
electronics

Article

Load Balancing Scheme for Effectively Supporting
Distributed In-Memory Based Computing

Kyoungsoo Bok, Kitae Choi, Dojin Choi, Jongtae Lim and Jaesoo Yoo *

School of Information and Communication Engineering, Chungbuk National University, Chungdae-ro 1,
Seowon-Gu, Cheongju, Chungbuk 28644, Korea; ksbok@chungbuk.ac.kr (K.B.); hissker@hanmail.net (K.C.);
mycdj91@chungbuk.ac.kr (D.C.); jtlim@chungbuk.ac.kr (J.L.)
* Correspondence: yjs@chungbuk.ac.kr; Tel.: +82-43-261-3230

Received: 16 April 2019; Accepted: 13 May 2019; Published: 15 May 2019
����������
�������

Abstract: As digital data have increased exponentially due to an increasing number of information
channels that create and distribute the data, distributed in-memory systems were introduced to process
big data in real-time. However, when the load is concentrated on a specific node in a distributed
in-memory environment, the data access performance is degraded, resulting in an overall degradation
in the processing performance. In this paper, we propose a new load balancing scheme that performs
data migration or replication according to the loading status in heterogeneous distributed in-memory
environments. The proposed scheme replicates hot data when the hot data occurs on the node where
a load occurs. If the load of the node increases in the absence of hot data, the data is migrated
through a hash space adjustment. In addition, when nodes are added or removed, data distribution is
performed by adjusting the hash space with the adjacent nodes. The clients store the metadata of the
hot data and reduce the access of the load balancer through periodic synchronization. It is confirmed
through various performance evaluations that the proposed load balancing scheme improves the
overall load balancing performance.

Keywords: distributed in-memory; load balancing; data migration; replication; hot data

1. Introduction

As the use of digital devices, such as tablet PCs and smartphones, has increased in recent times
with the rapid growth of social media applications, such as Twitter and Facebook, various forms of
digital data have also increased exponentially in our everyday life. As a result, big data technology has
emerged to effectively manage and process large volumes of data that cannot be handled in a traditional
manner [1–3]. Big data can introduce new meaning by processing and analyzing large amounts of
data, which could not be found in the existing data. This is being used in various fields, such as trend
analysis, marketing, and decision making [4,5].

Distributed storage processing techniques, such as Hadoop, have been used to process large amounts
of data beyond the processing limits of the existing storage and processing systems [6–8]. Hadoop is
a representative open-source software framework for the distributed storage and processing of large amounts
of data. As Hadoop stores and processes large amounts of data in the disks of distributed nodes, continuous
disk input and output occur, making real-time processing impossible [9–11]. Furthermore, when input
and output are concentrated on a specific node, a bottleneck occurs, and the overall processing speed is
lowered. To address such disk input and output problems, distributed in-memory technology has emerged,
allowing the distributing, storing, and processing of data in the memory to have a fast access speed [12–14].
Distributed in-memory technology is being widely used in applications that process large amounts of data in
real-time [15–18]. An example of a representative in-memory processing technology is memcached [19–21].

Electronics 2019, 8, 546; doi:10.3390/electronics8050546 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-9926-9947
http://www.mdpi.com/2079-9292/8/5/546?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8050546
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 546 2 of 24

Memcached is a key-value-based memory cache that is frequently used in applications that
provide online real-time services, including Facebook, Twitter, Reddit, and YouTube. Memcached
reduces the storage access to the back-end databases by directly storing user data requests in the
distributed in-memory [22,23]. In addition, as it uses the memory of the distributed nodes as a single
storage, a large amount of data can be stored in the memory and can be used subsequently [24,25].
Memcached has attracted much attention due to its high usability, and studies are being actively
conducted to further improve its performance. As Memcached operates in distributed environments,
load imbalance may occur among nodes. In other words, in the distributed in-memory environments,
when requests are concentrated on a specific node or the use of specific data is focused, a problem of
load increase on a specific node occurs. Such a load imbalance among the nodes degrades the overall
system response time and the network performance [26–31].

