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Abstract: This paper proposes a restricted coulomb energy neural network (RCE-NN) with an
improved learning algorithm and presents the hardware architecture design and VLSI implementation
results. The learning algorithm of the existing RCE-NN applies an inefficient radius adjustment,
such as learning all neurons at the same radius or reducing the radius excessively in the learning
process. Moreover, since the reliability of eliminating unnecessary neurons is estimated without
considering the activation region of each neuron, it is inaccurate and leaves unnecessary neurons
extant. To overcome this problem, the proposed learning algorithm divides each neuron region in
the learning process and measures the reliability with different factors for each region. In addition,
it applies a process of gradual radius reduction by a pre-defined reduction rate. In performance
evaluations using two datasets, RCE-NN with the proposed learning algorithm showed high
recognition accuracy with fewer neurons compared to existing RCE-NNs. The proposed RCE-NN
processor was implemented with 197.8K logic gates in 0.535 mm2 using a 55 nm CMOS process and
operated at the clock frequency of 150 MHz.

Keywords: artificial neural network (ANN); machine learning; pattern recognition; restricted
coulomb energy neural network (RCE-NN); VLSI

1. Introduction

Artificial intelligence (AI) has been widely used to optimize data-driven approaches in fields such
as computer vision, speech recognition, robotics and medical applications [1,2]. Deep neural networks
(DNNs), also referred to as deep learning, are a part of the broad field of AI, and deliver state-of-the-art
accuracy on many AI tasks [3,4]. However, to complete the tasks with higher accuracy, DNN models
become deeper, i.e., the number of layers range from five to more than a thousand. Training large scale
DNNs usually requires adjusting a large number of parameters, which is computationally complex.
Moreover, the learning algorithms of the DNNs require complex optimization techniques, such as
stochastic gradient descent (SGD) and adaptive moment estimation (ADAM) [5]. These learning
algorithms take huge computing resources and can take several days depending on the size of the
dataset and the number of layers in the network. In addition, the structure of the network, i.e.,
the number of neurons and number of layers, should be set before learning [6], and the optimum
structure depends on applications and data characteristics. In other words, if a network is optimized for
a specific application, it needs to be structurally changed and re-learned to use it in other applications.
Therefore, DNNs cannot support real-time learning and are infeasible for embedded systems with
various sensor applications because of their complexity and inflexibility.
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In contrast, the restricted coulomb energy neural network (RCE-NN) can actively modify the
network structure because it generates new neuron only when necessary. Therefore, it can support
various sensor applications and has recently been implemented for various embedded systems [7–11].
The RCE-NN efficiently classifies feature distributions by constructing hyperspherical neurons with
radii and hypersphere centers. Since the learning scheme of the RCE-NN is based on the distance
between the input feature and the stored hypersphere center, it is relatively simple compared with
learning algorithms of DNNs and real-time learning is possible. After completing the learning process,
if the calculated distance is less than a neuron’s radius, the neuron is activated and the label of the
neuron with the minimum distance among the activated neurons becomes a recognition result.

In the initial RCE-NN proposed in [12,13], called traditional RCE (TR-RCE) in this paper,
all neurons are learned at the same radius. This method causes confusion among some areas of
the feature space, which degrades recognition accuracy. In [14], RCE-NN with a dynamic decay
adjustment (DDA) algorithm was proposed, which adjusted the radius of each neuron depending on
the uncertainty of activated neurons in the learning process. This technique increases the recognition
accuracy in areas of conflict. However, since the radius may be excessively reduced in the learning
process, unnecessary neurons are generated, which increases the network complexity.

