
 

Electronics 2019, 8, 568; doi:10.3390/electronics8050568 www.mdpi.com/journal/electronics 

Article 

Integrated Building Cells for a Simple Modular 
Design of Electronic Circuits with Reduced External 
Complexity: Performance, Active Element Assembly, 
and an Application Example 
Roman Sotner 1,*, Jan Jerabek 2, Ladislav Polak 1, Roman Prokop 3 and Vilem Kledrowetz 3 

1 Department of Radio Electronics, SIX Research Center, Brno University of Technology (BUT),  
Technicka 3082/12, 61600 Brno, Czech Republic; polakl@feec.vutbr.cz 

2 Department of Telecommunications, SIX Research Center, Brno University of Technology (BUT),  
Technicka 3082/12, 61600 Brno, Czech Republic; jerabekj@feec.vutbr.cz 

3 Department of Microelectronics, SIX Research Center, Brno University of Technology (BUT),  
Technicka 3082/12, 61600 Brno, Czech Republic; prokop@feec.vutbr.cz (R.P.);  
kledrowetz@feec.vutbr.cz (V.K.) 

* Correspondence: sotner@feec.vutbr.cz; Tel.: +420-541-146-560 

Received: 25 March 2019; Accepted: 18 May 2019; Published: 22 May 2019 

Abstract: This paper introduces new integrated analog cells fabricated in a C035 I3T25 0.35-μm ON 
Semiconductor process suitable for a modular design of advanced active elements with multiple 
terminals and controllable features. We developed and realized five analog cells on a single 
integrated circuit (IC), namely a voltage differencing differential buffer, a voltage multiplier with 
current output in full complementary metal–oxide–semiconductor (CMOS) form, a voltage 
multiplier with current output with a bipolar core, a current-controlled current conveyor of the 
second generation with four current outputs, and a single-input and single-output adjustable 
current amplifier. These cells (sub-blocks of the manufactured IC device), designed to operate in a 
bandwidth of up to tens of MHz, can be used as a construction set for building a variety of 
advanced active elements, offering up to four independently adjustable internal parameters. The 
performances of all individual cells were verified by extensive laboratory measurements, and the 
obtained results were compared to simulations in the Cadence IC6 tool. The definition and 
assembly of a newly specified advanced active element, namely a current-controlled voltage 
differencing current conveyor transconductance amplifier (CC-VDCCTA), is shown as an example 
of modular interconnection of the selected cells. This device was implemented in a newly 
synthesized topology of an electronically linearly tunable quadrature oscillator. Features of this 
active element were verified by simulations and experimental measurements. 

Keywords: advanced active elements; CMOS; electronic control; circuit synthesis and design; 
oscillator; modular approach 

 

1. Introduction 

Active elements (AEs) are the most important subparts of analog and mixed signal processing 
systems [1]. They are frequently used in various simple electronic circuits, such as linear filters [2,3] 
and signal generators [4], and also in complex nonlinear applications [5,6]. Bipolar and unipolar 
transistors, as active devices [7–9], can be directly applied in the circuit synthesis and design. This 
approach seems to be beneficial in gaining operation at high-frequency bands [10]. However, in 
these cases, the dynamics and linearity of the circuits are usually very restricted (tens of mV; see, for 
example, Reference [9]). 
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Moreover, these circuits require proper biasing and bias point setting [11], which in general are not 
easy tasks. The interconnection of transistor-only circuits with other systems requires AC coupling. 
Some systems [12] use such a high number of transistors that the complexity is similar to standard 
AEs (e.g., operational amplifiers (OAs)). Furthermore, when electronic controllability is required, 
then this must be solved separately for each design. 

Standard AEs [1–3,13], which have been known for decades, usually utilize a quite high number 
of transistors. However, they have certain advantages: For instance, no external biasing and bias 
point settings, stabilized parameters with a minimized influence of temperature changes and 
fabrication mismatches, many types of easy applications, possible DC coupling of the input/output 
signals, and a relatively large and linear dynamic range. Standard commercial AEs are fabricated in 
bipolar junction transistor (BJT) technologies or complementary metal–oxide–semiconductor 
(CMOS) technologies as standalone devices to use in particular applications, usually in combination 
with other devices. Another possibility is to integrate the whole system using these AEs and 
additional components on a chip (system-on-a-chip) [14]. An OA [1,2,13,15] is a basic and 
widespread AE that belongs to the group of AEs without controllable parameters. It serves as the 
design for well-known linear and nonlinear building blocks of analog systems. On the other hand, 
the simplest noncontrollable AE (i.e., a current follower or inverter (CF/I) [13]) also offers a very 
simple interterminal transfer relation and is very useful for many applications [16]. AEs, known as 
noncontrollable current conveyors (CCs) [2,13,17–19], combine voltage-mode (VM) and 
current-mode (CM) signal processing operations. CCs can also be implemented through the specific 
interconnection of other discrete devices in various VM and CM applications [20]. It is important to 
note that the previously mentioned AEs do not have the feature of electronic controllability of their 
parameters. 

The simplest electronically adjustable AEs have a single controllable internal parameter. The 
operational transconductance amplifier (OTA) [21] represents a typical example of the conversion of 
input voltage difference to an output current through controllable transconductance (gm) [22]. The 
electronic control of the voltage gain (A) [23] is also very important in many applications. Variable 
gain amplifiers (VGAs), referred to as AEs with a controllable A, can be obtained by the particular 
interconnection between OTAs and CCs [3,13,24] or are accessible as standalone commercial devices 
[25]. Variants of CCs with controllable internal parameters are also available. They usually allow for 
adjusting one of the following parameters: The resistance of the current input terminal (RX) [26], 
current gain (B) between terminals [27–29], and voltage gain (A) [30] between terminals. 

Multiparameter controllability, in the frame of AEs, has been introduced recently. First, CCs 
and current amplifiers (CAs) with these features target the controllability of parameters Rx and B 
[31–34]. These multiparametric features are beneficial especially for signal generation and filtering in 
order to extend the available range of tunability [34,35]. 

In this work, advanced AEs bring together different simple active subparts, referred to as cells. 
The combination of an OTA and CC [36,37] represents a typical example of a voltage differencing 
current conveyor (VDCC). Such a construction of advanced AEs is known as a modular approach (or 
design). The commercially available integrated circuit (IC) OPA860 [20] can be understood as a 
modular device because it consists of a CC and voltage buffer (VB) in the same IC package, and both 
parts can be used independently or are interconnected outside the package. A current feedback 
operational amplifier (CFOA), in the form of an AD844 chip [38], can be understood similarly (a CC 
of the second generation and a VB). However, in this case, both subparts are also connected 
internally. The same idea was also used for the design and construction of integrated universal 
current and voltage conveyors (UCCs and UVCs) [39,40]. Note that the above-discussed examples 
(the OPA860, AD844, UCCs, and UVCs) of a “modular design” are not examples of electronically 
controllable AEs. Typical examples of advanced and also electronically controllable modular AEs, 
fabricated in an IC form, have been discussed in References [36,37,41,42]. An example of an 
advanced AE bringing three controllable parameters (gm, Rx, B) into one device can be found in 
Reference [43], where a modification of the VDCC (behavioral model) was presented. Many other 



Electronics 2019, 8, 568 3 of 28 

concepts were introduced in References [3,4], and especially in Reference [13]. These AEs are 
described and compared to our design in detail in Section 2. 

1.1. Contribution of the Paper 

This paper introduces a newly fabricated IC (an ON Semiconductor 0.35-μm I3T25 CMOS 
process [44]) that allows for a modular design of various advanced AEs with several controllable 
parameters. Our concept was based on five newly designed different cells included on the chip, 
namely (a) a voltage differencing differential buffer (VDDB), (b) a voltage multiplier (MLT) with 
current output in full CMOS form (CMOS MLT), (c) a voltage multiplier with current output with a 
bipolar core (BJT MLT), (d) a current-controlled current conveyor of the second generation (CCCII) 
with four current outputs, and (e) a single-input and single-output adjustable current amplifier 
(CA). The topological novelty of the presented cells is described by the following points: 

(1) A new topology of VDDB device with an additional section of differential pairs (to obtain 
additional voltage input) is proposed. Compared to standard OA topology [45,46], this is a 
significant change with better dynamics than topology used in Reference [47] and references 
cited therein; 

(2) A new topology of CMOS MLT with a current output terminal is proposed. It contains 
additional linearizing blocks (not used in the most similar topology [48]) and a 
“current-boosting” OTA stage in order to increase dynamic range and decrease the linearity 
error. Note that the multiplier in Reference [48] operated with an input voltage range ±100 mV, 
but our CMOS MLT design provides ±500 mV. Therefore, the dynamics are significantly 
improved; 

(3) A standard Gilbert core-based [49] BJT MLT was designed in order to obtain a more accurate 
device than the CMOS MLT (in general, the accuracy of the CMOS design is a problem). It has a 
larger transconductance constant and better symmetry of output swing currents than the 
CMOS MLT does. Moreover, our BJT MLT concept, compared to Reference [48], has a current 
output terminal instead of a voltage output terminal. Thanks to the presence of two multipliers 
(CMOS and BJT) in our IC package, an extension of the controllability of new advanced AEs is 
possible; 

(4) Compared to Reference [50], a modified CCCII cell topology with full mirroring of currents 
from differential stage (pair) to four output terminals is presented. The main innovation is in 
specific biasing current reference generation for output mirrors and driving the value of RX 
(which was not the intention of Reference [50]). In contrast to our solution, the concept in 
Reference [50] is not capable of providing a large dynamic range and output cascoding due to 
its bias sources (voltage drop in real MOS elements) when very low supply voltage used; 

(5) A current amplifier cell with a completely new topology, designed for low-power purposes, is 
presented. Good linearity in a dynamic range of ±200 μA, linear control of current gain, low 
input (around 1 Ω) and excellent output resistance, and low power consumption are the main 
advantages of the proposed concept. 

It is important to mention that the design and fabrication of these cells and topologies have not 
been provided in I3T25 0.35-μm (±1.65-V supply) technology before. The functionality of our design, 
especially in the case of multipliers and low-voltage technologies, was confirmed. Supply voltage 
restrictions made the design process more sophisticated, requiring special additional counterparts in 
the case of MLTs (namely linearization and boosting stages) due to a limited output current swing. 
Therefore, our cell design is original (newly designed transistor sizes and bias conditions) and 
optimized (significant modifications and extensions of basic topologies) for selected technology and 
anticipated applications. 

