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Abstract: With the development of wireless technology, indoor localization has gained wide attention.
The fingerprint localization method is proposed in this paper, which is divided into two phases:
offline training and online positioning. In offline training phase, the Improved Fuzzy C-means
(IFCM) algorithm is proposed for regional division. The Between-Within Proportion (BWP) index is
selected to divide fingerprint database, which can ensure the result of regional division consistent
with the building plane structure. Moreover, the Agglomerative Nesting (AGNES) algorithm is
applied to accomplish Access Point (AP) optimization. In the online positioning phase, sub-region
selection is performed by nearest neighbor algorithm, then the Weighted K-nearest Neighbor (WKNN)
algorithm based on Pearson Correlation Coefficient (PCC) is utilized to locate the target point. After
the evaluation on the effect of regional division and AP optimization of location precision and time,
the experiments show that the average positioning error is 2.53 m and the average computation time
of the localization algorithm based on PCC reduced by 94.13%.
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1. Introduction

With the continuous development of wireless communication technology and ubiquitous
computing in recent years, as well as the growing demand for Location Based Services (LBS) [1],
wireless positioning technology has become more widely used. LBS provides accurate location
information for areas such as traffic navigation, medical assistance, logistics transportation and smart
city construction [2,3]. Traditional global positioning system (GPS) and base station positioning
technologies can provide more accurate outdoor location estimation. However, GPS signals cannot
penetrate well in complex and varied indoor environments [4]. At the same time, the application of
indoor positioning to LBS is more and more promising, and the requirement for positioning accuracy
is getting higher and higher.

There are many wireless technologies for indoor positioning research, such as Bluetooth [5,6],
UltraWide Band [7,8], ZigBee [9], infrared [10], radio-frequency identification (RFID) [11,12], wireless
local area networks (WLAN) [13,14], and so on. Due to the wide coverage of the WLAN in the indoor
environment, the access standard is unified, the received signal strength is stable, and the WLAN signal
is covered in various occasions, such as hospitals, supermarkets, airports, etc. The Wi-Fi fingerprint
localization has become a research hotspot in the field of indoor positioning [15,16].

At present, the fingerprint localization method is commonly used in the Wi-Fi indoor positioning
method. The Wi-Fi location fingerprint [17,18] is a positioning technique without the need for
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ranging, it utilizes a certain mapping relationship between Received Signal Strength (RSS) and physical
location. Usually, Wi-Fi fingerprint localization includes two phases: offline training phase and online
localization phase. In the offline training phase, a series of reference points are set in the target area
and wireless signal samples are collected, finally a fingerprint database is established by using the
location information of the reference point and the RSS information of the corresponding Access
Point (AP). In the online positioning phase, the RSS information of each AP collected in real time is
compared with the existing information in the fingerprint database, and the matching algorithm is used
to perform matching calculation to estimate the current location of the user. In complex environments,
the fingerprint localization performs better than the range-based method [19]. The ranging method
based on time-of-flight (TOF) [20] is linear with distance, so the result will be more accurate. However,
it suffers from outliers, coverage and dependency of AP deployment geometry.

Wi-Fi fingerprint localization can satisfy the needs of users for indoor location information services
in most cases. However, the fingerprint localization has a large amount of fingerprint data and high
fingerprint dimension. A large number of Access Points (APs) can be detected in indoor environment
with wide Wi-Fi coverage. Generally, the more APs in the location area, the higher the accuracy
of positioning. However, due to the complexity of the indoor environment, such as Non Line of
Sight (NLOS) [21], object occlusion, multipath effect and people walking, not all APs are beneficial
to improving positioning accuracy. Excessive APs will increase the fingerprint dimension, resulting
in increased calculation and energy consumption. Therefore, selecting the appropriate subset AP
to reduce the fingerprint dimension, reduce the workload of establishing a fingerprint database,
and improve fingerprint matching efficiency and positioning accuracy are important research topics
based on fingerprint localization. At the same time, the proposed sub-region division reduces the
computation of Wi-Fi fingerprint localization technology.

