operators
in conjunction with pixel buffers. The transforms of the original ECO Features algorithm requires
multiplication, division, procedural algorithm control, logarithm operators, square root operators and
more to implement all of the transforms available to the algorithm. In hardware, these operations can
require large spaces of silicon and can generate bottlenecks in the pipeline. As mentioned in Section 4.2,
the Gaussian blur does require a division by two when normalizing. However, with a fixed base-two
number system, this does not require any extra hardware. It is merely a left shift of the imaginary
decimal place.

5. Hardware Architecture

The ECO Jet Features hardware architecture consists of two major parts, a jet feature unit and
a classifier unit. A simple routing module connects the two, as shown in Figure 9. Input image data
is fed into the jet features unit as a series of pixels, one pixel at a time. This type of serial output is
common for image sensors, but we acknowledge that if the ECO Jet Features algorithm was embedded
close to the image sensor, other more efficient types of data transfer would be possible. As the data is
piped through the jet features unit, every possible jet feature transform is calculated. Only the features
that are relevant to the specific loaded model are then routed to the classifier unit. The classifier unit
contains a random forest for every ECO Jet Feature in the model and the appropriate output from the
jet features unit is processed by the corresponding random forest.

Figure 9. System diagram for the ECO Jet architecture. The Jet Features Unit computes every feature
for a given multiscale local jet on an input image. A router connects only the ones that were selected
during training to a corresponding random forest. The forests each vote on a final prediction.
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5.1. The Jet Features Unit

The jet features unit calculates every feature for a given multiscale local jet. An input image is fed
into the unit one pixel at a time, in row major order. As pixels are piped through the unit, it produces
multiple streams of pixels, one stream for every feature in the jet.

All convolutions in jet feature transforms require the addition or subtraction of two pixels. This is
accomplished by feeding the pixels into a buffer, where the incoming pixel is added or subtracted from
the pixel at the end of the buffer, as shown in Figure 10 . Convolutions in the x direction (along the
rows) require only a single pixel to be buffered due to the fact that the image sensor transmits pixels in
row major order. Convolutions in the y direction, however, require pixel buffers to be the width of
input image. A pixel must wait until a whole row of pixels is read in for its neighboring pixel to be fed
into the system.

Figure 10. Convolution units. The top unit shows only a single buffer needed for convolution along
rows in the x direction. The bottom unit shows a large buffer used for convolution along the columns
in the y direction.

With units for convolution in both the x and y directions, an array of convolutional units are
connected to produce every jet feature for a given multiscale local jet. Each ECO Jet Feature can consist
of multiple scaling factors and partial derivatives in both the x and y directions. With these four basic
types of building blocks, we construct the ECO Jet Features unit to produce every possible features
with a four-dimensional array of convolution units, one dimension for each type of building block.
A four-dimensional array can grow quite large as the maximum number of allowed multiples of each
convolution type gets larger.

By restricting the multiscale local jet, there are fewer possible jet features. In order to see the
effect of restricting the maximum allowed values for δ and σ, we tested various configurations of the
BYU Fish Species dataset. This dataset is further explained in Section 6. We restricted both δ and σ to
a maximum of 15, 10 and 5. Each of these configurations was trained and tested. We observed that the
genetic algorithm often selected either 0 or 1 as values for δ and so a configuraction where δ ≤ 1 and
σ ≤ 5 was tested as well. Figure 11 shows the average test accuracy for each of these configuration as
the model is being trained. From these results we feel confident that restricting δ and σ does not hurt
the algorithms accuracy significantly. It does, however, restrict the space significantly, which can mean
a much more compact hardware design. In our hardware architecture we restrict δ ≤ 1 and σ ≤ 5 and
only have 144 different possible jet features.
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Figure 11. Comparison of multiscale local jets. The maximum allowable variance in Gaussian blur
and order of differentiation was limited by 15, 10 and 5. A fourth case was tested where variance in
Gaussian blur was bounded by 5 and order of differentiation and was bounded by 1.

With restrictions on the maximum values for δ and σ, the size of the ECO Jet Features unit can
be kept fairly small. The arrangement within the array can also help to reduce the size of the unit.
Since the order of the convolutions does not matter, placing convolutional units for the y direction first,
and reusing their outputs for all the other combinations requires less resources since the y direction
convolutions require whole line buffers. Figure 12 shows how this array is arranged.

Figure 12. The array of convolutions in the ECO Jet Features unit. The first dimension consists of
five scaling factor units (σ ≤ 5) that use addition convolutions as shown in Figure 10. The second
dimension consists of a single partial derivative factor for each of the outputs of the previous dimension
and the input (δ ≤ 1). The angled blocks represent further convolutions, suggesting the third and
forth dimensions.