1.2. Organization of the Paper 

The rest of this paper is structured as follows. Section 2 contains a comparison of our 
manufactured IC device with commercially available devices and similar modular approaches. 
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Section 3 introduces the fabricated device and the features of its partial cells. Selected results that 
describe the performances of the realized cells of our IC are presented in Section 4. An example of 
the interconnection of cells assembled in the new advanced controllable AE and its application 
example (a novel topology of a quadrature oscillator), including a complete analysis (simulation and 
experimental measurements) and comparisons to state-of-the-art solutions, are presented in Section 
5. Finally, Section 6 concludes this paper with an overview of the achieved results. 

2. Related Solutions of Modular Concepts 

In this section, we compare commercial devices as well as already known modular concepts of 
IC devices to our proposal. 

The general purpose of the implemented cells follows recent requirements for the development 
of advanced electronically controllable multiterminal active devices. Standard design requirements 
for novel applications suppose the availability of multiple current output terminals (a CCCII cell) for 
current-mode operations, voltage differencing/summing operations (a VDDB cell) for voltage-mode 
processing, multiplication, electronic controllability of the transformation between voltage and 
current (MLT cells), and gain variability (in our case the current gain of CA). These principles can be 
used either separately or together depending on the complexity and considered features of the 
advanced AE. Particularly, features connected with multiplication may lead to nonstandard 
advanced AEs that are currently unknown and not defined in the state-of-the-art. Such a 
phenomenon should also be interesting in the synthesis and design of new applications in circuit 
theory, automatization and control theory, communications, and measurement. Many known 
advanced AEs, for instance in References [3] and [13], or new types and modifications of AEs can be 
constructed as the interconnections of several cells in our new IC (see the selected application 
example in this paper). 

Table 1 gives an overview and comparison of typical commercially available examples of 
modular devices [20,38], as well as relevant customized and fabricated ICs offering interconnections 
of internal cells ([36,37,39–42]). From this overview we can recognize the following drawbacks: 
(a) Low variability (low number of cells [20,36–40]); 
(b) Internal cells only, with basic functionality (two cells in the package, and one of them is a 

voltage buffer [20,38]); 
(c) No electronic controllability of the parameters [20,38–40]; 
(d) Limited electronic controllability (single parameter only [41,42]); 
(e) Differential/summing voltage operations are not available (except [39,40]); 
(f) Multiplicative operations are not available (except [36,37]). 

In contrast to previously fabricated modular cells (or commercial devices AD844 [38] and 
OPA860 [20]), our new proposal offers many useful features simultaneously: 
(a) Five various cells (independent active cells implementing four different types of operations) are 

available; 
(b) A significantly improved variability in interconnection (compared to References [20,36–41], the 

number of possible combinations is higher); 
(c) Four independent electronically controllable parameters of three types (2 gm, RX, and B); and 
(d) Differential and summing voltage operations as well as multiplicative operations are available. 

Our developed IC (including its cells) significantly extends the current state-of-the-art through 
additional features and controllable parameters (see comparison of typical and similar concepts in 
Table 1) that were not simultaneously available in the mentioned previous works. 

Despite the existence of the “modular approach” presented in this paper, there are also different 
methods for the assembly/synthesis and classification of AEs [51–53]. The work in Reference [51] 
focused on a systematic algorithm that employed a nullor-based description of active devices and 
their counterparts. It gives a comprehensive list of AEs synthesized from voltage and current 
followers, MOS building blocks (e.g., current mirrors), MOS elements, and complex parts (several 
types of current conveyors). The difference between our work and Reference [51] is in the depth of 
abstraction. The compilation of modern active elements used in Reference [51] goes to the origin of 
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structures (elementary subparts of CMOS topology). Our work, in accordance with the modular 
approach, supposes the existence of basic building cells (OTAs, amplifiers, etc.). Their 
interconnection is not always systematic, but heuristic and based on experience determining the best 
way to interconnect according to the requirements of common applications. A similar classification 
was also presented in Reference [52], where nullor-based models were used as generalized 
descriptions of the circuit behavior that can be obtained by different methods of synthesis, 
interconnection, and understanding of equivalence (reciprocity principles, transformation between 
voltage- and current-mode and vice versa, etc.). The discussed circuit models of various active 
subparts (each of them can be constructed through different ways (the interconnection of MOS 
building parts)) are known in circuit theory as pathological elements. Generally, previous 
approaches have simply followed the basic idea of synthesis (a single theoretical description of their 
operations can be obtained in several ways). 

The proposed modular design can also be compared to fully integrated (including passive 
elements) solutions of so-called field-programmable analog arrays (FPAAs) [53]. Very good 
variability and easy availability of various interconnections of internal components (full integrators, 
amplifiers, nonlinear operations, etc.) are strong advantages of the FPAA-based designs. However, 
in comparison to our concept, some of their features are not beneficial: 
(a) Continuous electronic control is not available (FPAAs are tunable digitally in discrete steps); 
(b) Not favorable frequency features (the expected speed of applications and operation of signal 

paths up to tens of kHz); 
(c) High power consumption (in hundreds of mW); 
(d) Not a fully analog solution (additional mixed-mode subsystems and control circuits, including 

a clock signal, are required in an IC), and therefore the overall complexity is much higher; and 
(e) A high cost of available development kits. 
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Table 1. Comparison of typical examples of commercially available devices to relevant customized modular IC devices. 

References 

Number 
of Cells 
(Internal 
Subparts) 

Types of Cells (Number and Purpose of 
Terminals) 

Independent 
Cells (No 
Internal 

Interconnection) 

Variability in 
Interconnection 

Electronically 
Controllable 
Parameters 

Number of 
Electronically 
Controllable 
Parameters 

Types of 
Electronically 
Controllable 
Parameters 

Differential/Summing 
Voltage Operations 

Available 

Multiplicative 
Operations 

Technology 
(Fabrication 

Process) 

[20] 2 
1 current conveyor (1 voltage input, 1 current 

input, 1 current output);  Yes Yes No 0 - No No 
BJT 

commercial 
1 voltage buffer (1 input, 1 output) 

[36,37] 2 

1 current-controlled current conveyor (1 voltage 
input, 1 current input, 2 current outputs); 

Yes Yes Yes 2 1 gm, 1 RX No Yes CMOS 
0.7-μm 1 CMOS multiplier (4 voltage inputs, 1 current 

output) 

[38] 2 
1 current conveyor (1 voltage input, 1 current 

input, 1 current output);  No No No 0 - No No 
BJT 

commercial 
1 voltage buffer (1 input, 1 output) 

[39,40] 2 

1 universal multiterminal current conveyor (3 
voltage inputs, 1 current input, 4 current 

outputs); Yes Yes No 0 - Yes No 
CMOS 

0.35-μm 
1 current conveyor (1 voltage input, 1 current 

input, 1 current output) 

[41] 2 
1 current conveyor (1 voltage input, 1 current 

input, 1 current output); Yes Yes Yes 1 gm No No 
CMOS 
0.7-μm 

1 OTA stage (2 voltage inputs, 1 current output) 

[42] 5 

2 current differentiators (2 current inputs, 1 
current output); 2 current conveyors (1 voltage 

input, 1 current input, 1 current output);  Yes Yes Yes 4 gm No No 
CMOS 
0.7-μm 

1 OTA stage (2 voltage inputs, 1 current output) 

This work 5 

1 VDDB (3 voltage inputs, 1 voltage output); 

Yes Yes Yes 4 2 gm, 1 RX, 1 B Yes Yes 
CMOS/BJT 

0.35-μm 

1 current-controlled current conveyor (1 voltage 
input, 1 current input, 4 current outputs);  

1 CMOS multiplier (4 voltage inputs, 1 current 
output);  

1 BJT multiplier (4 voltage inputs, 1 current 
output); 1 current amplifier (1 current input, 1 

current output) 

Notes: gm, transconductance; RX, resistance of current input terminal; B, current gain. Note that the simplest solutions [20,38] (commercially available devices) were added 
only for comparison purposes, and they are not typical representatives of complex modular ICs. CMOS: complementary metal–oxide–semiconductor; OTA: operational 
transconductance amplifier; VDDB: voltage differencing differential buffer. 
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3. A Developed Integrated Device for the Modular Design of Active Elements 

Although there are many up-to-date technologies available, technology with a 0.35-μm 
minimum size for transistors is very useful in an analog circuit design. In the case of digital or mixed 
digital and analog circuit design, newer technologies represent a better choice. However, in the pure 
analog design (our case), such small transistors cause significant problems, for instance due to their 
non-idealities (e.g., channel length modulation effects). Therefore, we selected ON Semiconductor 
C035 0.35-μm I3T25 technology [44]. It is available in the frame of the Europractice university 
consortium, and it is a very good compromise between cost and performance for its intended 
purposes. The proposed modular concept consists of five completely independent cells (a VDDB, 
CMOS MLT, BJT MLT, CCCII, and CA) within a single package. For fast and comfortable 
manipulation, the fabricated device was embedded into a DIL28 ceramic package. The designed cells 
are described in the following subsections, supplemented by both simulation (Cadence IC6 Spectre 
simulator with an I3T25 process design kit) and experimental results (see Appendix A). AC transfer 
responses and impedance plots were obtained by an HP 4395 A (a vector network analyzer) and an 
Agilent 4294 A (an impedance analyzer). Note that the power supply voltage had a nominal value of 
±1.65 V in all simulations and experiments. The overall quiescent power consumption of the whole 
IC was maximally 45 mW. Figure 1 shows the contents of the IC package and an illustration of the 
designed top layout, with dimensions of 1526 × 1526 μm. 

X1 MLT

BJT core

ZX2
Y1
Y2

X1 MLT

CMOS core

ZX2
Y1
Y2

VX1
VX2
VY1
VY2

VX1
VX2
VY1
VY2

IZ

IZ

Y1

VY2
VDDB

1xW

VY3

VW

VY1

Y2

Y3

X

Yz1

z2

z3

z4

CCCII
Rx

VY

IX

Iset_Rx

Iz1
Iz2
Iz3
Iz4

CA

Iset_B

Ii

Io

VDD VSSGND

DIP28 (I3T25 0.35 μm)

oi

  
Figure 1. The fabricated IC: (left) contents on a cell level and (right) an illustration of the top layout 
design. 