The RCE-NN proposed in [15] estimates the reliability of neurons by counting the number of
activations for each neuron. In recognition, this activation count is weighted to the output of each
neuron to reflect the reliability of each neuron. Although this method improves recognition accuracy,
an optimal hyperspherical classifier cannot be generated in the feature space, because all neurons are
learned at the same radius, as in the TR-RCE learning method. To solve this problem, an RCE-NN
with a hierarchical prototype learning (HPL) algorithm was proposed in [16,17], which reduced
the learning radius for each iteration of learning. The HPL also eliminates unnecessary learned
neurons based on estimated reliability in the learning process. However, since the HPL-based RCE-NN
estimates reliability without considering the region of the activated neurons, some unnecessary neurons
remained. In addition, various hyperspherical classifiers like DDA-RCE cannot be generated because
neurons are learned with the same radius in a specific iteration period.

In this paper, an efficient learning algorithm for RCE-NN is proposed: (1) The reliability of
each neuron is estimated by considering the activation region with different factors; (2) The radius is
gradually reduced at a pre-defined reduction rate to prevent the generation of unnecessary neurons.
The design and implementation results of the RCE-NN processor for real-time processing are also
presented. The remainder of this paper is organized as follows: Section 2 briefly reviews the RCE-NN.
Section 3 describes the proposed learning algorithm and its performance evaluation results. Section 4
describes the hardware architecture of the proposed RCE-NN processor. Section 5 discusses its
implementation results. Finally, Section 6 concludes the paper.

2. Restricted Coulomb Energy Neural Network

The RCE-NN consists of an input layer, a prototype layer (hidden layer) and an output layer.
The input layer comprises feature vectors and all feature vectors are connected to each neuron of the
prototype layer. The prototype layer is the most essential part of the RCE-NN. Neurons in this layer
save hypersphere centers and radii, which construct hyperspherical classifiers in the feature space.
The output layer uses the neuron’s response to output the label value of the neuron that best matches
the input feature vector.

Each neuron pj in the prototype layer contains the information as follows:

pj = [c1
j , c2

j , . . . , ck
j , rj, lj], (1)

where j ∈ {1, 2, 3, . . . , n} is the neuron index and the total number n varies according to the learning
results. That is, if n neurons are learned after learning is completed, they are defined as a set of neurons
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P = [p1, p2, . . . , pn]. Each neuron pj contains a hypersphere center cj = [c1
j , c2

j , . . . , ck
j ], radius rj,

and learned label lj, where k is the number of features in the input feature vector used in the learning.
If the number of input feature vectors during the learning process is m, the input feature vector

set can be represented by X = [x1, x2, . . . , xi, . . . , xm], where the feature vector xi consists of k features
and a label lxi . The feature vector xi is entered to each neuron and the distance between the feature
vector xi and the hypersphere center cj is computed as follows:

d(xi, cj) =
√
(x1

i − c1
j )

2 + (x2
i − c2

j )
2 + . . . + (xk

i − ck
j )

2. (2)

Then, neuron pj is activated only if d(xi, cj) ≤ rj. If no neurons are activated for the feature
vector xi, a new neuron pn+1 with a hypersphere center cn+1 = [x1

i , x2
i , . . . , xk

i ], label lxi , and radius
R is generated, where [x1

i , x2
i , . . . , xk

i ] and lxi are the feature values and label of the feature vector xi,
respectively, and R is the pre-defined global radius. In addition, the total number of neurons n is
increased by one. Since the TR-RCE learns with one global radius R for all data, confusion occurs in
some areas of the feature space. Consider two neurons p1 and p2 learned by the two feature vectors x1

and x2 with labels la and lb in the 2D feature space, as shown in Figure 1a. In other words, neurons p1

and p2 can be represented by p1 = [c1, r1, l1] and p2 = [c2, r2, l2], where c1 = x1, c2 = x2, r1 = r2 = R,
l1 = la and l2 = lb. Then, in the recognition process, a new feature vector x3 with label lb enters the
confusion area, as in Figure 1b, which activates both neurons. In this case, the RCE-NN recognizes the
feature vector x3 as label la because d(x3, c1) is smaller than d(x3, c2). The learning method of TR-RCE
yields many such areas of confusion, thereby degrading the recognition accuracy.