To solve the problem of huge databases, while still achieving high localization accuracy, this
paper proposes an indoor positioning method based on regional division with the Improved Fuzzy
C-means (IFCM), and uses the AGNES algorithm to realize AP optimization. AP optimization is the
process of selecting a small subset of available APs. The IFCM algorithm is an improvement of the
FCM algorithm. It introduces the K-means clustering algorithm and the Between-Within Proportion
(BWP) index to select the optimal initial clustering center and the number of clusters. In this way, we
can reduce the amount of calculation of the fingerprint matching algorithm and improve the real-time
performance of the algorithm. In the offline training phase, according to the idea of hierarchical and
regional division, the fingerprint database is layered until the number of reference points (including two
categories: the initial reference points chosen to collect RSS artificially, and the virtual reference points
obtained through some calculations) in each sub-region is less than a set threshold. Then, the AGNES
algorithm is used to optimize the APs in each sub-region, and the APs with strong discriminating
ability is selected to reduce the fingerprint dimension. In online positioning phase, the nearest neighbor
algorithm is used to select the sub-region closest to the target point, then the target location is estimated
according to WKNN algorithm based on PCC. To verify the validity of the experiment, it is compared
with Euclidean distance and Spearman correlation coefficient.

The rest of the paper is organized as follows. Section 2 explains the related work. Section 3
presents the fingerprint localization method. In Section 4, the experimental results, evaluations and
comparisons are demonstrated. Finally, the paper ends with the conclusions and future work.

2. Related Work

A variety of fingerprint-based indoor positioning technologies have been proposed in recent
years. In surveying the related work, we considered three different aspects, namely, the fingerprint
localization work, regional division work and AP selection work.
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2.1. Fingerprint Localization Method

During the last decade, indoor positioning technology has developed rapidly. Radio detection
and ranging (RADAR) system [22] was first proposed by Microsoft Research as an RSS-based WLAN
indoor positioning system. Because of the wide deployment of Wi-Fi devices and the popularity of
smart mobile terminals, this method has attracted wide attention. Prasithsangaree et al. [23] have
improved the RADAR system. They used the WKNN method to calculate the location, which improves
the positioning accuracy and applies the location system to complex indoor environment. Niu et al. [24]
used the K-nearest Neighbor (KNN) classification method with three different weighted distances
and found that the KNN algorithm with the Manhattan distance performed best. Mirowski et al. [25]
used Kullback-Leibler (KL) divergence to calculate the similarity among fingerprints, performing
localization through kernel function regression. The Wireless Indoor Logical Localization (WILL)
system studied by Liu et al. [26] combined the location information of sensor data and RSS data to
build fingerprint database. The system does not need to collect RSS data at a specified location, so it
can be quickly deployed and applied. Khalajmehrabadi et al. [27] proposed a sparse reconstruction
model based on Least Absolute Shrinkage and Selection Operator (LASSO) and Elastic-net Regularized
Generalized Linear Models (GLMNET). These schemes render a sparse user’s position vector, and
minimize the distance between the online measurement and radio map in parallel. Gu et al. [28]
proposed a fingerprint construction method based on compressive sensing. Although the experiment
proved that only 5% fingerprint data can have accurate positioning, it greatly reduced the workload of
fingerprint acquisition while ensuring the localization accuracy. The LiFS indoor positioning system
proposed by Wang et al. [29] does not need to construct an offline fingerprint database. It can realize
passive positioning by sensing the change of channel state information (CSI) in WLAN, and at the
same time, it can localize at a high accuracy. Wang et al. [30] also proposed a deep-learning-based
indoor fingerprinting system using channel state information (CSI), which is termed DeepFi. In [31],
a convolutional neural network was proposed that uses only one access point channel state information,
and achieves an average positioning error of 1.36 m, but has a high training complexity. On the contrary,
a low computational complexity model was proposed in [32], which shows a positioning error of 2.1 m.
In this model, RSS and direction information are combined by the C4.5-based AdaBoost algorithm to
improve the accuracy of indoor positioning. Crowdsourcing [33,34] can provide sufficient fingerprint
updates for indoor LBS. However, in some cases, prompting users to upload their collected signal data
may be inconvenient. Literature [35] proposed Localization with Altered APs and Fingerprint Updating
(LAAFU) system, fingerprint updating and investigation reduction using implicit crowdsourced signals.
Literature [36] proposed a weighted algorithm based on the physical distance of RSSI, which considers
the uneven spatial resolution of Wi-Fi RSSI, and the positioning accuracy is significantly better than
KNN, EWKNN, Euclidian-W-KNN, LiFS and other traditional indoor positioning algorithms.