3.1. Voltage Differencing Differential Buffer (VDDB) 

A folded cascode design of an OA [45,46] served as inspiration for the design of the VDDB (see 
Figure 2). In this active subpart, a full negative feedback was established. Three input voltages at 
high-impedance inputs, marked as VY1–VY3, are processed to the output low-impedance terminal VW 
according to the following formula: 

WYYY VVVV =+− 321 . (1) 

The proposed CMOS topology, including the designed aspect ratios of transistors (W/L) and 
bias conditions, is shown in Appendix A (Figure A1). 
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Y1

VY2

VDDB
1x W

VY3

VW

VY1 – VY2 + VY3 = VW

IY2 = 0

IY3 = 0

VY1

IY1 = 0

Y2

Y3

 

Figure 2. Schematic symbol and interterminal transfer relation of the voltage differencing differential 
buffer (VDDB). 

3.2. Voltage Multipliers with Current Output (CMOS MLT, BJT MLT) 

This cell (see Figure 3 (left)) enables the multiplication of two differential input voltages 
(requiring two pairs of terminals: VX1, VX2 and VY1, VY2) in the form of output current IZ. It has 
beneficial features for circuit synthesis, especially for the construction of lossy and lossless integrator 
blocks [21] employing grounded capacitors. 

X1

IZ

VX1

VX2

IX1 = 0

IX2 = 0 MLT

CMOS core

(VX1 ‒VX2)∙(VY1 ‒VY2)∙k = IZ

ZX2
Y1
Y2

IY1 = 0

IY2 = 0
VY1

VY2 k = 1.3 mA/V2

 

X1

IZ

VX1

VX2

IX1 = 0

IX2 = 0 MLT

BJT core

(VX1 ‒VX2)∙(VY1 ‒VY2)∙k = IZ

ZX2
Y1
Y2

IY1 = 0

IY2 = 0
VY1

VY2 k = 4.9 mA/V2

 
Figure 3. Schematic symbol and description of the ideal interterminal transfer relation of the voltage 
multiplier to the current output CMOS MLT (left) and BJT MLT (right). 

The bidirectional arrow at the output indicates that both polarities of the output current are 
possible. This topology consists of a linearizing section, a multiplying core and an additional output 
stage to boost the output current. The most similar solution can be found in Reference [48], but 
without linearizing sections (see Figure A2 in the Appendix A). The linearizing blocks increase 
linearity through the input voltage range but also decrease the level of output current. Here, the 
output current swing is limited to ±low tens of μA. The issue of limited output swing can be solved 
by the increased gain factor of current mirrors. Such a step significantly degrades the bandwidth of 
the MLT (increasing area of gate = increasing gate capacity). Therefore, our topology for the CMOS 
MLT contains two output resistive loads (not used in Reference [48]) and includes additional 
“current-boosting” OTA stage for amplification and then conversion of voltage difference at these 
loads to current at the output terminal. The only similarity between our concept and the previous 
one [48] can be found in the multiplying core. However, it was redesigned for our purposes, with 
different aspect ratios of transistors designed with different technology. The ideal transfer relation 
between input voltage pairs and output current has a form, 

( )( ) ZYYXX IkVVVV =−− 2121 , (2) 

where k is a constant given by technological parameters, designed aspect ratios of specific 
transistors, and circuit components of internal topology (see Figure A2 in Appendix A). 

The experimental analysis of the CMOS MLT revealed a large impact of fabrication mismatches 
on its performance. In some applications, different MLT cells having a high value of 
transconductance constant k could be useful. In order to significantly increase the value of k, a BJT 
solution as a core part of the MLT seemed to be promising. Therefore, a standard bipolar Gilbert core 
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[49] (see Figure A3 in Appendix A) of the multiplier (BJT MLT), shown in Figure 3 (right), could be 
useful because of its beneficial features. The same “boosting” OTA stage serves the same purpose as 
in the case of the CMOS MLT. Moreover, differences between the simulation and measurement 
results (including fabrication mismatches) were expected to be not so significant in this case (see the 
results in sub-section 4.2 and Tables A2 and A3 in Appendix A). Therefore, a BJT MLT was also 
included in our IC. The ideal transfer relation is identical to Equation (2), but the values of k are 
different. 

3.3. Current-Controlled Current Conveyor of the Second Generation (CCCII) 

The CCCII is a very important part of the integrated device (and it also occupies a large part of 
the chip area). It addresses the requirement for an active cell suitable for current-mode signal 
processing and therefore for providing multiple current outputs. It offers the mentioned useful 
features as well as intentional electronic control of the resistance of current input terminal X (Figure 
4). We selected the topology of a differential pair with full negative feedback, similarly to References 
[45,46,50]. The current output terminals of the fabricated cell were based on cascoded current 
mirrors (Figure A4 in Appendix A) in order to reduce systematic and matching DC offsets and 
inaccuracies. 

X

Y z1

z2

z3

z4

Iz1

Iz2

Iz3

Iz4

CCCII
Rx

VX

IY = 0

IX

Iset_Rx

VX = VY + RXIX
IZ1 = IZ2 = ‒IZ3 = ‒IZ4 = IX

 
Figure 4. Schematic symbol and description of the ideal interterminal transfer relations of the 
current-controlled current conveyor of the second generation (CCCII). 

3.4. Current Amplifier with Controllable Current Gain (CA) 

The adjustable current gain of the CA is a very useful feature in the synthesis of current and 
mixed mode circuits. Figure 5 shows the single-input single-output concept of this cell available in 
the designed IC device. Its topology is shown in Figure A5 in Appendix A. Parameter B represents 
the electronically adjustable current gain as a relation between the input and the output current (Io = B∙Ii). 

CA

Iset_B

oIi Io

Io = B.Ii

i

B ≅ 75∙103.Iset_B

 

Figure 5. Schematic symbol and description of the ideal interterminal transfer relations of the 
adjustable current amplifier (CA). 

4. Experimentally Tested Features of the Proposed Cells 
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In this section, performances of the proposed cells of the manufactured IC device are presented. 
For this purpose, results selected from the simulations and measurements are presented and 
discussed. The complete analysis is available in Appendix A (see Tables A1–A5). 

4.1. The VDDB 

Compared to previous implementations [47] and references cited therein, the most important 
features of this device are as follows: Favorable dynamics (±700 mV), very high resistance of voltage 
inputs (100 MΩ), total harmonic distortion (THD) lower than 0.5%, and a frequency bandwidth 
higher than 45 MHz for all possible transfers from input(s) to output (see Figure 6). The output 
impedance was very low (<1 Ω) at low frequencies. It started to increase above 10 kHz (<10 Ω at 1 
MHz), which is common behavior for such a topology. The printed circuit board (PCB) used for the 
experimental measurements caused increasing terminal and nodal parasitic capacities (about 10–15 
pF higher than expected from simulations). It was valid for all experimental results presented in this 
work. An overview of the simulation and experimental results is summarized in Table A1 (see 
Appendix A). 

  
Figure 6. Selected results of the measured and simulated responses of the VDDB: (left) DC transfer 
responses Y1–3 → W; (right) magnitude AC transfer responses Y1–3 → W. 

4.2. The CMOS MLT and BJT MLT 

The features of the multiplier were tested in the form of emulating behavior of the OTA in two 
configurations: (1) the X2, Y2 terminals are grounded, X1 (signal input), Z (signal output (X1 → Z, 
indicated in Table A2)), and Y1 (DC driving voltage); and (2) Y1 (signal input), Z (signal output (Y1 → 
Z, indicated in Table A3)), X1 (DC driving voltage), and X2, Y2 are grounded. This configuration 
actually extended the concept of an OTA [21,22] because the operation of multiplication could be 
used for a simple change in the polarity of the output current. Table A2 indicates the expected 
differences between the simulated and measured transconductance values (gm-s). These differences 
were mainly caused by different values of k in the case of simulation (k ≅ –1.8 mA/V2) and 
measurement (k ≅ –1.3 mA/V2). This parameter significantly depended on temperature and 
fabrication mismatches. The inaccuracy resulted from a variation in the transconductance 
parameters of partial transistors (thermal voltage) and the non-equal bulk and source voltages (the 
threshold voltage is influenced) of differential pairs. The design recommendations of the CMOS 
process supposed that bulks are connected to the highest (P-type/channel MOS) or the lowest 
(N-type/channel MOS) voltage potentials in the circuit. Therefore, all bulks of NMOS elements are 
connected to negative supply voltages, and bulks of PMOS types are connected to positive supply 
voltage. Note that the dispersion of k was predicted from so-called process corner, supply voltage, 
and temperature variation (PVT) analyses. The experimentally obtained value fell into the expected 
range of possible deviation (see Figure 7). High input impedances (100 MΩ) represent an important 
advantage of this cell. In real experiments, the driving of transconductance was possible up to 660 
μS. Deviation from the maximum simulated value (about 1000 μS) was given by the uncertainty of k. 



Electronics 2019, 8, 568 11 of 28 

This was acceptable when fabrication mismatches were considered. The output impedances (real 
parts) remained above 100 kΩ for the highest value of driving DC voltage VX (the worst case). The 
measured linear dynamic input range was ±500 mV. The THD of the CMOS MLT reached, 
maximally, 1.5%. This was higher than in the case of the VDDB, but was still very acceptable. 

  
Figure 7. Selected results of the measured and simulated responses of the CMOS MLT: (left) DC 
transfer responses Y1 → Z for a VX1 controlled by DC voltage; (right) magnitude of AC transfer 
responses Y1 → Z for a VX1 controlled by DC voltage. 

Compared to the CMOS MLT solution, the BJT core of the MLT substantially improved the 
performance of the DC accuracy and k. The transconductance constant value reached k ≅ 4.8 mA/V2 
(simulated) and k ≅ 4.9 mA/V2 (measured). The obtained results (simulation and measurement), 
summarized in Table A3 (see Appendix A), indicated better accuracy and correspondence of 
simulated and measured transfer responses than in the case of the CMOS MLT. In comparison to the 
CMOS MLT solution, this represents a very important advantage. Input impedances achieved lower 
values in the BJT case (due to the bipolar input stage), but they were still sufficiently high for most of 
the applications. The input dynamic range with linear behavior was slightly higher, ±600 mV and 
±700 mV in the simulation and from measurement, respectively. The frequency bandwidth of only 
39 MHz could be considered to be some kind of limitation in particular cases, but it was obtained for 
a very low driving voltage. The range of possible transconductance controls was wider (measuring 
up to 2400 μS) than in the case of the CMOS MLT (measuring up to 660 μS). The output resistance 
achieved values >100 kΩ (even for the highest control voltages). The THD values were similar to the 
previous case. Exemplary DC and AC transfer responses are plotted in Figure 8. 