The DDA-RCE was developed to solve the inherent problems associated with this method.
When a neuron pj with a different label than the input feature vector xi is activated in the learning
process as shown in Figure 1c, the rj of the neuron is reduced as follows:

rj = d(xi, cu), (3)

where u is the index of the neuron with the smallest distance value among those activated by the
current input feature vector. Then, in the recognition process, the RCE-NN correctly recognizes the
feature vector x3 as label lb, as shown in Figure 1d. This technique increases the recognition accuracy
in areas of confusion. However, the radius of a specific neuron becomes excessively small when the
radius is adjusted based on the minimum distance in the learning process, and further unnecessary
neurons are learned, thereby increasing the system complexity.

In [15], the technique of measuring f j is introduced, where f j is the activation count of each
neuron in the learning process. That is, when the specific neuron pj is activated for the input feature
vector xi, the f j value is incremented by one to estimate the reliability of the neuron. By applying the
activation count to the output of each neuron, a recognition result reflecting the reliability of each
neuron is obtained. However, since all neurons are learned with a single global radius, as in TR-RCE,
a confusion area is created in the feature space, thus reducing recognition accuracy. Therefore, the HPL
algorithm was proposed in [16,17], which reduced the global radius from the maximum (Rmax) to the
minimum (Rmin) according to the iteration interval. The global radius is decreased as follows:

Rw+1 = α · Rw, (4)

where α is a reduction rate for global radius and w is the index for iteration. In addition, to determine
whether each neuron pj is a suitable neuron in the learning process, the prototype density value Dj is
calculated as follows:

Dj =
f j

vj
, (5)

where vj is the volume of the hyperspherical classifier of each neuron pj. If the prototype density value
Dj is less than the pre-defined threshold value τ, it is determined to be an inappropriate neuron and
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that neuron is removed from P. However, the f j is updated to the same value regardless of whether
the input feature vector is activated near or far from the hypersphere center. Therefore, the estimated
reliability of each learned neuron is inaccurate and unnecessary neurons are not removed. In addition,
HPL-RCE does not adjust the radius as in DDA-RCE when a neuron with a different label than the
input feature vector is activated.
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Figure 1. Learning and recognition process of traditional (TR)-restricted coulomb energy (RCE) and
dynamic decay adjustment (DDA)-RCE. (a) Example of TR-RCE learning for two feature vectors x1

and x2, (b) recognition result for the feature vector x3 after TR-RCE learning, (c) example of DDA-RCE
learning for three feature vectors x1, x2, and x3, (d) recognition result for the feature vector x3 after
DDA-RCE learning.

3. Proposed Learning Algorithm for RCE-NN

3.1. Proposed Learning Algorithm

In order to overcome the problems of existing learning schemes, the proposed learning algorithm
estimates reliability by dividing the activation region associated with each neuron and increasing the
f j with different factors for each region in the learning process as follows:

f t+1
j =


f t
j + 1,

rj+Rmin
2 < d(xi, cj) ≤ rj

f t
j + θ, Rmin < d(xi, cj) ≤

rj+Rmin
2

f t
j + γ, d(xi, cj) ≤ Rmin

, (6)

where θ and γ are experimentally determined according to the distribution of the feature vector
(1 < θ < γ). That is, when the current input feature vector activates a neuron in a region near the
hypersphere center, the f j is increased with a higher factor. When it activates a neuron in the boundary
area, the f j is increased with a lower factor.