2.2. Regional Division

In the process of fingerprint localization, the fingerprint database is clustered in the offline phase,
and the localization region is divided into several sub-regions according to the clustering results.
Each sub-region corresponds to a sub-fingerprint database. The clustering of the fingerprint database
can effectively shorten the location matching time and improve the positioning efficiency. In [37],
the authors proposed a Wi-Fi fingerprint clustering method based on the K-means method and an
output floor estimation method for various positioning sensors. Because Euclidean distance is used to
calculate the RSS similarity, the clustering results for linear inseparable data are not good. Sun et al. [38]
combine FCM clustering with KNN algorithm and propose KNN-FCM hybrid location algorithm.
Because the initial clustering center of FCM is randomly initialized, the clustering effect is easily
affected. In addition, He [39] proposed a regional division method based on Voronoi graph. Voronoi
graph is constructed with initial reference points as generating points, and the virtual reference points
are partitioned into the nearest Voronoi region.
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2.3. AP Selection Method

Because of the wide deployment of WLAN, a large number of AP signals can be detected in
indoor environments. However, there are many interference factors, such as the multipath effect,
object occlusion, and human movement, in indoor environment, AP signals will not be useful for
positioning, and excessive APs will increase the dimension of fingerprint and the complexity of
location calculation [40]. Therefore, selecting a proper subset from APs plays a very important role in
positioning. In [41], an AP selection strategy was proposed based on online mutual information, which
computes the mutual information between different AP combinations. The AP optimization process
can provide real-time positioning information even when the environment changes dynamically.
Reference [42] used principal component analysis (PCA) to map the RSS of online measurements to the
principal component for localization. This method is not to select the AP subset, but to select an effective
principal component subset to reduce the fingerprint dimension so as to reduce the computational
complexity. Reference [43] proposed an AP selection strategy based on Group Discriminant (GD),
which evaluates the GD value through the risk function of the SVM. At the same time, a method based
on recursive feature elimination is proposed to reduce the complexity of GD.

3. Fingerprint Localization Method

With the increasing number of fingerprints, the time required for location is longer. To solve the
problem of low positioning efficiency caused by the huge amount of fingerprint data, a clustering
method is introduced. To reduce the fingerprint dimension and further reduce the computation time,
AP optimization method was introduced. The fingerprint localization is shown in Figure 1, which is
divided into two phases: offline training and online positioning.

In the offline training phase, fingerprint database is formed by collecting fingerprint at reference
points, and then the fingerprint database is divided into different layers by using IFCM algorithm until
the number of fingerprints in each sub-region is lower than the set threshold, and then the AP in the
sub-region is optimized by the AGNES algorithm. The whole fingerprint map is divided into several
sub-regions, each of sub-region contains a cluster center for region selection.

In the online positioning phase, the RSS value of each AP is collected at the target location.
Then, the nearest neighbor algorithm is used to continuously match the cluster centers of each layer
sub-region until the last layer of the branch is matched, the nearest sub-region of the clustering center
is selected as the target region. Finally, the coordinates of the target point are calculated by the WKNN
algorithm based on PCC.
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Figure 1. Fingerprint localization method.

3.1. Offline Training Phase

In this section, we discuss the regional division method based on IFCM algorithm in Section 3.1.1.
Section 3.1.2 shows the AP optimization process.
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3.1.1. Regional Division

The fingerprint database is clustered based on IFCM algorithm, according to the clustering results,
the target region is divided into several sub-regions, each sub-region corresponds to a sub-region
fingerprint database. We first introduce the BWP index, and then we describe the method of regional
division details.

(1) The BWP Index

The BWP index [44] reflects the clustering effect of a sample. The larger the BWP value, the higher
the similarity in inner-class, and the lower the similarity in inter-class, the better the clustering effect.
The BWP index is applied to the K-means algorithm to determine the optimal number of clusters.
To better divide the fingerprint database into sub-regions, we use the BWP index and select the
clustering number corresponding to the largest BWP index value as the optimal number of clusters.
The relevant definitions of BWP index are as follows:

Let the clustering space be R, the sample be X = {x1, x2, . . . , xn}, the number of clusters be k.

Definition 1. The inter-class distance b( j, i) is defined as the minimum value of the average distance from the
i-th sample in the j-th class to each other class, i.e.,

b( j, i) = min
1≤s≤k,s, j

 1
ns

ns∑
p=1

‖x(s)p − x( j)
i ‖

2
 (1)

where s and j represent class labels; x( j)
i represent the i-th sample in the j-th class; x(s)p represent the p-th sample

in the s-th class; ns represent the number of samples in the s-th class.