  
Figure 8. Selected results of the measured and simulated responses of the BJT MLT: (left) DC transfer 
responses X1 → Z for a VY1 controlled by DC voltage; (right) magnitude of AC transfer responses X1 
→ Z for a VY1 controlled by DC voltage. 
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4.3. CCCII 

All-important results are summarized in Table A4 (see Appendix A). Dynamic ranges of the 
current transfers (X → Z1–4) of the CCCII cell were from ±80 μA up to ±1700 μA, depending on the 
bias current Iset_Rx (driving RX as RX ≅ 3.5∙IB–1/2). Correspondence between Cadence and the 
experimental results in most of the DC/AC parameters was relatively high. In the worst case, the 
lowest usable frequency bandwidth was 37 MHz, but it was possible to reach 50 MHz for the highest 
Iset_Rx at specific transfers. 

The input impedance (Y terminal) again reached very high values (100 MΩ), and the output 
impedances were acceptable (>60 kΩ) even for the maximal Iset_Rx setting (the worst case). Note that 
quite large levels of currents were supposed to be processed. Therefore, quiescent DC bias currents 
in the branches of the output stages were also quite high (hundreds of μA). The THD levels were 
maximally up to 0.1%. Selected features of the CCCII are shown in Figure 9. 

It is worth noting that the dependence of RX (simulation: from 2320 Ω → 240 Ω) on Iset_Rx (see 
Table A4) was visible from 5 μA to 350 μA, but there was a significant difference between the 
simulation and measurement results. This was caused by a natural and expected change in the 
operation regime of transistors in the structure (the starts of this change in the case of simulations 
and in the case of a real circuit were different). 

  
Figure 9. Selected results of the measured and simulated responses of the CCCII: (left) DC response 
of the Y → X transfer; (right) AC responses of X → z1–2 transfers. 

4.4. CA 

Table A5 (see Appendix A) describes all-important features of the CA. The current gain (a 
constant between the output and input current) was defined as B ≅ 75∙103∙Iset_B and could be adjusted 
by the DC driving current Iset_B. The linearity of the DC transfer response was excellent (despite 
dynamics limited to ±200 μA), as well as input and output resistances are/were too. However, this 
cell targets low-power applications (the main purpose) and not speed. The frequency features of this 
cell were the worst from all units included in our IC (not overcoming 1.6 MHz, see Figure 10 (left)). 
A comparison of the real behavior of the CA cell (see Table A5) to Cadence design (nominal) showed 
the inaccuracy of DC as well as AC performances (Figure 10), especially for higher values of driving 
current Iset_B. Its power consumption was the lowest of all of the designed cells (at least five times). 
This is the reason why this cell is appropriate for low-power applications. The current gain control 
was designed for an Iset_B current (maximally 15 μA). Differences between the simulation and 
measurement results for Iset_B > 15 μA are given through uncertainty of the setting of the operational 
regime of particular transistors in the topology (simulations). The evaluated distortion was not 
higher than 0.6% in the case of this cell. 
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Figure 10. Selected results of the measured and simulated responses of the CA: (left) AC responses of 
i → o transfers; (right) dependence of B on Iset_B. 

5. Example Interconnection of Internal Cells: A Novel Advanced Active Element 

Internal cells (the VDDB, CCCII, CMOS MLT, BJT MLT, and CA) of the developed integrated 
device may be interconnected externally in order to create many types of advanced AEs. The 
principle of “modular approach” was presented in the overview of standard, modern and newly 
defined AEs. Their role in new proposals has been discussed in literature. For more details, see 
References [3,13]. The following text presents one possible novel configuration and interconnection 
of internal cells in accordance with the principle and methodology introduced in Reference [13]. 

Figure 11 shows the concept of an advanced AE that has three independently adjustable 
parameters, namely gm1, RX, and gm2. Note that the outer terminals of the AE are distinguished from 
inner (cell) terminals by the symbol “ * ”. This AE is characterized by the following operation. MLT1 
transforms the differential input voltage from the p* and n* terminals to the current (through the 
controllable transconductance, gm1) flowing out of the auxiliary terminal za* (IZa* = ± (Vp* – Vn*)∙gm1). 
The voltage input Y of the CCCII is connected to this terminal to process the voltage drop at external 
impedance, which is connected to this terminal. The voltage at za* also appears at the terminal X* (if 
not grounded). When the current is flowing through terminal X*, then relation VX* = VZa* + RXIX* is 
valid (RX is also electronically controllable). The CCCII creates a direct copy of IX* (IZb* = IX*) at the 
second auxiliary terminal, marked as Zb*. The voltage drop obtained at the external impedance, 
connected to this terminal, is again transformed to the current. It flows from MLT2 (where the third 
controllable parameter gm2 is available) at the x* terminal (Ix* = ±VZb*∙gm2). Note that the 
implementation of the MLTs in the AE concept allows for a simple change of polarity for the output 
currents IZa*, IZb*, and Ix* (i.e., transconductance polarity). We refer to this device as a 
current-controlled voltage differencing current conveyor transconductance amplifier 
(CC-VDCCTA). 

X

Y z1

z2

z3

z4

CCCII
Rx

VX*

IX*

Iset_Rx

X* CC-VDCCTA

X1

Ix*

MLT2
ZX2

Y1
Y2

Vset_gm2

x*

VZb*

X1Vp*

Vn*

Ip* = 0

In* = 0 MLT1
ZX2

Y1
Y2

Vset_gm1

p*
n*

VZa*
IZa*

IZb*

Za* Zb*

IZa* = ±(Vp* – Vn*)∙gm1

VX* = VZa* + RXIX*

IZb* = IX*

Ix* = ±VZb*∙gm2  
Figure 11. Example of the interconnection of three cells of the fabricated IC, defining an advanced 
active element (AE) with three adjustable parameters: a so-called current-controlled voltage 
differencing current conveyor transconductance amplifier (CC-VDCCTA). 
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5.1. Application Example: CC-VDCCTA-Based Quadrature Oscillator 

A simple oscillator enabling the linear tunability of frequency (oscillations) can be realized by 
utilizing a single CC-VDCCTA (see Figure 11) and four passive components. Its circuit is plotted in 
Figure 12. The characteristic equation has the following form: 

( )
2 2 1

2 1 2

(1 ) 0m m

X ext

Rg gs s
C R C C R R

−+ + =
+

, (3) 

where the condition for oscillation (CO) is fulfilled at R.gm2 ≥ 1. The frequency of oscillation (FO) and 
the relation between generated signals are given respectively by Equations (4) and (5). 

X

xRx

p

n
Za Zb

CC-VDCCTA

Iset_Rx Vset_gm2Vset_gm1

C1 C2
Rext R

V2V1

. 

Figure 12. A simple electronically and linearly tunable quadrature oscillator based on CC-VDCCTA. 

Equations (4) and (5) have simple expressions: 

( )
1

0
1 2

m

X ext

g
CC R R

ω =
+

, (4) 

( )
0

11 1
1

2 1 2

m
X ext m

s j

gV V j R R g
V sC Vω=

−=  = + . (5) 

Simultaneous adjustment of RX + Rext and gm1 (gm1 = 1/(RX + Rext)) ensures linear tuning of the FO 
while keeping output levels constant with the quadrature phase shift during the tuning process. 
Parameters gm2 or R are suitable for automatized CO control (amplitude stabilization). Note that the 
circuit is able to operate without external Rext. However, direct grounding of the X terminal of the 
CC-VDCCTA causes operation with lower linearity. Therefore, THD also increases significantly. A 
small value of Rext increases linearity and the dynamics of signal processing. 

The features of the proposed circuit were verified by Cadence Spectre simulations and by 
laboratory experiments, in which a real fabricated IC device was used. An Agilent 4395A 
network/spectrum/impedance analyzer and a DS1204B oscilloscope were used for these purposes. 
Figure 13 depicts the PCB realized for verification purposes. There were several auxiliary circuits on 
this PCB, including voltage buffers, in order to optimize output (for measurement purposes) with a 
50-Ω load (Agilent 4395A). 
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Figure 13. PCB for experimental verification of applications with fabricated chips shown in case of 
using only one IC package as discussed in the paper (implementation of the designed oscillator. 

A practical example of the design of the above-described oscillator starts with the following 
parameters: f0 = 159 kHz (oscillation frequency), C1 = C2 = C = 1 nF, Rx = 420 Ω (Iset_Rx = 100 μA), Rext = 
82 Ω, and R = 4.7 kΩ. Next, calculations from Equation (4) lead to gm1 = 1 mS (Vset_gm1 = 0.2 V). We 
designed and realized an amplitude stabilization circuit (CO control) of this oscillator (see Figure 14) 
based on the regulation of R. It was supplied from the node of C2 and was used in all experimental 
tests. The circuit contained a high-input impedance adjustable amplifier with an OA and a voltage 
doubler/multiplier controlling the junction field effect transistor (J-FET)-based controllable resistor 
connected to the node of C2 (in parallel to R = 4.7 kΩ). The value of gm2 was kept to about 540 μS 
(Vset_gm2 = 0.3 V). The measured waveforms and their spectral analyses are shown in Figure 15. 

RP

Rc

Rb

500 kΩ
100 kΩ

1 kΩ

TL072

3x1N4148

to node of C2

D1

Ca

Ra

Cb

3x1 μF BS250

D2

AGCINP D3

Cc

4.7 kΩ

node of C1 or C2

 

Figure 14. System for amplitude stabilization of the designed oscillator used in the experiments. 

   

Figure 15. Experimental results for the oscillator: (left) output waveforms; (middle) spectral analysis 
of V1; (right) spectral analysis of V2. 

The limited bandwidth and parasitic features of the AEs do not influence the considered 
low-frequency design significantly. This was confirmed by experimental measurements in the time 
domain (see Figure 15), where we obtained f0 = 164 kHz (very close to the expected 159 kHz). A 
spectral analysis yielded THD values of 0.8% and 1.3% (obtained for V1 and V2, respectively). 
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Figure 16. Measured dependences with linear tuning of the frequency of oscillation (FO) of the 
oscillator: (left) f0 versus simultaneous control of gm1 (Vset_gm1) and Rx (Iset_Rx); (right) amplitude levels 
of V1 and V2 versus f0. 