An example of learning process based on the f j of each neuron is shown in Figure 2. Consider
three neurons p1, p2 and p3 learned by the three feature vectors with labels la, lb and lc in the 2D
feature space as shown in Figure 2a. If the distribution of input feature vector to be used in the learning
process is shown in Figure 2b, the activation counts of neurons p1, p2 and p3, which were measured
during one iteration with HPL-RCE, were 9, 8 and 8, respectively. Even though p3 neuron covers
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feature vectors better than other neurons, the reliability from activation count is estimated similarly.
As a result, when the learning process of HPL-RCE was iteratively performed with a τ = 50, all neurons
still remained and unnecessary neurons p4 and p5 are generated as shown in Figure 2c. This leads to
an increase in complexity and degradation of recognition accuracy for other test data. In contrast, if
the activation region is divided as shown in Figure 2d as presented in the proposed learning algorithm,
the activation counts of neurons p1, p2 and p3, which measured during one iteration period, are
34 (=10 + 20 + 4), 20 (=0 + 15 + 5) and 65 (=50 + 15 + 0), respectively (θ = 5, γ = 10). Then, when the
τ = 50, p1 and p2 neurons are removed, and p3 neuron remains. In the additional iteration periods,
new neurons p4 and p5 centered on different feature vectors are generated for the la and lb labels and
it is confirmed that even fewer neurons cover all the feature vectors than the HPL-RCE as shown in
Figure 2e. In addition, when the label of the activated neuron is different from that of the input feature
vector, the proposed algorithm gradually decreases the radius of this activated neuron according to
reduction rate β as follows:

rt+1
j = β · rt

j . (7)

This not only improves the recognition accuracy but also suppresses the generation of unnecessary
neurons. Algorithm 1 summarizes the proposed learning algorithm.

(a) (b) (c)

(d) (e)

Figure 2. Learning process of hierarchical prototype learning (HPL)-RCE and the proposed RCE. (a)
Example of 2D feature space learned with three feature vectors, (b) distribution of the feature vectors
to be used in the learning process, (c) learning results of HPL-RCE, (d) division of the activation region
as presented in the proposed learning algorithm, (e) learning results of the proposed algorithm.
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Algorithm 1: The proposed learning algorithm.

1 initialize global radius Rw = Rmax

2 while Rw > Rmin do
3 for i = 1 to m do
4 for j = 1 to n do
5 di,j ← d(xi, cj)

6 if di,j ≤ rj then
7 if lj = lxi then

8 if
rj+Rmin

2 < di,j ≤ rj then
9 f j += 1

10 else if Rmin < di,j ≤
rj+Rmin

2 then
11 f j += θ

12 else
13 f j += γ

14 end
15 jump out of for loop
16 else
17 rj = β · rj

18 end
19 end
20 end
21 if no neurons are activated for xi then
22 create a new neuron pn+1 centered at xi
23 with radius Rw, label lxi , and f j = 0
24 end
25 end
26 for j = 1 to n do
27 if f j ≥ τ then
28 retain the neuron pj

29 else
30 discard pj

31 end
32 end
33 Rw = α · Rw

34 end

3.2. Performance Evaluation Results

We conducted learning and recognition tasks with all methods for RCE-NN on two datasets
for a gas sensor and motion-capture hand postures (MCHP) [18,19]. Two datasets have been used
in gas detection and human machine interation (HMI) [20,21]. The gas sensor dataset contains
128-dimensional feature vectors taken from 16 gas sensor arrays for 36 months to detect six toxic gase.
The 13,910 feature vectors were divided into 10 batches, and each batch is configured to distribute the
six target gases uniformly in time order [22]. The MCHP dataset is comprised of five static gestures
(hand poses) captured from 12 users using a Vicon motion-capture camera system and a glove with
attached infrared markers on certain joints [23]. The five gestures captured were a fist, pointing with
one finger, pointing with two fingers, stop (hand flat), and grab (fingers curled). The MCHP dataset
contains 36-dimensional feature vectors, and 78,096 feature vectors are divided into 10 batches.
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The learning and recognition experiments were performed via two strategies, and we analyzed
the results of the number of learned neurons and recognition accuracy. At first, learning was performed
separately for each batch and the recognition accuracy was measured for each learned RCE-NN (θ = 3,
γ = 5). The recognition accuracy and number of learned neurons of all methods for RCE-NN are
presented in Figures 3 and 4. Figure 3 shows the number of learned neurons and the recognition
accuracy for the gas-sensor dataset, respectively. Figure 4 depicts the number of learned neurons
and the recognition accuracy for the MCHP dataset, respectively. As shown in the Figures 3 and 4,
the RCE-NN with the proposed learning algorithm shows better recognition accuracy with the average
of 55.5% fewer neurons than DDA-RCE, which requires the largest number of learned neurons.
In addition, it shows better recognition accuracy from 3% to 8% with fewer neurons compared to
TR-RCE and HPL-RCE.
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Figure 3. Performance evaluation results for gas dataset (a) the number of learned neurons for each
batch, (b) the recognition accuracy for each batch.
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Figure 4. Performance evaluation results for motion-capture hand postures (MCHP) dataset (a) The
number of learned neurons for each batch, (b) The recognition accuracy for each batch.