Definition 2. The inner-class distance is w( j, i) defined as the average distance from the i-th sample in the j-th
class to all other samples in the class, i.e.,

w( j, i) =
1

n j − 1

n j∑
q=1,q,i

‖x( j)
q − x( j)

i ‖
2

(2)

where: x( j)
q represents the q-th sample in the j-th class, and q , i, n j represents the number of samples in

the j-th class.

Definition 3. The BWP index for the i-th sample in the j-th class is defined as

BWP( j, i) =
b( j, i) −w( j, i)
b( j, i) + w( j, i)

(3)

In Formula (4), avgBWP(k) indicates the average BWP index when the number of clusters is k. In the
Formula (5), kopt indicates the maximum value of BWP and the optimal number of clusters.

avgBWP(k) =
1
n

k∑
j=1

n j∑
i=1

BWP( j, i) (4)

kopt = arg max
2≤k≤n

{
avgBWP(k)

}
(5)

(2) Regional Division Based on the IFCM Algorithm

As a soft partitioning clustering algorithm, the FCM algorithm has wide applications. Nevertheless,
there are still some drawbacks. For example, random selection of initial cluster center may cause the
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high computational complexity and affect the clustering results; the number of clusters needs to be
determined in advance to perform clustering.

The initialization of cluster center V has an important influence on the clustering speed of FCM
algorithm. Therefore, this paper improves the FCM algorithm from two aspects: determining the
optimal number of clusters and initializing the cluster center. K-means clustering algorithm (K-means
algorithm) is a kind of hard clustering algorithm. Its principle is simple, the computation time is short,
and the clustering is fast. In most cases, the final clustering center is close to the clustering center of
the FCM algorithm. Therefore, we first use the K-means algorithm to cluster, then the BWP index is
calculated to select the optimal number of clusters. The K-means clustering center corresponding to
the optimal number of clusters is used as the initial clustering center of FCM algorithm. This method
can reduce the number of iterations of FCM algorithm and improve its convergence speed. This is
what we call the Improved FCM algorithm (IFCM).

The IFCM algorithm is used to carry out hierarchical clustering of fingerprint database, and finally
the fingerprint database is divided into k sub-classes. Each sub-class contains a cluster center, which
represents the characteristics of the class and is used for region matching in online phase. The data set
to be divided is F, 1 < i < p, 1 < j < q, there are p reference points and q APs. The specific steps of the
algorithm are:

1. Determine the number range of clustering [kmin, kmax].
2. K-means algorithm is used for clustering, then the average BWP index values of samples were

calculated under the number of clusters [kmin, kmax].
3. Select the cluster number corresponding to the largest BWP index as the best clustering number

C and the initial cluster center V0, F j is the j-th RSS value, and vi is the i-th cluster center, initialize
weighting coefficient m = 2, the iterative stop threshold is ε, the iteration counter l = 0.

4. Update the membership matrix according to the following formula [45]:

ui j =
C∑

k=1

(
‖F j − vi‖

‖F j − vk‖

)− 2
m−1

(6)

5. Update the clustering center according to the following formula [45]:

vi =

N∑
k=1

um
ij F j

N∑
k=1

um
ij

(7)

6. Determine whether the algorithm stops executing. If ‖vl − vl+1‖ ≥ ε, let l = l + 1, jump to step 2
to continue this iteration. If ‖vl − vl+1‖ ≤ ε, stop the current iteration, and the cluster center V and
the membership matrix U are output.

7. Determine whether the number of reference points of the sub-region is less than a threshold. If it
is less than the threshold, the iteration stops completely; if it is greater than the threshold, then it
jumps to step 3 to perform the next layer division.

The IFCM-based regional division method is shown in Figure 2.
The structure of the regional division is shown in Figure 3. It can be seen that the whole fingerprint

database is divided into several hierarchical sub-regions, similar to a tree structure, and the lowest
layer of each branch is the reference point.
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3.1.2. AP Optimization