To address such a load imbalance among nodes in the distributed in-memory environments,
studies have been conducted using ring-based hashing schemes [32–37]. The general ring-based
hashing schemes adjust the loading by replicating the data to other nodes, or by migrating the data
through a hash space adjustment. The study in [33] calculated the load on a node using the hit rate
and the usage rate, and performed load balancing by adjusting the hash space. If hot data exists in
a specific node, however, the hit ratio and the usage rate will increase, and many hash spaces must
be adjusted. In other words, the occurrence of hot data significantly increases the data migration
cost. The studies in [34,36] proposed a scheme of distributing the load concentrated on one node by
replicating the hot data that causes a large load to another node. When load balancing is performed
considering only the hot data, however, it is not possible to solve the situation where a load occurs
on a node without the hot data. Moreover, in heterogeneous environments, when load balancing is
performed without consideration of the memory size, frequent data migration occurs in a node with
a relatively small memory size. As such, it is difficult to actually apply the existing load balancing
schemes because they perform load balancing only for a specific situation, and do not consider both
the load of the node itself and the data load.

We propose a load balancing scheme in distributed in-memory [37]. The authors of [37] proposed
the concept of load balancing using data replication and data migration in a distributed in-memory
environment. However, Ref. [37] did not provide initial data distribution techniques in heterogeneous
distributed in-memory environments and did not check the load status of an overloaded node after
data replication and data migration. In addition, load balancing due to the addition and removal of
nodes was not performed for distributed in-memory processing. In this paper, we propose a new load
balancing technique that extends the existing scheme [37] in heterogeneous distributed in-memory
environments. The proposed scheme distinguishes the load status according to whether hot data is
generated and performs data replication or data migration using a load balancer. It also performs load
balancing by adjusting the hash space according to the addition and removal of the nodes. The clients
maintain up-to-date metadata by periodically synchronizing the metadata information about accessible
data with the load balancer. The main contributions of this paper over [37] are as follows:

1. The proposed scheme takes into account the performance of the nodes in a heterogeneous
distributed in-memory environment, distributes the initial data, and determines the load status
of the nodes through the load balancer.

2. This paper presents detailed algorithms for data replication and migration according to the load
status of the node and proposes a technique to determine the load status of the node according to
the load distribution.

3. The proposed scheme adjusts the hash space by considering the load status of the node for load
balancing when adding or removing the node.

4. The proposed scheme reduces access to the load balancer because the client maintains metadata
about the hot data through periodic synchronization with the load balancer.

Electronics 2019, 8, 546 3 of 24

The rest of this paper is presented as follows. Section 2 describes the related works, and Section 3
describes the proposed scheme for load balancing among the nodes in the distributed in-memory
environments. Section 4 verifies the excellence of the proposed scheme through performance evaluation
and analysis, and Section 5 describes the conclusion of this paper.

2. Related Work

Hwang et al. proposed an adaptive hashing scheme to support load balancing in distributed
in-memory caching systems [33]. Since the stored data size and data access frequency are different,
each node has a different load. When a load imbalance occurs, the cost of the node is calculated by
using a hit rate and a usage rate of each node and then the hash space is adjusted to balance the loads
across multiple cache servers. When a new node is added, the new node takes over exactly half of the
hash space from the overloaded node in the counter clockwise direction to assign a balanced hash
space to the new node. In addition, when the node is removed, the two immediately adjacent virtual
nodes will divide the hash space of the removed node.

Zhang et al. proposed a load balancing scheme that extracts hot data that causes a large load
and replicates it to other nodes [36]. To distribute the load, the hot data is detected using the lossy
counter and the hot data is replicated to the more efficient node. When a client requests data, the load
balancer accepts the client’s request and sends it to the hot spot detector. The hot spot detector
continuously analyzes the client’s request using the lossy counter, which separates keys into groups
with similar request rates. The load balancer also maintains a forward table for the separate hot data in
the key director. If the user’s requested data is hot data, the data can be accessed quickly through the
forward table.

Lu et al. developed a distributed caching middleware called R-Memcached, which incorporates
a replication technique into Memcached to prevent a large number of concurrent requests from sending
to a single node [34]. When the data is stored, the replica is stored in the clockwise nodes using
a ring-based hash. Hot data is replicated to other nodes to solve the load imbalance problem that
may occur at a particular node. The round-robin technique is used to prevent the data request from
concentrating on a particular node. After R-Memcached adds a replica technique, the probability of
data loss is reduced.