Computing every possible ECO Feature allows for a fully pipelined design that does not need to
be reconfigured for different ECO Jet Feature models. If a new model is trained, the design does not
need to be re-synthesized to use the ECO Jet Features of the new model. The newly selected features
are simply routed to the classifiers instead of the old ones.

5.2. The Random Forest Unit

Each of the selected ECO Jet Features is connected to its own random forest. Figure 13 shows how
pixel data from each ECO Jet Feature is sent to a random forest unit. Once enough pixel data is fed
into a forest to make a valid prediction, a valid signal is asserted and the predicted value is sent to
a prediction unit. With valid predictions from all random forest units, the prediction unit tabulates
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the votes and produces the a final prediction for the whole ECO Jet Features system. Votes from
the random forests units are weighted inside the prediction unit according to the SAMME AdaBoost
algorithm (see Section 3).

Figure 13. The arrangement of forests and trees for ECO Jet Feature predictions. Each ECO Jet Feature
drives in input of a random forest. Each random forest is made up of multiple decision trees. Predictions
of tree are tabulated to make the decision of a single forest. The votes from forests are weighted and
tabulated to form the prediction for the entire system.

A random forest is a collection of decision trees. Figure 13 depicts individual tress inside each
forest. Each tree votes individually for a particular class based on the values of specific incoming
pixels. Nodes of these trees act like gates that pass their input to one of two outputs. Each node is
accosted with a specific pixel location and value. If the actual value of that pixel is less than the value
associated with node, the “left” output is opened. If the actual value is greater, the “right” output is
opened. Each leaf node holds a prediction for the classification of the input image. Once a path is
opened from the root of the tree to a leaf node, the prediction associated with that leaf is produced by
the tree and a valid signal is asserted.

The hardware implementation for the decision tree splits the tree into four main components:
node data (pixel values to compare with), pixel-node comparison unit, node structure unit and leaf
prediction data, as shown in Figure 14.

The pixel value and pixel location information needed to evaluate every node in the tree is stored
in the node data unit. Since pixels are streamed into the tree in row major order (left to right, top to
bottom), the node data is stored in the order in which their associated pixels will arrive. The node
data unit uses a pointer to note which node and pixel will arrive next. Once the pixel data arrives,
the pixel-node comparison unit compares the pixel value with the value of the node. The pixel-node
comparison unit then lets the tree structure know weather the pixel was greater or less than the value in
the node. The tree structure unit keeps track of which nodes have been evaluated and which branches
of the tree have been activated. Once a path from the root to a leaf have been activated, the prediction
unit is signaled and a prediction value is sent to the output.
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Figure 14. The hardware structure of a decision tree. The node data unit holds the pixel value and
pixel location information for the pixel each nodes is compared to. It outputs the data for the next pixel
that will be streamed in. The node-pixel comparison unit waits for a match from the incoming pixel
location from the input and the next pixel location from the node data unit. The pixel and node values
are compared. The result is sent to the node structure unit. Once a leaf is activated in the tree structure,
the prediction unit is signaled and a prediction is issued from the tree.

In order to select an efficient configuration, we experimented with different sizes of random
forests and different numbers of jet features. We varied the number of trees in a forest, the maximum
depth of each tree and total number of creatures, which corresponds with the number of forests.
Figure 15 shows the accuracy of these different configurations compared with the total count of nodes
in their forests. A pattern of diminished returns is apparent as models grow to be more then 3000 nodes.
The models that performed best were ones with at least 10 creatures and a balance between tree count
and tree depth. We used configuration of 10 features with random forests of 5 trees, each 5 levels deep.
This setup requires 3150 nodes.
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Figure 15. Comparison of test accuracy to the number of total nodes the random forests. Various
number of trees, forests and depths of trees were tested.

6. Results

6.1. Datasets

ECO Features was designed to solve visual inspection applications. These application typically
involve fixed camera conditions where the objects being inspected are similar. This includes
manufactured good that are being inspected for defects or agricultural produce that is being graded
for size or quality. These applications usually are fairly specific and real world users do not have
extremely large datasets.

We first explore the accuracy of ECO Features and ECO Jet Features on the MNIST and CIFAR-10
dataset. Both are is a common datasets used in deep learning with small images with only 10 different
classes in each dataset. The MNIST dataset consists of 70,000 28 × 28 pixel images (10,000 reserved for
testing) and the CIFAR-10 dataset consists of 60,000 32 × 32 pixel sized images (10,000 reserved for
testing). The MNIST dataset features handwritten numerical examples and the CIFAR-10 images each
consist of various objects. Examples are shown in Figure 16.