Figure 4a shows the RSS distribution of 65 APs at three optional reference points. It can be seen
that most of the RSS values are −99 dBm, and only a very small portion of the RSS value is useful.
In general, the more RSS values, the higher the positioning accuracy. However, it is found that not
all RSS values are beneficial to improve positioning accuracy. On the contrary, if all RSS values are
used for positioning calculation, not only the fingerprint dimension will be increased, but also increase
the calculation complexity. From reference [46], we can see that increasing the number of available
APs beyond five does not improve the performance dramatically. Therefore, in order to reduce the
fingerprint dimension and further reduce the complexity, this paper introduces the AP optimization
method. Figure 4b shows that APs are divided into two categories: valid and invalid.
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The AGNES algorithm is to aggregate a given data object into several classes according to certain
rules at different stages, so that the data in inner-class has greater similarity, while the data in inter-class has
smaller similarity. Therefore, we use the AGNES algorithm to divide APs into two categories. The basic
idea is: first of all, each sample is a class, calculating the distance among the classes, merging the two
classes with the smallest distance, and then recalculating the distance among the classes, repeating the
steps until all the samples are aggregated into the required number. In this paper, the average distance
method is used to calculate the distance among classes, that is, to calculate the distance between all the
elements of one class and all the elements of the other class, and the average of these distances is taken as
the distance between the two classes. The specific AP classification steps are as follows:

1. Classify each RSS value into one class and calculate the distance between each two classes.
The average distance method is used to calculate the distance between classes;

2. Find the two nearest RSS values and classify them as one class;
3. Recalculate the distance between each class;
4. Repeat steps 2 and 3 until RSS values are divided into two classes, output AP optimal results.

The AP optimization method based on AGNES is shown in Algorithm 1.

Algorithm 1 AP optimization

1: Get all RSS values D = {{X1}, {X2}, . . . , {XN}}, initialize k = N.
2: Make each RSS value in the data set D a cluster, marked as {C1, C2, . . . , CN}.
3: Repeat
4: Compute all pair-wise distances of clusters {C1, C2, . . . , CN}.
5: Select min{davg(Ci, C j)}.
6: Merge the two clusters Ci, C j with the smallest distance.
7: Form a new cluster {C1,C2, . . . , {Ci,C j}, . . . , CN}, set k = N − 1.
8: Until k = 2

3.2. Online Localization Phase

3.2.1. Sub-Region Selection

In the online localization phase, firstly, the nearest neighbor algorithm is used to compare the
fingerprint of the target point with the cluster center of each sub-region, until the last layer of the
branch, and select the area of the nearest cluster center in the last layer as the target area.

The cluster center of each sub-region is Vi(i = 1, 2, . . . , C), the RSS sample of the target point is
T = {T1, T2, . . .Tm}, then the distance Di between the cluster center and the location of target point can
be expressed as:

Di = ‖Vi − T‖ =

√√√√ q∑
j=1

(
Vi j − T j

)2
(8)

Choose the class Ci corresponding to Min(Di) as the region of the target point location in the
current level, and continue to select the sub-regions until you reach the last level.
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3.2.2. Positioning Match

Once the sub-region is determined, the positioning match will be carried out according to the
reference points in the sub-region. The traditional WKNN algorithm uses Euclidean distance to
measure the similarity between the RSS of the target point and the data in the fingerprint database.
This paper introduces PCC and Spearman correlation coefficient, and compares the positioning accuracy
of WKNN algorithm based on Euclidean distance, PCC and Spearman correlation coefficient.

Considering the algorithm complexity and location precision, we choose Euclidean distance.
Assuming that there are m APs and n reference points in the location area, the distance between the
target point and i-th point is expressed in Euclidean distance as follows:

Di =

√√√
(

m∑
j=1

∣∣∣∣T j − Si j
∣∣∣2 ), i = 1, 2, . . . , n (9)

where Tj represents the RSS value of the j-th AP in the online RSS sample, Sij represents the RSS value
of the j-th AP at i-th reference point in the fingerprint database.

Select k reference points nearest to the RSS sample of the target point in the fingerprint database,
and the coordinates of the target point are calculated as follows:

(x′, y′) =

k∑
i=1

[wi · (xi, yi)]

k∑
i=1

wi

(10)

wi =
1

Di
(11)

The PCC [47] between the target point and i-th reference point is calculated by (12):

ρ(Si, T) =
cov(Si, T)
σSiσT

=

m∑
j=1

(
Si j − Si

)(
T j − T

)
√

m∑
j=1

(
Si j − S

)2
√

m∑
j=1

(
T j − T

)2
(12)

The Spearman correlation coefficient [48] between the target point and i-th reference point is
calculated by (13) and (14):

ρs(Si, T) = 1−

6
m∑

j=1
d2

j

m(m2 − 1)
(13)

d j = S′i j − T′j (14)

The online RSS sample T traverses the N fingerprints in the sub-region fingerprint database, and
finds Euclidean distance, PCC and Spearman correlation coefficient among the fingerprints, and selects
the top k reference points with the highest similarity. When PCC and Spearman correlation coefficients
are used as similarity coefficients, each reference point weight is calculated by ρ(Si, T) and ρs(Si, T)
instead of the equation (10), and then the coordinates of the target point are calculated.