Secondly, learning and recognition were performed by selecting 7000 learning feature vectors and
6910 test feature vectors randomly from each dataset. As a result of the performance evaluation as
shown in Table 1, the RCE-NN with the proposed learning algorithm shows good recognition accuracy
with half the number of neurons that DDA-RCE used. In addition, the proposed algorithm shows
better recognition accuracy from 3% to 12% with fewer neurons than TR-RCE and HPL-RCE.
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Table 1. Performance evaluation results (θ = 5, γ = 10).

Algorithm
Gas Sensor [18] MCHP [19]

Number of
Neurons

Recognition
Accuracy

Number of
Neurons

Recognition
Accuracy

Proposed 449 96.86% 641 98.52%
TR [13] 509 84.31% 752 89.65%

HPL [16] 559 91.29% 911 95.32%
DDA [14] 1026 95.17% 1164 97.38%

Figure 5 demonstrates the comparison results for the gas sensor dataset with existing recognition
algorithms, such as support vector machine with genetic algorithm (SVM-GA), multilayer perceptron
(MLP), binary decision tree (BDT) based on classification and regression tree (CART), and K-nearest
neighbor (KNN) [24]. As shown in Figure 5, the proposed algorithm has better performance than other
pattern recognition algorithms such as MLP, SVM, BDT, and KNN. Although SVM-GA shows slightly
better performance compared to the proposed algorithm, the genetic algorithm for the learning process
requires a great deal of complexity and much learning time.
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Figure 5. Performance comparison for gas recognition algorithms.

4. Hardware Architecture Design

Figure 6 shows the block diagram of the proposed RCE-NN processor, including a feature memory
unit (FMU), neuron unit (NU), activated neuron detection unit (ANDU), and network control unit
(NCU). In the learning process, the unlearned NUs store the input feature vector from FMU in the
neuron memory, and the learned NUs calculate distance between the input feature vector and the
stored vector which represents neuron center. Then, the learned NUs compare the distance to the
stored radius, and the activated NUs send the distance and label to the ANDU. The ANDU analyzes
the output of the activated NUs and transfers the information of the minimum distance and label to
the NCU. Figure 7 depicts the architecture of the NCU, which determines whether to generate a new
NU or remove an existing NU. When a new NU is generated, the value of the neuron count register
is increased by 1 to monitor the number of learned NUs. In addition, if the labels of the currently
activated NUs are different from each other, the NCU adjusts the radii of the conflicted NUs through
the radius adjustment unit (RAU). The RAU transmits the current feature vector’s label lxi and radius
adjustment signal in parallel to each NU, and each activated NU compares lxi and lj. If lxi and lj are
the same, f j is increased by (6) through the activation counter as shown in Figure 8, where fmax is the
upper limit of f j to prevent unnecessarily increase. Conversely, the radius of an activated NU with a
different label than the input feature vector is decreased by (7) through the radius decision unit in NU.
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Figure 6. Block diagram of the proposed RCE-neural network (NN) processor.
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Figure 7. Block diagram of the network control unit (NCU).
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Figure 8. Block diagram of the activation counter.