We also tested our algorithms on a dataset that is more typical for visual inspection tasks.
MNIST and CIFAR-10 contain many more images than what is typically available to users solving
specific visual inspection tasks. Visual inspection training sets also include less variation in object type
and camera conditions than in the CIFAR-10 dataset. The MNIST and CIFAR-10 datasets consist of
small images, which makes execution time atypically fast for visual inspection applications. For these
reasons we also used the BYU Fish dataset in our experimentation.

The BYU Fish dataset consists of images of fish from eight different species. The images are
161 pixels wide by 46 pixels tall. We split the dataset to include 778 training images and 254 test images.
Images were converted to grayscale before being passed to the algorithm. Each specimen is oriented
in the same way and the camera pose remains constant. This type of dataset is typical for visual
inspection systems where camera conditions are fixed and a relatively small number of examples are
available. Examples are shown in Figure 17.
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Figure 16. Examples from the MNIST dataset (top) with handwritten digits. Examples from the
CIFAR-10 dataset (bottom). Classes include airplane, bird, car, cat, deer, dog, frog, horse, ship and truck.

Figure 17. Examples from the BYU Fish dataset. Each image is of a different fish species.

6.2. Accuracy on MNIST CIFAR-10

To get a feel for how Jet Features changes the capacity of ECO Features to learn, we trained the
ECO Features algorithm and the ECO Jet Features algorithm on the MNIST and CIFAR-10 datasets.
These datasets have many images and were specifically designed for deep learning algorithms which
can take advantage of such a large training set. We note that the absolute accuracy of these models
does not compare well with the state of the art deep learning, but we use these larger datasets to fully
test the capacity of our ECO Jet Features in comparison to the original ECO Features algorithm.

The images in the MNIST dataset have uniform scale and orientation. The images in the CIFAR-10
dataset are not as well conditioned. For this reason we see a higher error rate in the CIFAR-10 dataset
than in the MNIST dataset. The ECO Jet Features algorithm is designed to classify images that are fairly
uniform, like those in visual inspection applications where camera conditions are fixed. We include
the CIFAR-10 dataset results as a means to compare the original ECO Features algorithm and the ECO
Jet Features algorithm.

Each model was trained with random forests of 15 tress up to 15 levels deep. When testing on
CIFAR-10, each model was trained 200 creatures and the accuracy as features were added is shown
in Figure 18. The models were only trained to 100 creatures on MNIST where the models seem to
converge, as shown in Figure 19. The CIFAR-10 results show that the models converge to similar
accuracy while ECO Jet Features show a slight improvement ( 0.3%) over the original algorithm on
MNIST. From these results we conclude that Jet Features introduce no noticeable loss in accuracy.
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Figure 18. Accuracy comparison between the original ECO Features algorithm and the ECO Jet Features
algorithm on CIFAR-10. Once the models seem to converge, there is no evidence of lost accuracy in the
ECO Jet Features model.

Figure 19. Accuracy comparison between the original ECO Features algorithm and the ECO Jet Features
algorithm on MNIST. Once the models seem to converge, ECO Jet Features seem to have a slight edge
in accuracy, about 0.3%.

6.3. Accuracy on BYU Fish Dataset

We also trained on the BYU Fish dataset with the same experamental set up that was used on
the other datasets. The results are plotted in Figure 20. While the datasets do seem to converge to
a similar accuracy, results from training using such a small dataset may not be quite as convincing as
those obtained using larger datasets. These results were for completeness since this dataset was used
in our procedure and meant for testing speed, efficiency and model size.
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Figure 20. Accuracy comparison between the original ECO Features algorithm and the ECO Jet Features
algorithm on the BYU Fish dataset.

6.4. Software Speed Comparison

While the primary objective of the new algorithm is to be hardware friendly, it is interesting to
explore the speedup gained in software. Each algorithm was implemented on a full-sized desktop PC
running a Skylake i7 Intel processor, using the OpenCV library. OpenCV contains built-in functionality
for most of the transforms from the original ECO Features algorithm. It also provides vectorization for
Jet Feature operations.

We attempted to accelerate these algorithms using GPUs, but found this was only possible on
images that were larger than 1024 × 768. Even using images that were this large did not provide much
acceleration. The low computational cost of the algorithm does not justify the overhead of CPU to
GPU data transfer.

A model of 30 features was created for both. The BYU Fish dataset was used because the image
sizes are more typical to real world applications. The original algorithm averaged a run time of
10.95 ms and our new ECO Jet Features algorithm averaged and execution time of 2.95ms, which is
a 3.7× speedup.