The localization method based on PCC is shown in Algorithm 2.
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Algorithm 2. Localization Method

Input: T = {T1, T2, . . .Tm}, Vi(i = 1, 2, . . . , C), T denotes the RSS sample of the target point, Vi. denotes the
cluster center of each sub-region.
Output: the coordinates of the target point.
Step1: Select the sub-region
1.1 do while (Vi , ø)
1.2 Calculate the distance Di between cluster center Vi and the target location.
1.3 Select min{Di} corresponding class Ci as the region of the target location.
1.4 Update Vi under the region.
1.5 Endwhile
Step2: Calculate the coordinate
2.1 Calculate the PCC ρ(Si, T) between target fingerprint and fingerprint of each reference point.
2.2 Select k maximum PCC.
2.3 k PCC are used as weights to calculate coordinates (x,y).

4. Experimental Analysis

In the experiment, two datasets were used: one was a public dataset from the Institute of Applied
Computer Systems, Riga Technical University [49], and the second was composed of initial reference
points fingerprint and virtual reference points fingerprint. The WLAN positioning dataset was applied
in this experiment, and the experimental area is shown in Figure 5. The experimental area, including
12 rooms and corridors, is about 860 m2, and it is located on the 5th floor of the teaching building.
The rooms include laboratories, offices and classrooms. The five APs (red square) are arranged in the
experimental area, and reference points may perceive the APs of other floors close to the experimental
area, and may also perceive some APs outside the experimental area. The location of each AP in the
experiment is unknown. A total of 82 initial fingerprint reference points (blue points) are deployed in
the experimental environment with an interval of about 5 m. At each reference point, the amount of APs
can be perceived ranges from 3 to 13. In the experimental environment, there are 65 perceptible APs.
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4.1. Regional Division Result

According to the method of regional division in this paper, the data in the fingerprint database
is divided hierarchically until the number of reference points in the sub-region is less than the
threshold, and the threshold is 12 in this experiment. The regional division structure is shown in
Figure 6, the fingerprint database is initially divided into three sub-regions, Z1, Z2 and Z3, followed by
hierarchical division, and finally the entire experimental area is divided into 21 sub-regions. In the last
layer of each branch, the number of reference points is indicated.Electronics 2019, 8, x FOR PEER REVIEW 12 of 21 
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In Tables 1–6, the BWP index with the clustering numbers at different layers is shown respectively,
and the number of clusters with the largest BWP index is selected as the optimal number of clusters.

Table 1. BWP index of all reference points with different number of clusters.

Clustering
Number 2 3 4 5 6 7 8 9 10 11

BWP 0.2407 0.2940 0.2632 0.2620 0.2514 0.2453 0.2459 0.2406 0.2581 0.2568
Clustering
Number 12 13 14 15 16 17 18 19 20 21

BWP 0.2516 0.2524 0.2612 0.2453 0.2552 0.2494 0.2401 0.2383 0.2426 0.2239

Table 2. BWP index of Z1 with different number of clusters.

Clustering Number 2 3 4 5 6 7 8 9 10

BWP 0.2787 0.2772 0.2752 0.2301 0.2444 0.2242 0.2178 0.2018 0.2013

Table 3. BWP index of Z2 with different number of clusters.

Clustering Number 2 3 4 5 6 7 8 9 10

BWP 0.2326 0.2487 0.2493 0.2406 0.2506 0.2772 0.2817 0.2733 0.2610

Table 4. BWP index of Z3 with different number of clusters.

Clustering Number 2 3 4 5 6 7

BWP 0.2453 0.2186 0.2095 0.2423 0.2422 0.2194
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Table 5. BWP index of Z11, Z12, Z112 and Z31 with different number of clusters.

Area
Clustering Number

2 3 4 5 6

Z11 0.2753 0.1849 0.2188 0.2132 0.1723
Z12 0.2538 0.3199 0.2445 0.2383 0.2307
Z112 0.2307 0.2195 0.1677 0.1427 0.1103
Z31 0.2723 0.2577 0.2833 0.2183 0.1496

Table 6. BWP index of Z32 with different number of clusters.