The existing schemes that have been proposed for load balancing cannot address the problem
of a load imbalance among nodes that occurs in various situations because they distribute the load
while considering only specific situations. Distributed management schemes using data replication
extract the hot data that causes a severe load on a node, and distribute the hot data to other nodes,
thereby performing load balancing. When the hot data is replicated to the neighbor nodes, however,
the hot data can be stored again in one of those nodes when a node with the replicated hot data is
removed, resulting in load concentration again. In addition, memory space is wasted due to the
overlapping of memory storage. As no load balancing scheme has been proposed for the case where
hot data does not exist, proper load balancing cannot be performed if the hot data does not exist.
The load balancing management scheme that uses data migration calculates the cost based on the hit
rate and the usage rate for each node, adjusts the hash space, and migrates the data, thereby performing
load balancing. When the node is overloaded due to the hot data, however, the cost of the node is
considerably increased, many hash spaces need to be adjusted, and a high data migration cost is
required. Furthermore, as the load is distributed by adjusting the hash spaces of the neighboring nodes,
appropriate load balancing cannot be performed if the neighboring nodes are under heavy loads.

To address the problems of the existing schemes, a novel scheme is required that can address the
load imbalances caused by various situations. First, the overloaded node needs to be found using
the status information of the nodes, and the existence of hot data in the overloaded node must be
confirmed to identify the cause of the node overload. As the existing replication schemes replicate
hot data to the neighbor nodes of the overloaded node, the hot data can be stored again in one of
those nodes when a node with the replicated hot data is removed. Therefore, a scheme is required

Electronics 2019, 8, 546 4 of 24

that can address the problem of overlapping data storage when a node is removed by replicating the
hot data evenly to the other nodes. When no hot data exists in the overloaded node, and the data is
migrated by adjusting the hash spaces of the neighbor nodes, a large adjustment of the hash spaces
leads to a high migration cost, and the overload problem cannot be addressed when the neighbor
nodes are under heavy loads. Therefore, when there is no hot data, a load balancing scheme is required,
which minimizes the data migration considering the loads of the nodes. In an environment in which
the memory sizes are different, a node with a small memory size can be easily filled with data, and thus,
data change may occur frequently. Therefore, a scheme is required which can store the data considering
the memory size.

3. Proposed Load Balancing Scheme

3.1. Architecture

In the distributed in-memory environments, when requests are concentrated on a specific node,
an overload problem occurs, and the overall system performance is degraded. Therefore, a load
balancing scheme is required to address the load imbalance by distributing the load of the overloaded
node. In the existing load balancing schemes, the load is distributed using a scheme that replicates or
migrates the data considering only a specific situation in which the node overload occurs. When the
data is replicated to the neighbor nodes, the data can be stored again in one of those nodes when
a node with the replicated data is removed, resulting in the overload problem again. In addition, if hot
data exists in a node when the data is migrated, the hash spaces are significantly adjusted, and a large
amount of data is migrated. In an environment where the memory sizes are different and when a node
with a small memory manages a large hash space, it must manage a large amount of data. However,
the storage is limited due to the memory size, resulting in frequent data replacements.

In this paper, a load balancing scheme considering the load condition of the nodes is proposed to
distribute the load in the distributed in-memory environments. The proposed scheme extracts the
overloaded nodes and hot data based on the node and the data loads, and distributes the load through
a data replication and migration process. In an environment where the memory sizes of the nodes are
different, load balancing is performed by adjusting the initial hash spaces according to the memory
size. If the hot data exists when a node is overloaded, the hash spaces are evenly divided, and the
hot data is replicated to a node with a low load for load balancing. If there is no hot data, the data of
the node with the lowest load is distributed considering the loads of the neighbor nodes, and load
balancing is performed by selecting the node as the predecessor node of the node with the highest
load and by adjusting the hash space. In distributed environments, nodes can be added or removed.
In a situation where a node is added, the new node is added as the predecessor node of the overloaded
node in order to distribute the load of the overloaded node. In a situation where a node is removed,
the hash spaces are adjusted and the data is migrated considering the loads of the successor node,
and the predecessor node of the node to be removed.