6.5. Hardware Implementation Results

Our hardware architecture was designed in SystemVerilog. It was synthesized and implemented
for a Xilinx Vertex-7 FPGA using the Vivado design suite. From our analysis reported in Section 5,
Figures 11 and 15, we implemented a model with 10 features, 5 trees in each forest with a depth of 5,
a maximum σ of 5 and maximum δ of 1. We used a round number of 100 pixels for the input image
width. A model built around the BYU Fish dataset would have required only 46 pixels in its line
buffers, but this length is small due to the oblong nature of fish. We feel a width 100 pixels is more
representative of general visual inspection tasks.

The total utilization of available resources on the Xilinx Vertex-7 is reported in Table 2.
One interesting point is that this architecture requires no Block RAM (BRAM) or Digital Signal
Processing (DSPs) uints. BRAMs are dedicated RAM blocks that are built into the FPGA fabric. DSPs
are generally used for more complex arithmetic operations, like general convolution. Our architecture,
however, is compact enough and simple enough to not require either of these resources and instead
host all of its logic in the main FPGA fabric. Look Up Tables (LUTs), make up the majority of the fabric
area and are used to store all data and perform logic operations.
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Table 2. ECO Jet Features architecture total hardware usage on a Kintex-7 325 FPGA using 10 creatures,
5 trees at a depth of 5.

Resource Number Used Percent of Available

Total Slices 10,868 4.9%

Total LUTs 34,552 4.9%

LUTs as Logic 31,644 4.4%

LUTs as Memory 2908 1.0%

Flip Flops 17,132 1.2%

BRAMs 0 0%

DSPs 0 0%

To give a quick reference of FPGA utilization for a CNN on a similar Vertex 7 FPGA,
Prost-Boucle et al. [39] reported using 22% to 74.4% of the 52.6 Mb of total BRAM memory for
various sizes of the model. Our model did not require the use of any of these BRAM memory units.
When comparing the number of LUTs used as logic, Prost-Boucle et al. used 112% more than our
model in their smallest model and 769% more on their larger more accurate model.

The pixel clock speed can safely reach 200 MHz. Since the design is fully pipelined around the
pixel clock, images from the BYU Fish dataset could, in theory, be processed in 37 µs. This is a 78.3×
speedup over the software implementation on full sized desktop PC. A custom silicon design could be
even faster than this FPGA implementation.

Table 3 shows the relative sizes for individual units of the design. Some FPGA logic slices are
shared between units and the sum of the individual unit counts exceeds the totals listed in Table 2.
With a setup of 10 creatures, 5 trees per forest with a depth of 5, the Jet Features Unit makes up about
70% of the total design. However, since this unit is generating every jet in the muliscale local jet, it
does not grow as more features are added to the model. We showed in Figure 11 that using a large
local jet does not necessarily improve performance.

Table 3. The hardware usage for individual design units.

Unit Slices Total LUTs LUTs as Logic LUTs as Memory Flip Flops

Jet Features Unit 7593 23,253 22,377 876 11,411

Random Forests Unit 3741 11,080 9080 2000 5080

Individual Random Forests 374 1108 908 200 508

Individual Decision Trees 73 210 171 40 93

Feature router 49 40 40 0 520

AdaBoost Tabulation 61 180 148 32 121

The Random Forest unit makes up less then 35% percent of the design in all aspects other than
LUT units that are used as memory, which is a subset of total LUTs. But, only 10 features were used
and more could be added to increase accuracy as shown in Figure 20. Extrapolating out from these
numbers, if all 144 possible features were added to this design, only 30% of resources available to the
Vertex-7 would be used and 87.9% of them will be dedicated to the Random Forests Unit.

These results show how compact this architecture is. The simple operations and feed forward
paths used in this design could very feasibly be implemented in custom silicon as well.

7. Conclusions

We have presented Jet Features, learned convolutional kernels that are efficient in both software
and hardware implementations. We applied them to the ECO Features algorithm. This change to the
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algorithm allows faster software execution and hardware implementation. In software, the algorithm
experiences a 3.7× speedup with no noticeable loss in accuracy. We also presented a compact hardware
architecture for our new algorithm that is fully pipelined and parallel. On a FPGA, this architecture
can process images in 37 µs, a 78.3× speedup over the improved software implementation.

Jet Features are related to the idea of multiscale local jets. Large groups of these transforms
can be calculated in parallel. They incorporate many other common image transforms such as
the Gaussian blur, Sobel edge detector and Laplacian transform. The simple operators required to
calculate jet features allows them to be easily implemented in hardware in a completely pipelined and
parallel fashion.

With a compact classification architecture for visual inspection, automatic visual inspection logic
can be embedded into image sensors and compact hardware systems. Visual inspection systems can
be made smaller, cheaper and available to a wider range of visual inspection applications.
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