In the recognition process, all learned NUs compute the distance between the feature vector from
the FMU and the vector stored in the neuron memory, as in the learning process. Then, the activated
NUs transmit their distances to the ANDU, and the ANDU sends the best-matched NU’s distance to the
NCU. The NCU transmits the best-matched NU’s distance and the recognition control signal to each
NU through the recognition unit (RU). Each NU compares the stored distance with the best-matched
NU’s distance and outputs the label if it matches. Finally, the ANDU receives the best-matched NU’s
label and outputs recognition results.

5. Implementation Results

The proposed RCE-NN processor was designed in Verilog hardware description language (HDL)
and synthesized using the Synopsys Design Compiler to gate-level circuits with a 55 nm CMOS
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standard cell library. The key features of the proposed RCE-NN processor are summarized in Table 2.
It was observed that the proposed architecture required 197.8 K logic gates and 163.8 KB memory
with the total die size of 0.535 mm2. Learning time for one feature vector of 128 byte was 0.93 µs and
recognition time was 0.96 µs at the operating frequency of 150 MHz. The total power consumption
measured with the test platform is 6.64 mW.

Table 2. Key features of the implemented restricted coulomb energy neural network (RCE-NN) processor.

Prameter Value

Technology 55 nm CMOS
Operating Frequency 150 MHz

Internal Memory 163.8 KB

Gate Counts
RCE-NN Processor 197.8 K

Neuron Unit 1.5 K
RCE-NN Processor Size 0.535 mm2

Processing time (128 Byte)
0.93 µs (learning),

0.96 µs (recognition)
Power 6.64 mW

The RCE-NN processor was integrated in a system-on-chip (SoC) designed for sensor signal
processing as shown in Figure 9 and verified in real-time with test platform depicted in Figure 10.
The sensor signal processing SoC consisted of an ARM Cortex-M3 micro controller unit (MCU), a sensor
interface unit (SIU), a feature extraction unit (FEU), and the proposed RCE-NN processor with the
total die size of 2.97 mm × 2.96 mm. The data extracted from each sensor was pre-processed in the
SIU and then converted into feature data in the FEU. The feature data were transferred to the RCE-NN
processor which performs the learning and recognition.

Sensor Interface Unit (SIU)

SIU Controller

Sensor Calibration

Micro Controller Unit (MCU)

Feature Extraction Unit (FEU)

Feature Calculation

FEU Controller

RCE-NN Processor

Neural Network (NUs)

NCU FMU ANDU

(a)

AFE

FEU

MCU

SIU

PLL

RCE-NN

Processor 

(b)

Figure 9. Sensor signal processing system-on-chip (SoC). (a) block diagram, (b) die photograph.
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Figure 10. Verification platform of the sensor signal processing SoC.

In order to compare the complexity of the proposed RCE-NN processor and the existing RCE-NNs,
we implemented each algorithm presented in Table 1 for the gas dataset. Table 3 summarizes the
complexity metrics such gate counts and memory requirements for each implementation. NU of the
proposed RCE-NN processor was the largest because of additional resource for the activation counter
shown in Figure 8. However, since it shows better recognition accuracy with fewer neurons than
TR-RCE and HPL-RCE, the total gate counts and internal memory requirements were smallest.

Table 3. Complexity comparison with existing RCE-NN implementations.