Figure 16 (left) shows the character of tunability and behavior of the output responses when f0 is 
tuned by gm1 (Vset_gm1) and RX (RX + Rext) simultaneously. Note that the low value of Rext = 82 Ω in these 
tests kept RX as a dominant source in the adjustment of f0. The value of RX + Rext (connected actually 
in a series) was set from 500 Ω to 5 kΩ (Iset_Rx = 100 → 10 μA), and the value of gm1 was adjusted in the 
opposite direction, from 196 μS to 2 mS (Vset_gm1 = 0.041 → 0.41 V). When this setting was considered, 
the oscillator offered an ideal tuning range for the FO: f0 = 32 kHz → 319 kHz (10:1). Cadence 
simulations yielded tunability from 43 kHz to 295 kHz (7:1), and the laboratory experiments 
provided the adjustment between 38 kHz and 337 kHz (9:1). The phase shift fluctuated around 90°, 
with a maximal deviation of ±2° in these bands. The amplitude levels, as well as their ratio, were 
almost constant during the measured FO tuning (see Figure 16 (right)). 

The benefits of the proposed oscillator (available simultaneously) were as follows: (a) all 
passive elements were grounded, (b) simple electronic controllability, (c) a linear type of tunability, 
(d) a fully uncoupled FO and CO, (e) two possible ways (driving of gm2 or R) for the implementation 
of the system for automatic amplitude stabilization, and (f) constant output levels and phase shift 
when oscillation frequency was tuned. 

Table 2 compares the features of our design to relevant solutions of similar oscillators (single 
advanced AE-based circuits). Based on an analysis of the considered concepts, the solution in 
Reference [56] offered the most similar features. However, the option of tunability was not tested, 
electronic linear tunability was not even possible, and electronic control of internal RX in the AE was 
not supposed. Interesting features were also available in the case of the solution presented in 
Reference [55]. However, this oscillator did not provide quadrature outputs with constant signal 
levels (when FO was tuned)



Electronics 2019, 8, 568 17 of 28 

Electronics 2019, 8, 568; doi:10.3390/electronics8050568 www.mdpi.com/journal/electronics 

Table 2. A comparison of recently published and the most similar electronically controllable quadrature oscillators based on a single active element and a grounded 
capacitor. 

References Active 
Elements 

No. of Auxiliary 
High Impedance 

Terminals Z 

No. of 
Controllable 
Parameters of 

Device 

No. of 
Passive 

Elements 

Parameters 
for f0 Control 

Trend of 
Electronic 
Tunability 

Fulfillment of 
CO Given by 

Parameter 

No. of 
Parameters 
Suitable for 
CO Control 

FO and 
CO Fully 

Uncoupled 

Constant Output 
Amplitude 
While f0 Is 

Tuned 

Chip 
Area/Cell 

Area 
(mm2) 

Power 
Consumption 

(Full IC/ 
Cells) (mW) 

[36] VDCC 1 2 4 gm nonlinear R valuea 1 Yes No 4/0.79 -/45 
[55] ZC-CG-VDCC 1 3 4 gm, RX linear B 1 Yes Nob N/A -/7 
[56] VDTA 1 2 3 gm nonlinear R valuea 1 Yes No N/A N/A 
[57] DVCCTA 1 1c 5 gm, RX N/A R valuea 2 Yes N/A N/A N/A 
[58] DDTA 1 1 3 gm nonlinear C value 0 No N/A N/A N/A 

Figure 11 CC-VDCCTA 2 3 4 gm1, RX linear gm2, R valuea 2 Yes Yes 2.34/0.35 45/34 

Notes: CC-VDCCTA: current-controlled voltage differencing CCTA; DDTA: differential difference transconductance amplifier; DVCCTA: differential voltage current 
conveyor transconductance amplifier; VDCC: voltage differencing current conveyor; VDTA: voltage differencing current conveyor; ZC-CG-VDCC: Z-copy controlled gain 
VDCC; N/A: not available, not solved, or not tested; gm: transconductance; RX: resistance of current input terminal; B: adjustable current gain. a Value of passive element. b 

Multiphase type of oscillator where quadrature output is also available: However, constant amplitudes (when tuned) are generated only with a 45°phase shift. c RX not 
implemented in the AE as electronically controllable (RX = external passive element), and electronic FO tunability available in nonlinear form only (but not tested).
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The use of several internal cells in a frame of the single IC package may indicate that the 
implementation of simple OTA cells (for instance, the well-known solution from References [59,60]) 
brings simpler topologies of linearly tunable oscillators. Based on the comparison of the structure 
from Figure 12 (including three adjustable internal cells) and solutions of the oscillators, shown in 
References [59,60], we can assess that three OTAs (having three gm parameters) are not sufficient for 
fully linear tuning of frequency of oscillations even when we accept an unfavorable disturbance of 
the ratio of output amplitudes during the tuning procedure. The quadrature and linearly tunable 
solutions, employing OTAs, require at least four active devices (see Reference [59]) and, in addition, 
also an amplitude stabilization (AGC) as a circuit. From the viewpoint of the number of active 
devices, our solution brings a reduction in the needed number of active devices (when internal IC 
cells are counted as discrete parts). 

Many applications require several current outputs (implementation of OTAs [3,4,13]). In 
Reference [54], a perfect example of the synthesis of a multiphase oscillator requiring an active 
device with several current output terminals was presented. A similar thing can be ensured in our IC 
modular approach when the CCCII cell is used as a current distributor [16] (Y terminal connected to 
the ground and current Iset_Rx is adjusted to the highest value in order to obtain the lowest RX value). 
This current distributor extends the number of output currents of both polarities when it is 
connected through the X terminal to the current output z of the MLT (forming the OTA part) in the 
IC package. 

6. Conclusions 

The presented concept of “modular approach” leads to interesting constructions of advanced 
AEs, which have multiterminal and multiparameter (single, two, three, or four independently 
controllable parameters) features. Several of them have already been defined in Reference [13]. 
However, many of them have not been presented in the literature until now. A fabricated IC device 
allows various implementations of AEs in different systems of continuous analog and mixed signal 
processing. Frequency features of cells (units and tens of MHz), given significantly by the used 
technology I3T25, predetermine the proposed systems for operation to up to hundreds of kHz and 
units of MHz, with sufficient dynamic ranges of the processed signals. A brief comparison of the 
most important features of the proposed active cells is presented in Table 3. 

Table 3. Brief comparison of the selected important measured features of the proposed cells included 
in the IC. 

Cell Frequency Features 
(Bandwidth)a 

DC Features and 
Linearity (Dynamics) 

Input Impedance Output 
Impedance 

Quiescent Power 
Consumption a 

Accuracy of Simulation Results 
with Results of Experiments 

(Design Stage) 

VDDB Good (>45 MHz) Good (±700 mV) High (100 MΩ) Low (good) 
(0.5 Ω) 

Average (9.1 mW) High 

CMOS 
MLT Average (>30 MHz) Good (±500 mV) High (100 MΩ) 

Average (>100 
kΩ) Average (7.8 mW) 

Within expected range (process 
variation) 

BJT 
MLT Good (>40 MHz) Good (±700 mV) Average (170 kΩ) 

Average (>100 
kΩ) Average (9.5 mW) Good 

CCCII Good (>37 MHz) Good (±500 mV, Y) 
(to ±1700 μA, X) 

High (100 MΩ, Y) 
Average (0.28 → 3.4 

kΩX) 

Average (>60 
kΩ) High (16.8 mW) Good 

CA Low (<1.6 MHz) 
Average (but 

excellent linearity) 
(±190 μA) 

Low b (1.4 Ω) 
High (good) 

(>3 MΩ) Low (1.7 mW) Average 

Notes: All numerical results are measured values; a in frame of the IC device; b this is a significant 
advantage in the case of CA. 

The proposed and realized AEs can be easily applied in the field of analog signal processing 
(synthetic immittance functions, filters, oscillators, etc.). The functionality of the modular design of 
AEs was verified, and one application example (an oscillator) of a newly defined concept 
(CC-VDCCTA) was presented in this paper in detail. Smooth operating and real measurement 
results, in comparison to theory and expectations, confirmed the suitability of the modular approach 
in the development of new circuit applications. 
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This paper showed and explained the results and performances of all of the designed cells. An 
application example actually utilized only a part of them. The employment of more cells or different 
combinations of cells goes beyond the aims of this paper and is a topic of our future research. 
Nevertheless, the presented example sufficiently explains the purpose of the developed IC 
(assembly and implementation of advanced AEs) and indicates how the new (or modified) 
advanced AE can be usefully utilized in an application. This application example was selected 
because of the usefulness of several adjustable parameters for tunability purposes of the oscillator. 
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Appendix A 

This appendix includes the integrated internal topologies of the proposed cells of the 
manufactured IC device. Furthermore, their performance analyses (simulation versus measurement) 
are presented in detail. 
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Figure A1. Full CMOS topology of the voltage differencing differential buffer (VDDB). 
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Table 1. Summary of simulated and measured performances of the VDDB cell. THD: total harmonic 
distortion. 

Parameters/Conditions Simulation Results (Nominal Run) Measured Results Error (Measured vs Simulated) Design Target 
Small-signal AC transfer 

KY1 → W (−3 dB) 1.00 [-] (51.6 MHz) 1.02 [-] (55.4 MHz) +2% (+7%) 1 (≥30 MHz) 
KY2 → W (−3 dB) 1.00 [-] (54.3 MHz) 1.02 [-] (61.6 MHz) +2% (+13%) 1 (≥30 MHz) 
KY3 → W (−3 dB) 1.00 [-] (51.3 MHz) 1.01 [-] (45.1 MHz) +1% (–12%) 1 (≥30 MHz) 

Input dynamic range 
Y1,2,3 → W ≥ ±700 mV ≥ ±700 mV 0% ≥±500 mV 

Input DC offset (Monte Carlo) 

 
systematic + statistical  

(mismatch, 3 sigma; 99.7%) 
real   

Y1,3 → W −0.57 ± 20.5 mV |10| mV expected statistical range - 
Y2 → W −0.57 ± 20.5 mV |10| mV expected statistical range - 

Total harmonic distortion (for input voltage 500 mVpk-pk, 1 kHz) 
THD Y1,2,3→W  <0.10% - <1% 

Terminal impedances 
RY1,2,3, CY1,2,3 ≥1 GΩ 2.8 pF 100 MΩ13 pF - >50 kΩ 

RW, LW 0.37 Ω 4.3 μH 0.54 Ω 4.3 μH - <10 Ω 
measured quiescent power consumption: 9.1 mW 

Basic principle: The topology of the VDDB included an OA-based folded cascoded core. The 
difference between the standard topology in References [45,46] and our proposal consisted of the 
following: (a) additional differential NMOS and PMOS pairs (Mp3–4, Mn3–4) were used to obtain two 
additional voltage inputs, where one of them was used for full negative feedback. The 
low-impedance voltage output was solved as a class A source follower (M9). 
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Figure A2. Full CMOS topology of the voltage multiplier with current output (CMOS MLT). 
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Table A2. Summary of simulated and measured performance of the CMOS MTL cell. 