Clustering Number 2 3

BWP 0.1500 0.2187

After the regional division, the distribution of all reference points is shown in Figure 7. Compared
with Figure 5, it can be seen that the division results are roughly consistent with the experimental area,
that is, reference points are divided according to the layout of rooms and corridors, and only a small
number of reference points are inconsistent with the layout of the experimental environment. Three
reference points that are not consistent with the layout of experimental environment are marked with
rectangle, as shown in Figure 7.
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4.2. The Effect of Regional Division on Location Precision and Time

We randomly selected 68 test points distributed in different regions. First, the IFCN algorithm
is used to cluster the fingerprint database, and then WKNN (k is the number of reference points in
each sub-region) algorithm based on Euclidean distance, PCC and Spearman coefficient is utilized to
calculate the target location.

Figure 8a–c shows the cumulative error probability of WKNN algorithm based on Euclidean
distance, PCC and Spearman coefficient before and after regional division. The horizontal axis
represents the localization error distance, and the vertical axis represents the probability of error.
As shown in Figure 8a, the probability of error is 0.19 and 0.06 when distance of error is less than 1 m. It
is shown that under the same probability of error, the distance of error with regional division is smaller
than with no regional division. Under the same distance of error, the cumulative error probability after
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regional division is larger than that after regional division. Therefore, it can be concluded that the
location accuracy is improved after regional division.
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(d) Regional division.

Finally, we compare the location accuracy of WKNN algorithm based on three different fingerprint
similarities. Figure 8d shows that the performance of PCC is similar to Euclidean distance, better than
Spearman coefficient. It can be seen that the WKNN algorithm based on PCC is superior to others.

The statistics of the positioning time before and after regional division are shown in Table 7.
The average computation time of WKNN algorithm based on Euclidean distance, PCC and Spearman
coefficient is 1.61 × 10−4 s, 1.58 × 10−2 s and 2.4 × 10−2 s before regional division. The average
computation time of these three algorithms after regional division is 5.16 × 10−5 s, 1.80 × 10−3 s and
1.30 × 10−3 s, which is shorter than 67.95%, 88.61% and 94.58%, respectively.

Table 7. Time statistics before and after regional division.

Algorithm No Regional Division Regional Division

Euclidean 1.61 × 10−4 s 5.16 × 10−5 s
Pearson 1.58 × 10−2 s 1.80 × 10−3 s

Spearman 2.4 × 10−2 s 1.30 × 10−3 s
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4.3. The Effect of AP Optimization on Location Precision and Time

There are 151 reference points in the experimental environment. The number of perceptible APs
at each reference point is different, and the unavailable RSS value is defined as −99 dbm. Taking RSS
value as the feature, the AGNES algorithm is used to divide the AP into two categories, and then
the WKNN algorithm (k is the number of reference points in each sub-region) is used for positioning
calculation. The cumulative error probability before regional division is shown in Figure 9. It can be
seen that the positioning accuracy with no AP optimization is higher than that of AP optimization.
The main reason is that AP varies greatly in different regions, the process did not take into account the
regional differences, resulting in effective APs is excluded.
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Since the detection of APs varies greatly in different regions, we then perform AP optimization for
each sub-region. As shown in Figure 10, after AP optimization, the number of AP in most sub-regions
is reduced to 4–7, averaging 5 AP.
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Figure 11 shows the positioning accuracy of WKNN algorithm based on Euclidean distance,
PCC and Spearman coefficient before and after AP optimization in each sub-region. The positioning
accuracy of the WKNN algorithm based on Euclidean distance and PCC is 7 m before and after AP
optimization, the positioning accuracy of WKNN algorithm based on Spearman is 1 m higher than that
before AP optimization. It can be seen that the positioning accuracy of the three algorithms changes
little before and after AP optimization; however, after AP optimization, the fingerprint dimension
decreased significantly and the computation time decreased.
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Figure 11. Comparison of positioning accuracy.

Figure 12 shows the cumulative error probability of WKNN algorithm based on three different
fingerprint similarities after AP optimization. It can be seen that the error probability of these three
algorithms reaches 100% when the error distance is 7 m, that is, the positioning accuracy is 7 m. When
the error probability is greater than 90%, the WKNN algorithm based on PCC has higher positioning
accuracy than WKNN algorithm based on Euclidean distance and Spearman coefficient.
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Figure 12. Probability of error.