Target Algorithm
Gate Counts

Internal Memory Number of Neurons
Neuron Unit RCE-NN Processor

DDA [14] 1.21 K 1247.26 K 131,328 KB 1026
HPL [16] 1.32 K 743.68 K 71,552 KB 559
Proposed 1.5 K 679.3 K 57,472 KB 449

6. Conclusions

In this paper, we proposed an efficient RCE-NN processor with an improved learning algorithm.
Learning algorithms in existing RCE-NNs show degraded recognition performance and increased
complexity because of the inaccurate reliability of learned neuron and inefficient radius adjustments.
To overcome such problems, the proposed algorithm divides the activation region of each neuron in the
learning process and measures the reliability with different factors for each area, and gradually reduces
the radius using a pre-defined rate. In performance evaluation using two datasets, RCE-NN with the
proposed learning algorithm showed good recognition accuracy with fewer neurons compared with
existing RCE-NNs. The hardware was also designed for real time operation. The designed RCE-NN
processor has a logic gate count of 197.8 K with a die size of 0.535 mm2 and the memory requirement of
163.8 KB, and it can support real-time learning and recognition at an operating frequency of 150 MHz.

Author Contributions: J.C. designed the algorithm, performed the simulation and experiment, and wrote the
paper. Y.J. (Yongchul Jung) and S.L. implemented the evaluation platform and performed the experiment.
Y.J. (Yunho Jung) conceived and led the research, analyzed the experimental results, and wrote the paper.

Funding: This research received no external funding.

Acknowledgments: This work was supported by the Technology Innovation Program, 10073122 and 10079634,
funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea) and CAD tools were supported by IDEC.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2019, 8, 563 12 of 13

References

1. Zhou, E.; Fang, L.; Yang, B. Memristive Spiking Neural Networks Trained with Unsupervised STDP.
Electronics 2018, 7, 396. [CrossRef]

2. Garner, J.; Mestres, A.; Alarcon, E.; Cabellos, A. Neural Networks for Classification: A Survey. IEEE Trans.
Syst. Man Cybern. Part C 2000, 30, 451–464.

3. Alom, M.; Tha, T.; Yakopcic, C.; Westberg, S.; Sidike, P.; Nasrin, M.; Hasan, M.; Essen, B.; Awwal, A.; Asari, V.
A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics 2019, 8, 292. [CrossRef]

4. Sze, V.; Chen, Y.; Yang, T.; Ember, J. Efficient Processing of Deep Neural Networks: A Tutorial and Survey.
Proc. IEEE 2017, 105, 2295–2329. [CrossRef]

5. Tang, F.; Wu, W.; Liu, J.; Wang, H.; Xian, M. Privacy-Preseving Distributed Deep Learning via Homomorphic
Re-Encryption. Electronics 2019, 8, 411. [CrossRef]

6. Kouda, N.; Matsui, N. On the Function Approximation in Restricted Coulomb Energy Neural Network
with Gaussian Radial Basis Function. In Proceedings of the World Automation Congress, Kobe, Japan,
19–23 September 2010; pp. 1–3.

7. Nepes Corporation. Available online: http://www.theneuromorphic.com (accessed on 21 April 2019).
8. General Vision Inc. Available online: https://www.general-vision.com/neuromem/cm1k (accessed on

21 April 2019).
9. Sardar, S.; Ananda Babu, K. Hardware Implementation of Real-time, High Performance, RCE-NN Based

Face Recognition System. In Proceedings of the IEEE Conference on VLSI Design and Embedded Systems,
Mumbai, India, 5–9 January 2014.

10. Labonte, G.; Deck, W. Infrared Target-Flare Discrimination using ZISC Hardware Neural Network.
J. Real-Time Image Process. 2010, 5, 11–32. [CrossRef]

11. Kai, Y.; Hu, Y.; Siegel, M. Onboard Feature Indexing from Satellite Lidar Images. In Proceedings of the IEEE
IWADC, Perugia, Italy, 8–10 September 2003.

12. Reilly, D.; Cooper, L.; Elbaum, C. Neural Model for Category Learning. Biol. Cybern. 1982, 45, 35–41.
[CrossRef] [PubMed]

13. Hudak, M. RCE Classifiers: Theory and Practice. Cybern. Syst. 1992, 23, 483–515. [CrossRef]
14. Berthold, M.; Diamond, J. Boosting the Performance of RBF Networks with Dynamic Decay Adjustment.