Parameters/Conditions 
Simulation Results 

(Nominal Run) 
Measured 

Results 
Error (Measured vs 

Simulated) 
Design Target 

Small-signal AC transfer 
gm (X1 → Z) (−3 dB) for VY1 = ±0.05 

→ ±0.50 V 
±98 → ± 975 μS (≥53.0 

MHz) 
±45 → ± 650 μS 

(≥30.0 MHz) 

–54% → –33% (–
43%) 

≥100 μS → ≥ 1000 
μS (≥30 MHz) 

gm (Y1 → Z) (−3 dB) for VX1 = ±0.05 
→ ±0.50 V 

±98 → ± 980 μS (≥44.0 
MHz) 

±60 → ± 665 μS 
(≥44.0 MHz) 

–39% → –32% (0%) 
≥100 μS → ≥ 1000 
μS (≥30 MHz) 

Input DC dynamic range 
X1 → Z for VY1 = ± 0.05 → ± 0.50 

V 
≥±500 mV ≥±500 mV 0% ≥±500 mV 

Y1 → Z for VX1 = ± 0.05 → ± 0.50 
V 

≥±600 mV ≥±600 mV 0% ≥±500 mV 

Input DC offset (Monte Carlo) 

 
systematic + statistical 

(mismatch, 3 sigma; 99.7%) real maximum   

X1 → Z for VY1 = ± 0.5 V 3.3 ± 63 mV |6| mV 
expected statistical 

range 
- 

Y1 → Z for VX1 = ±0.5 V 3.2 ± 66 mV |18| mV 
expected statistical 

range 
- 

Total harmonic distortion (for input voltage 500 mVpk-pk, 1 kHz) 
THD X1 → Z for VY1 = ± 0.1 V  ≤0.16% - <1% 
THD X1 → Z for VY1 = ± 0.5 V  ≤0.14% - <1% 
THD Y1 → Z for VX1 = ± 0.1 V  ≤1.45% - <1% 
THD Y1 → Z for VX1 = ± 0.5 V  ≤0.45% - <1% 

Terminal impedances 
RX1, CX1 for all VY1 ≥1 GΩ 2.5 pF 100 MΩ 10–24 pF - >50 kΩ 
RY1, CY1 for all VX1 ≥1 GΩ 2.5 pF 100 MΩ 14 pF - >50 kΩ 

RZ, CZ for VX1 = ± 0.50 V 1.55 MΩ 5.3 pF ≥100 kΩ 16.2 pF - >50 kΩ 
measured quiescent power consumption: 7.8 mW 

Basic principle: Two input differential voltages were processed by linearizing segments (Mx1-2 
and My1-2) in order to extend the linear range of the DC transfer. Each linearizing segment worked as 
an operational transconductance amplifier with very low but highly linear (from the viewpoint of 
signal level) transconductance (practically given by degradation resistor Rb, and therefore high 
linearity between the input differential voltage and the output current was ensured) with a 
differential current output that performed differential output voltage at two identical resistive loads. 
Then, both output voltages were connected to the multiplying core (the basic concept introduced in 
Reference [48]). A boosting OTA section (differential pair M7–8) was used because of the low output 
level (low gain) of the current (tens of μA instead of hundreds of μA) when the output of the 
multiplying core, through appropriate current mirrors, was taken directly out. 

 

Figure 3. Full CMOS topology of the voltage multiplier with current output (BJT MLT). 
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Table A3. Summary of simulated and measured performances of the BJT MTL cell. 

Parameters/Conditions 
Simulation Results 

(Nominal Run) 
Measured 

Results 
Error (Measured vs 

Simulated) 
Design Target 

Small-signal AC transfer 
gm (X1 → Z) (-3 dB) for VY1 = ± 0.05 

→ ±0.50 V 
±222 → ±2220 μS (≥53.0 

MHz) 
±250 → 2340 μS 

(≥52.0 MHz) 
+13% → +5% (–2%) 

±200 → ± 2000 
μS (≥30 MHz) 

gm (Y1 → Z) (-3 dB) for VX1 = ±0.05 
→ ±0.50 V 

±222 → ±2210 μS (≥53.0 
MHz) 

±250 → 2350 μ 
(≥39.0 MHz) 

+13% → +6% (–
26%) 

±200 → ± 2000 
μS (≥30 MHz) 

Input DC dynamic range 
X1 → Z for VY1 = ±0.05 → ±0.50 

V 
≥±600 mV ≥±700 mV +17% ≥±500 mV 

Y1 → Z for VX1 = ±0.05 → ±0.50 
V 

≥±600 mV ≥±700 mV +17% ≥±500 mV 

Input DC offset (Monte Carlo) 

 
systematic + statistical 

(mismatch, 3 sigma; 99.7%) 
real maximum   

X1 → Z for VY1 = ±0.5 V −1.4 ± 29 mV |14| mV 
expected statistical 

range 
- 

Y1 → Z for VX1 = ±0.5 V −1.3 ± 29 mV |15| mV 
expected statistical 

range 
- 

Total harmonic distortion (for input voltage 500 mVpk-pk, 1 kHz) 
THD X1 → Z for VY1 = ±0.1 V  ≤0.32% - <1% 
THD X1 → Z for VY1 = ±0.5 V  ≤0.47% - <1% 
THD Y1 → Z for VX1 = ±0.1 V  ≤0.17% - <1% 
THD Y1 → Z for VX1 = ±0.5 V  ≤0.44% - <1% 

Terminal impedances 
RX1, CX1 for all VY1 129 kΩ, 2.8 pF 176 kΩ 18.3 pF - >50 kΩ 
RY1, CY1 for all VX1 127 kΩ 2.8 pF 173 kΩ 15.4 pF - >50 kΩ 

RZ, CZ for VX1 = ±0.50 V 803 kΩ 3.9 pF ≥100 kΩ 16.1 pF - >50 kΩ 
measured quiescent power consumption: 9.5 mW 

Basic principle: This cell was prepared for high-precision applications (inaccuracies in CMOS 
MLT were expected). In accordance with Reference [49], a linearizing segment was applied to one 
differential voltage, and the linearizing procedure was different than with the CMOS MLT. It uses 
exponential/logarithmic dependence of the collector current on base-emitter voltage and 
linearization of the gm (differential pair) stage by the degradation resistor (Ra). The attenuation of the 
signal through the linearizing segment was less significant than with the CMOS MLT. The boosting 
OTA is also presented in this case due to the same reasons as with the CMOS MLT. In our design, for 
the highest bandwidth, it was always better to use an additional block than increase the current 
mirror ratio to a value of 1:100 (a high increase in the Cgs parasitic capacity in the node of the current 
mirror and drop of bandwidth). 
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Figure A4. Full CMOS topology of the current-controlled current conveyor of the second generation 
(CCCII). 
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Table A4. Summary of the simulated and measured performances of the CCCII cell. 

Parameters/Conditions 
Simulation Results (Nominal 

Run with Input/Output 
Capacity 5 pF) 

Measured 
Results 

Error (Measured 
vs Simulated) 

Design 
Target 

Small-signal AC transfer 

KX → z1 (−3 dB) for Iset_Rx = 350 μA 1.00 [-] (49.6 MHz) 
0.98 [-] (51.5 

MHz) 
–2% (+9%) 

1 (≥30 
MHz) 

KX → z2 (−3 dB) for Iset_Rx = 350 μA 1.00 [-] (49.6 MHz) 
0.98 [-] (47.5 

MHz) 
–2% (–4%) 

1 (≥30 
MHz) 

KX → z3 (−3 dB) for Iset_Rx = 350 μA 0.93 [-] (41.1 MHz) 
1.00 [-] (37.0 

MHz) 
+7% (–10%) 

1 (≥30 
MHz) 

KX → z4 (−3 dB) for Iset_Rx = 350 μA 0.93 [-] (41.1 MHz) 
1.00 [-] (38.7 

MHz) 
+7% (–5%) 

1 (≥30 
MHz) 

KY → X (−3 dB) for Iset_Rx = 350 μA 1.00 [-] (52.1 MHz) 
1.00 [-] (49.7 

MHz) 
0% (–5%) 

1 (≥30 
MHz) 

GBWX → Z1 for Iset_Rx = 10→350 μA 12.7 → 49.6 MHz 
11 → 51.5 

MHz 
–13% → +4% - 

GBWX → Z2 for Iset_Rx = 10→350 μA 12.7 → 49.6 MHz 
9.8 → 47.5 

MHz 
–23% → –4% - 

GBWX → Z3 for Iset_Rx = 10→350 μA 10.8 → 41.1 MHz 
7.8 → 37 

MHz 
–28% → –10% - 

GBWX → Z4 for Iset_Rx = 10→350 μA 10.8 → 41.1 MHz 
8 → 38.7 

MHz 
–26% → –6% - 

GBWY → X for Iset_Rx = 10→350 μA 11.9 → 52.1 MHz 
6.1 → 49.7 

MHz 
–49% → –5% - 

Input DC dynamic range 

X → Z1-4 for Iset_Rx = 10 → 350 μA ±80 → ± 1700 μA 
±99 → ± 1700 

μA 
+24% → +0% 

±100 → 
±1000 μA 

Y → X for Iset_Rx = 10,350 μA ≥±500 mV ≥±1000 mV +100% ≥±500 mV 
Input DC offset (Monte Carlo) 

 systematic + statistical 
(mismatch, 3 sigma; 99.7%) 

real   

X → Z1 for Iset_Rx = 100 μA 0.047 ± 8.2 μA -5.4 μA 
expected stat. 

range 
- 

X → Z2 for Iset_Rx = 100 μA 0.047 ± 8.2 μA -0.05 μA 
expected stat. 

range 
- 

X → Z3 for Iset_Rx = 100 μA −0.043 ± 12.0 μA 0.65 μA 
expected stat. 

range 
- 

X → Z4 for Iset_Rx = 100 μA −0.043 ± 12.0 μA -0.64 μA 
expected stat. 

range 
- 

Y → X for Iset_Rx = 100 μA 0.336 ± 3.771 mV 2.5 mV 
expected stat. 

range 
- 

Total harmonic distortion 
THD X → z1,2 for Iset_Rx = 50, 350 μA (for 

input current 100 μApk-pk, 1 kHz) 
 0.04, 0.07% - <1% 

THD X → z3,4 for Iset_Rx = 50, 350 μA (for 
input current 100 μApk-pk, 1 kHz)  0.003, 0.11% - <1% 