Through the AP optimization, in the process of location calculation, the average number of
AP in each sub-region decreased from 65 to 5, reduced by 92.31%. In Table 8, when there is no AP
preference in the sub-region, the average computation time of WKNN algorithm based on Euclidean
distance, PCC and Spearman coefficient is 5.16 × 10−5 s, 1.80 × 10−3 s and 1.30 × 10−3 s, respectively.
After AP optimization in the sub-region, the average calculation time of these three algorithms is
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4.61 × 10−5 s, 9.27 × 10−4 s and 1.20 × 10−3 s, which are decreased by 10.66%, 48.50% and 7.69%,
respectively. However, because of the small number of reference points in each sub-region, the time
did not decrease significantly.

Table 8. Time statistics before and after AP optimization.

Algorithm No AP Optimization AP Optimization

Euclidean 5.16 × 10−5 s 4.61 × 10−5 s
Pearson 1.80 × 10−3 s 9.27 × 10−4 s

Spearman 1.30 × 10−3 s 1.20 × 10−3 s

By AP optimization in the sub-region, the fingerprint dimension is greatly reduced and the
positioning accuracy is improved, and the average computing time of WKNN algorithm based on PCC
is the least.

Now let us compare the position accuracy with other three well known indoor positioning
methods (KNN [24], WKNN [23], FCM [36]). From the results displayed in Figure 13, we can see
that the proposed algorithm outperforms the other three algorithms. We calculate the mean error, the
median error, the root-mean-square-error (RMSE), the maximum error distance and the error distance
within 90% to compare the positioning accuracy of the four methods. As is shown in Table 9, we can
see that the proposed method produces a 90th percentile error of 4.2 m, which is better than the 4.6 m,
4.6 m and 5.6 m of KNN, WKNN and FCM. The mean error of we proposed method is 2.4 m, which is
lower than the 2.8 m, 2.5 m, 3.4 m of KNN, WKNN and FCM. It is a good positioning accuracy when
considering the error distance is 4 m.

Table 9. Comparison of positioning error.

Algorithm Mean Error (m) Median (m) RMSE (m) Max (m) 90th (m)

KNN 2.8 2.5 3.1 8 4.6
WKNN 2.5 2.3 2.9 7 4.6

FCM 3.4 3.2 3.8 9 5.6
we proposed 2.4 2.4 2.8 7 4.2
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In addition, the factors affecting positioning accuracy also include the orientation and the
calibration time. Different orientations have some influence on the RSS values, and then affect the
positioning accuracy. Theoretically, the orientation information can improve the location accuracy
in many studies. However, in reference [49], the availability of orientation information could not
increase the positioning accuracy. The reason for this could be the evident signal strength fluctuations.
Generally speaking, when the calibration time increases, the positioning error will decrease. In
reference [46], when the calibration time is about 30 seconds, the estimation can be significantly
improved. The location error changes slightly after 30 seconds. Therefore, the calibration time of 30
seconds in the public dataset is very reasonable.

5. Conclusions and Future Work

To reduce the positioning time and improve the positioning accuracy, we proposed a fingerprint
localization method based on regional division with IFCM. The obtained results show that the
average computation time of the localization algorithm based on PCC can be reduced by 94.13%
(from 1.58 × 10−2 s to 9.27 × 10−4 s), and the positioning accuracy was improved from 9 m to 7 m.
In offline phase, since the FCM algorithm needs to determine the number of clusters in advance, and the
cluster center is randomly initialized, we apply BWP index to K-means algorithm in order to improve
the clustering speed and clustering effect. In online phase, due to the enormous APs may produce
similar calculations, leading to excessive fingerprint dimension and biased estimate, so the AGNES
algorithm is used to optimize the AP. The average number of AP in each sub-region decreased by
92.31% (from 65 to 5). The experimental results show that the localization error of 97% of fingerprints
is under 5 m and the average localization error is 2.53 m, which implies that our proposed method
is effective.

Although this paper aims at solving the problems of high fingerprint dimension and long matching
time in fingerprint localization, there are still other problems to be solved, such as the deployment of
APs will also affect the RSS value, thus affecting the positioning accuracy. Therefore, how to optimize
the deployment strategy of APs according to the actual environment to maximize the discrimination of
fingerprints in each region is a valuable research direction.
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