In Proceedings of the 7th International Conference on Neural Information Processing Systems, Denver, CO,
USA, 1994; pp. 521–528.

15. Yin, X.; Don, G.; Xie, M. Hand Image Segmentation Using Color and RCE Neural Network. Robot. Auton.
Syst. 2001, 34, 235–250. [CrossRef]

16. Don, G.; Xie, M. Color Clustering and Learning for Image Segmentation Based on Neural Networks.
IEEE Trans. Neural Netw. 2005, 16, 925–936.

17. Sui, C.; Kwok, N.; Ren, T. A Restricted Coulomb Energy (RCE) Neural Network System for Hand Image
Segmentation. In Proceedings of the IEEE Conference on Computer and Robot Vision, St. Johns, NL, Canada,
25–27 May 2011; pp. 270–277.

18. UCI Machine Learning Repository, Gas Dataset. Available online: https://archive.ics.uci.edu/ml/datasets/
gas+sensor+array+drift+dataset (accessed on 21 April 2019).

19. UCI Machine Learning Repository, Hand Posture Dataset. Available online: https://archive.ics.uci.edu/ml/
datasets/Motion+Capture+Hand+Postures (accessed on 21 April 2019).

20. Shirahama, K.; Grzegorzek, M. On the Generality of Codebook Approach for Sensor-Based Human Activity
Recognition. Electronics 2017, 6, 44. [CrossRef]

21. Duran, C.; Benjumea, J.; Carrillo, J. Response Optimization of a Chemical Gas Sensor Array using
Temperature Modulation. Electronics 2018, 7, 54. [CrossRef]

22. Vergara, A.; Vembu, S.; Ayhan, T.; Ryan, M.; Huerta, R. Chemical Gas Sensor Drift Compensation Using
Classifier Ensembles. Sens. Actuators B Chem. 2012, 166–167, 320–329. [CrossRef]

http://dx.doi.org/10.3390/electronics7120396
http://dx.doi.org/10.3390/electronics8030292
http://dx.doi.org/10.1109/JPROC.2017.2761740
http://dx.doi.org/10.3390/electronics8040411
http://www.theneuromorphic.com
https://www.general-vision.com/neuromem/cm1k
http://dx.doi.org/10.1007/s11554-009-0121-5
http://dx.doi.org/10.1007/BF00387211
http://www.ncbi.nlm.nih.gov/pubmed/7126690
http://dx.doi.org/10.1080/01969729208927478
http://dx.doi.org/10.1016/S0921-8890(00)00125-1
https://archive.ics.uci.edu/ml/datasets/gas+sensor+array+drift+dataset
https://archive.ics.uci.edu/ml/datasets/gas+sensor+array+drift+dataset
https://archive.ics.uci.edu/ml/datasets/Motion+Capture+Hand+Postures
https://archive.ics.uci.edu/ml/datasets/Motion+Capture+Hand+Postures
http://dx.doi.org/10.3390/electronics6020044
http://dx.doi.org/10.3390/electronics7040054
http://dx.doi.org/10.1016/j.snb.2012.01.074


Electronics 2019, 8, 563 13 of 13

23. Gardner, A.; Kanno, J. Measuring Distance Between Unordered Sets of Different Sizes. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA,
23–28 June 2014; pp. 137–143.

24. Wang, K.; Ye, W.; Zhao, X.; Pan, X. A Support Vector Machine-Based Genetic Algorithm Method for Gas
Classification. In Proceedings of the 2nd International Conference on Frontiers of Sensors Technologies
(ICFST), Shenzhen, China, 14–16 April 2017; pp. 363–366.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Restricted Coulomb Energy Neural Network
	Proposed Learning Algorithm for RCE-NN
	Proposed Learning Algorithm
	Performance Evaluation Results

	Hardware Architecture Design
	Implementation Results
	Conclusions
	References