THD Y → X for Iset_Rx = 50 and 200 μA 
(for input voltage 500 mVpk-pk, 1 kHz) 

 0.08, 0.07% - <1% 

Terminal impedances 

RX, CX for Iset_Rx = 5 → 350 μA 2320 → 240 Ω, 10 pF 
6670 → 280 
Ω, 20 pF 

+188% → +17% 
2500 → 
250 Ω 

RY, CY for all Iset_Rx ≥1 GΩ 2.7 pF 
100 MΩ,14.5 

pF 
- >50 kΩ 

Rz1,2, Cz1,2 for Iset_Rx = 5 μA 52 MΩ, 4.8 pF 
100 MΩ, 15.9 

pF 
- >50 kΩ 

Rz1,2, Cz1,2 for Iset_Rx = 350 μA 44 kΩ, 4.8 pF 66 kΩ 15.9 pF - >50 kΩ 

Rz3,4, Cz3,4 for Iset_Rx = 5 μA 106 MΩ, 2.5 pF 
100 MΩ 15.9 

pF 
- >50 kΩ 

Rz3,4, Cz3,4 for Iset_Rx = 350 μA 49 kΩ 2.5 pF 82 kΩ 15.9 pF - >50 kΩ 
measured quiescent power consumption: 16.8 mW 

Basic principle: The topology of the CCCII was based on a differential pair (M1-2) with full 
negative feedback that allowed for a simple control of terminal resistance X as an inversely 
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proportional function of gm by bias current. Then, the current difference of the differential pair was 
taken out by cascoded current mirrors. The ideal scheme of this idea is shown in Reference [50], but 
our solution had some significant modifications. One of them consists in the full mirroring of 
currents from the differential pair. Then, symmetrical dynamics of the current and voltage responses 
(no DC drop on bias sources) was available. The next modification included cascoded and multiple 
current outputs. 
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Figure A5. Full CMOS topology of the adjustable current amplifier (CA). 

Table A5. Summary of simulated and measured performances of the CA cell. 

Parameters/Conditions Simulation Results 
(Nominal Run) 

Measured Results Error (Measured vs 
Simulated) 

Design 
Target 

Small-signal AC transfer 
K(i → o) [-] for Iset_B = 1→22.5 

μA 
0.08 → 6.35 0.07 → 2.14 –12% → –8% 0.1 → 1.0 

K(i → o) [dB] (−3 dB) for Iset_B = 1 
μA 

–22.3 → 16 dB (0.69 → 
2.89 MHz) 

–23.4 → 6.6 dB (0.46 → 
1.56 MHz) 

–12% → –66%  

B [-] for Iset_B = 1 → 22.5 μA 0.076 → 6.346 0.067 → 2.138 +5% → –59%  
GBW i→o for Iset_B = 1 → 22.5 

μA 
0.69 → 2.89 MHz 0.46 → 1.56 MHz –33% → –46% ≥100 kHz 

Input dynamic range 
I → o for Iset_B = 1 → 22.5 μA ≥±200 μA ≥±180 μA –10% ≥±150 μA 

Input DC offset (systematic) 
I → o for Iset_B = 1 → 22.5 μA 0.04 → 0.06 μA 6 → −9 μA expected stat. range - 

Total harmonic distortion (for input current 100 �Apk-pk, 1 kHz) 
THD I → o for Iset_B = 12.5 μA  0.14% - <1% 

Terminal (input/output) impedances 
Ri, Li for all Iset_B 0.91 Ω 31 μH 1.4 Ω 42 μH - <10 Ω 

Ro, Co for Iset_B = 1 → 22.5 μA 80 MΩ → 59 kΩ, 3.9 pF 30 MΩ → 3 MΩ 14.1 pF - >1 MΩ 
measured quiescent power consumption: 1.7 mW 
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Basic principle: A part of this cell used a very similar but not identical to principle of CCCII. 
The input stage (see top part of Figure A5) consisted of an OTA section with a full negative feedback. 
After processing and DC-shifting the signal in both polarities, the current gain-controlling part was 
connected (see bottom part of Figure A5). Both branches were tied together in the output stage, 
including current mirrors. 

References 

1. Chen, W. The Circuits and Filters Handbook, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2009; 3364p, ISBN 
978-0849383410. 

2. Raut, R.; Swamy, M.N.S. Modern Analog Filter Analysis and Design: A practical approach, 1st ed.; Willey: 
Weinheim, Germany, 2010; 378p, ISBN 9783527407668. 

3. Senani, R.; Bhaskar, D.R.; Singh, A.K. Current Conveyors: Variants, Applications and Hardware 
Implementations, 1st ed.; Springer: Berlin, Germany, 2015; 560p, ISBN 978-3-319-08683-5. 

4. Senani, R.; Bhaskar, D.R.; Singh, A.K.; Sharma, R.K. Sinusoidal Oscillators and Waveform Generators using 
Modern Electronic Circuit Building Blocks, 1st ed.; Springer International Publishing: Cham, Switzerland, 
2016; pp. 1–622, ISBN 978-3-319-23711-4. 

5. Xia, J.; Wang, Y.C.; Ma, F.C. Experimental demonstration of 1.5 GHz chaos generation using an improved 
Colpitts oscillator. Nonlinear Dyn. 2013, 72, 575−580, doi:10.1007/s11071-012-0735-1. 

6. Stork, M. Energy feedback used for oscillators control. Nonlinear Dyn. 2016, 85, 871−879, 
doi:10.1007/s11071-016-2729-x. 

7. Li, C.-H. RF Circuit Design; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2008; pp. 1−827, ISBN 
9780470167588. 

8. Metin, B.; Arslan, E.; Herencsar, N.; Cicekoglu, O. Voltage-mode MOS-only all-pass filter. In Proceedings 
of the 2011 34th International Conference on Telecommunications and Signal Processing (TSP), Budapest, 
Hungary, 18–20 August 2011; pp. 317−318; doi:10.1109/TSP.2011.6043718. 

9. Metin, B.; Herencsar, N.; Cicekoglu, O. Low-Voltage Electronically Tunable MOSFET-C Voltage-Mode 
First-Order All-Pass Filter Design. Radioenginnering 2013, 22, 985−994. 

10. Ozenli, D.; Kuntman, H. MOS-only circuit design automation. In Proceedings of the 2016 IEEE 7th Latin 
American Symposium on Circuits & Systems (LASCAS), Florianopolis, Brazil, 28 February–2 March 2016; 
pp. 203−206; doi:10.1109/LASCAS.2016.7451045. 

11. Konal, M.; Kacar, F. MOS Only Grounded Active Inductor Circuits and Their Filter Applications. J. Circuits 
Syst. Comput. 2017, 26, 1750098, doi:10.1142/S0218126617500980. 

12. Safari, L.; Yuce, E.; Minaei, S. A new low-power current-mode MOS only versatile precision rectifier. AEU 
Int. J. Electron. Commun. 2018, 83, 40−51, doi:10.1016/j.aeue.2017.08.020. 

13. Biolek, D.; Senani, R.; Biolkova, V.; Kolka, Z. Active elements for analog signal processing: Classification, 
Review and New Proposals. Radioengineering 2008, 17, 15−32. 

14. Kundert, K.; Chang, H.; Jefferies, D.; Lamant, G.; Malavasi, E.; Sending, F. Design of Mixed-Signal 
Systems-on-a-Chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2000, 19, 1561−1571, 
doi:10.1109/43.898832. 

15. Carter, B.; Brown, T.R. Handbook of Operational Amplifier Applications. Texas Instruments—Application 
Report 2016. pp. 1−94. Available online: http://www.ti.com/lit/an/sboa092b/sboa092b.pdf (accessed on 21 
May 2019). 

16. Jerabek, J.; Sotner, R.; Vrba, K. Comparison of the SITO Current-Mode Universal Filters Using 
Multiple-Output Current Followers. In Proceedings of the 2012 35th International Conference on 
Telecommunications and Signal Processing (TSP), Prague, Czech Republic, 3–4 July 2012; pp. 406−410; 
doi:10.1109/TSP.2012.6256325. 

17. Sedra, A.; Smith, K.C. A second generation current conveyor and its applications. IEEE Trans. Circuit 
Theory 1970, 17, 132−134, doi:10.1109/TCT.1970.1083067. 

18. Svoboda, J.A.; McGory, L.; Webb, S. Applications of a commercially available current conveyor. Int. J. 
Electron. 2007, 70, 159−164, doi:10.1080/00207219108921266. 

19. Cajka, J.; Dostal, T.; Vrba, K. General view on current conveyors. Int. J. Circuit Theory Appl. 2004, 32, 
133−138, doi:10.1002/cta.271. 



Electronics 2019, 8, 568 26 of 28 

20. Biolek, D.; Biolkova, V. Implementation of active elements for analog signal processing by diamond 
transistors. In Proceedings of the International Conference on Electronic Devices and Systems (EDS’09 
IMAPS CS), Brno, Czech Republic, 2 September 2009; pp. 304−309. 

21. Geiger, R.L.; Sanchez-Sinencio, E. Active filter design using operational transconductance amplifier: A 
tutorial. IEEE Circuits Devices Mag. 1985, 1, 20–32, doi:10.1109/MCD.1985.6311946. 

22. Sanchez-Sinencio, E.; Silva-Martinez, J. CMOS transconductance amplifiers, architectures and active 
filters: A tutorial. IEE Proc. Circuits Devices Syst. 2000, 147, 3–12, doi:10.1049/ip-cds:20000055. 

23. Duong, Q.-H.; Le, Q.; Kim, C.-W.; Lee, S.-G. A 95-dB linear low-power variable gain amplifier. IEEE Trans. 
Circuits Syst. I Regul. Pap. 2006, 53, 1648−1657, doi:10.1109/TCSI.2006.879058. 

24. Hassan, T.M.; Mahmoud, S.A. New CMOS digitally controlled variable gain amplifier. In Proceedings of 
the 2008 International Conference on Microelectronics, Sharjah, UAE, 14–17 December 2008; pp. 23−28; 
doi:10.1109/ICM.2008.5393795. 

25. Texas Instruments. VCA810 High Gain Adjust Range, Wideband and Variable Gain Amplifier. Datasheet. 
2015; 40p. Available online: http://www.ti.com/lit/ds/symlink/vca810.pdf (accessed on 21 May 2019). 

26. Fabre, A.; Saaid, O.; Wiest, F.; Boucheron, C. High frequency applications based on a new current 
controlled conveyor. IEEE Trans. Circuits Syst. I Regul. Pap. 1996, 43, 82−91, doi:10.1109/81.486430. 

27. Surakampontorn, W.; Thitimajshima, W. Integrable electronically tunable current conveyors. IEE Proc. G 
Electron. Circuits Syst. 1988, 135, 71−77, doi:10.1049/ip-g-1.1988.0010. 

28. Fabre, A.; Mimeche, N. Class A/AB second-generation current conveyor with controlled current gain. 
Electron. Lett. 1994, 30, 1267−1269, doi:10.1049/el:19940878. 

29. Minaei, S.; Sayin, O.K.; Kuntman, H. A new CMOS electronically tunable current conveyor and its 
application to current-mode filters. IEEE Trans. Circuits Syst. I Regul. Pap. 2006, 53, 1448−1457, 
doi:10.1109/TCSI.2006.875184. 

30. De Marcellis, A.; Ferri, G.; Guerrini, N.C.; Scotti, G.; Stornelli, V.; Trifiletti, A. The VGC-CCII: A novel 
building block and its application to capacitance multiplication. Analog Integr. Circuits Signal Process. 2009, 
58, 55−59, doi:10.1007/s10470-008-9213-6. 

31. Kumngern, M.; Junnapiya, S. A sinusoidal oscillator using translinear current conveyors. In Proceedings 
of the 2010 IEEE Asia Pacific Conference on Circuits and Systems (APPCAS), Kuala Lumpur, Malaysia, 6–
9 December 2010; pp. 740−743; doi:10.1109/APCCAS.2010.5774754. 

32. Sotner, R.; Kartci, A.; Jerabek, J.; Herencsar, N.; Dostal, T.; Vrba, K. An Additional Approach to Model 
Current Followers and Amplifiers with Electronically Controllable Parameters from Commercially 
Available ICs. Meas. Sci. Rev. 2012, 12, 255−265, doi:10.2478/v10048-012-0035-4. 

33. Jerabek, J.; Sotner, R.; Kartci, A.; Herencsar, N.; Dostal, T.; Vrba, K. Two Behavioral Models of the 
Electronically Controlled Generalized Current Conveyor of the Second Generation. In Proceedings of the 
2015 38th International Conference on Telecommunications and Signal Processing (TSP), Prague, Czech 
Republic, 9–11 July 2015; pp. 349−353; doi:10.1109/TSP.2015.7296282. 

34. Sotner, R.; Herencsar, N.; Jerabek, J.; Langhammer, L.; Polak, J. On practical construction of electronically 
controllable compact current amplifier based on commercially available elements and its application. AEU 
Int. J. Electron. Commun. 2017, 81, 56−66, doi:10.1016/j.aeue.2017.07.002. 

35. Sotner, R.; Petrzela, J.; Domansky, O.; Langhammer, L.; Dostal, T. Single Active Parameter Tunable Simple 
Band-Pass Filter: Methods for Tunability Range Extension. In Proceedings of the 2017 24th International 
Conference Mixed Design of Integrated Circuits and Systems (MIXDES), Bydgoszcz, Poland, 22–24 June 
2017; pp. 318−323; doi:10.23919/MIXDES.2017.8005223. 

36. Sotner, R.; Jerabek, J.; Prokop, R.; Kledrowetz, V. Simple CMOS voltage differencing current conveyor- 
based electronically tunable quadrature oscillator. Electron. Lett. 2016, 52, 1016−1018, 
doi:10.1049/el.2016.0935. 

37. Sotner, R.; Jerabek, J.; Prokop, R.; Kledrowetz, V.; Polak, J.; Fujcik, L.; Dostal, T. Practically Implemented 
Electronically Controlled CMOS Voltage Differencing Current Conveyor. In Proceedings of the 2016 IEEE 
59th International Midwest Symposium on Circuits and Systems (MWSCAS), Abu Dhabi, UAE, 16–19 
October 2016; pp. 667−670; doi:10.1109/MWSCAS.2016.7870105. 

38. Analog Devices. AD844 60 MHz, 2000 V/us Monolithic Op Amp with Quad Low Noise. Datasheet. 2017; 
20p. Available online: http://www.analog.com/media/en/technical-documentation/data-sheets/AD844.pdf 
(accessed on 21 May 2019). 



Electronics 2019, 8, 568 27 of 28 

39. Sponar, R.; Vrba, K. Measurements and Behavioral Modelling of Modern Conveyors. Int. J. Comput. Sci. 
Netw. Secur. 2006, 3, 57−63. 

40. Sponar, R.; Vrba, K.; Kubanek, D. Universal Current Conveyor and Universal Voltage Conveyor 
Measurement and Modeling. In Proceedings of the International Conference on Networking, International 
Conference on Systems and International Conference on Mobile Communications and Learning 
Technologies (ICNICONSMCL’06), Morne, Mauritius, 23–29 April 2006; pp. 1–4; 
doi:10.1109/ICNICONSMCL.2006.219. 

41. Prokop, R.; Musil, V. Modular approach to design of modern circuit blocks for current signal processing 
and new device CCTA. In Proceedings of the 7th International Conference on Signal and Image 
Processing, Honolulu, HI, USA, 15–17 August 2005; pp. 494–499. 

42. Prokop, R.; Musil, V. New modular current devices for true current mode signal processing. Electronics 
2007, 16, 36–42. 

43. Sotner, R.; Herencsar, N.; Jerabek, J.; Prokop, R.; Kartci, A.; Dostal, T.; Vrba, K. Z-Copy Controlled-Gain 
Voltage Differencing Current Conveyor: Advanced Possibilities in Direct Electronic Control of First- 
Order Filter. Elektronika Ir Elektrotechnika 2014, 20, 77−83, doi:10.5755/j01.eee.20.6.7272. 

44. ON Semiconductor. I3T Process Technology. Available online: 
http://www.europractice-ic.com/technologies_AMIS_tech.php (accessed on 21 May 2019). 

45. Razavi, B. Design of Analog CMOS Integrated Circuits, 2nd ed.; McGraw-Hill: New York, NY, USA, 2016; 
800p, ISBN 978-0072380323. 

46. Gray, P.R.; Hurst, P.J.; Lewis, S.H.; Meyer, R.G. Analysis and Design of Analog Integrated Circuits, 5th ed.; 
John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2009; p. 896, ISBN 978-0470245996. 

47. Herencsar, N.; Sotner, R.; Metin, B.; Koton, J.; Vrba, K. VDDDA-New ‘Voltage Differencing’ Device for 
Analog Signal Processing. In Proceedings of the 2013 8th International Conference on Electrical and 
Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2013; pp. 17–20; 
doi:10.1109/ELECO.2013.6713927. 

48. Jasielsky, J.; Kuta, S.; Machowski, W.; Kolodziejski, W. Four-quadrant CMOS transconductance multiplier 
operating at low voltage and high-speed. In Proceedings of the 17th International Conference Mixed 
Design of Integrated Circuits and Systems (MIXDES), Warsaw, Poland, 24–26 June 2010; pp. 265–268. 

49. Gilbert, B. A high-performance monolithic multiplier using active feedback. IEEE J. Solid-State Circuits 
1974, 9, 364−373, doi:10.1109/JSSC.1974.1050529. 

50. Ferri, G.; Guerrini, N.C. Low-Voltage Low-Power CMOS Current Conveyors, 1st ed.; Kluwer Academic 
Publishers: London, UK, 2003; 220p, ISBN 978-1-4020-7486-8. 

51. Duarte-Villasenor, M.A.; Tlelo-Cuautle, E.; de la Fraga, L.G. Binar Genetic Encoding for Synthesis of 
Mixed-Mode Circuit Topologies. Circuits Syst. Signal Process. 2012, 31, 849−863, 
doi:10.1007/s00034-011-9353-2. 

52. Fakhfakh, M.; Pierzchala, M. Pathological Elements in Analog Circuit Design, 1st. ed.; Lecture Notes in 
Electrical Engineering; Springer: Cham, Switzerland, 2018; 360p, ISBN 978-3-319-75156-6. 

53. Malcher, A.; Falkowski, P. Analog Reconfigurable Circuits. Int. J. Electron. Telecommun. 2014, 60, 8–19, 
doi:10.2478/eletel-2014-0002. 

54. TleTlelo-Cuautle, E.; de la Fraga, L.G.; Phanrattanachai, K.; Pitaksuttayaprot, K. CDCTA and OTA 
Realization of a Multi-phase Sinusoidal Oscillator. IETE Tech. Rev. 2015, 32, 497−504, 
doi:10.1080/02564602.2015.1043149. 

55. Sotner, R; and et al. Second-order Simple Multiphase Oscillator Using Z-Copy Controlled-Gain Voltage 
Differencing Current Conveyor. Elektronika Ir Elektrotechnika 2014, 20, 13−18, doi:10.5755/j01.eee.20.9.8709. 

56. Pourak, T.; Suwanjan, P.; Jaikla, W.; Maneewan, S. Simple quadrature sinusoidal oscillator with 
orthogonal control using sigle active element. In Proceedings of the 2012 IEEE International Conference on 
Electron Devices and Solid State Circuit (EDSSC), Bangkok, Thailand, 3–5 December 2012; pp. 1−4; 
doi:10.1109/EDSSC.2012.6482793. 

57. Uttaphut, P. New Current-mode Quadrature Sinusoidal Oscillator Using Single DVCCTA as Active 
Element. Przeglad Eletrotechniczny 2016, 92, 229−232, doi:10.15199/48.2016.09.56. 

58. Yesil, A.; Konal, M.; Kacar, F. Electronically Tunable Quadrature Oscillator Employing Single Differential 
Difference Transconductance Amplifier. Acta Phys. Pol. A 2017, 132, 843−845. 

59. Linares-Barranco, B.; Rodriguez-Vazquez, A.; Sanchez-Sinencio, E.; Huertas, J.L. CMOS OTA-C 
high-frequency sinusoidal oscillators. IEEE J. Solid-State Circuits 1991, 26, 160−165, doi:10.1109/4.68133. 



Electronics 2019, 8, 568 28 of 28 

60. Senani, R.; Bhaskar, D.R.; Gupta, M.; Singh, A.K. Canonic OTA-C Sinusoidal Oscillators: Generation of 
New Grounded-Capacitor Versions. Am. J. Electr. Electron. Eng. 2015, 3, 137−146, doi:10.12691/ajeee-3-6-2. 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