Figure 1 shows the proposed load balancing system. A load balancer operates in a node acting
as a central server, distributes the data to the nodes for storage, and performs load balancing for the
distributed memory. When the user’s data request is received, the load balancer determines whether
the requested data exists in the distributed memory, and delivers the data node information. If there is
no user requested data in the memory, the load balancer loads the data from the disk into the memory,
and transfers the data to the user. If the data requested by the user is not stored in the memory of
the node, the data distributor designates a node for the storage of the data and stores it. The hot
data manager collects and separately manages the hot data information generated from the nodes,
and synchronizes the metadata of the hot data through periodic communications with the clients.

Electronics 2019, 8, 546 5 of 24

Electronics 2019, 8, x FOR PEER REVIEW 5 of 24

Figure 1. Overall architecture.

When an overload occurs at a node, the node sends its current status information to the load

balancer. The load balancer that receives the information of the overloaded node collects the load

status of all the current nodes based on the access frequency, and stores the status information to

distribute the load. The load balancer also collects and stores hot data information from all the nodes.

The load balancer distributes the load through a hot data replication and data migration process,

based on the load information and the hot data information received from each node. If there is hot

data in the overloaded node, the load balancer replicates the hot data to another node, and manages

the metadata information of the replicated hot data. If there is no hot data, the load balancer adjusts

the hash spaces based on the load on the node, maintains the adjusted hash space of the node, and

accesses the node using the adjusted hash space when a data request is received.

3.2. Initial Data Distribution

In the distributed in-memory environments, when nodes are added or removed, the data must

be redistributed to the distributed nodes. In general, in distributed environments, however, all data

of the existing nodes must be redistributed when the nodes are added or removed. The ring-based

hashing scheme, however, does not redistribute all the data when the nodes are added or removed.

It only redistributes some data by adjusting the hash space to be managed by other adjacent nodes.

This reduces the overall load on the system, thereby increasing the data redistribution efficiency in

the distributed environments. Therefore, the proposed scheme is based on the ring-type chord [38,39].

In the distributed in-memory environments, the memory size of each node may be different. In this

instance, when a node with a small memory size manages a large hash space, a large amount of data

must be stored in the node, requiring more frequent data replacement due to the limited memory. In

this case, the data replacement causes considerable cost, and the performance of the node may be

degraded. Therefore, the proposed scheme distributes the initial nodes considering the memory of

the nodes, and addresses the problem caused by data replacement.

Figure 2 shows an example of the identifier space of the ring-type chord. 1N to 5N represent

the nodes constituting the identifier space. The adjacent node located in the counterclockwise

direction of the node, iN , is referred to as the predecessor of the node, iN , and is expressed as a

predecessor (iN). The adjacent node located in the clockwise direction of the node, iN , is referred

to as the successor of the node, iN , and is expressed as a successor (iN). The chord scheme hashes

the nodes and data, and maps them to a single value on the ring. The node manages the hash space

between itself and its predecessor node, and stores the data of the corresponding hash value in the

node. If a node is approached by comparing the hash values to read the value stored in the node, the

requested value is returned.

Figure 1. Overall architecture.

When an overload occurs at a node, the node sends its current status information to the load
balancer. The load balancer that receives the information of the overloaded node collects the load status
of all the current nodes based on the access frequency, and stores the status information to distribute
the load. The load balancer also collects and stores hot data information from all the nodes. The load
balancer distributes the load through a hot data replication and data migration process, based on the
load information and the hot data information received from each node. If there is hot data in the
overloaded node, the load balancer replicates the hot data to another node, and manages the metadata
information of the replicated hot data. If there is no hot data, the load balancer adjusts the hash spaces
based on the load on the node, maintains the adjusted hash space of the node, and accesses the node
using the adjusted hash space when a data request is received.

3.2. Initial Data Distribution

In the distributed in-memory environments, when nodes are added or removed, the data must
be redistributed to the distributed nodes. In general, in distributed environments, however, all data
of the existing nodes must be redistributed when the nodes are added or removed. The ring-based
hashing scheme, however, does not redistribute all the data when the nodes are added or removed.
It only redistributes some data by adjusting the hash space to be managed by other adjacent nodes.
This reduces the overall load on the system, thereby increasing the data redistribution efficiency in the
distributed environments. Therefore, the proposed scheme is based on the ring-type chord [38,39].
In the distributed in-memory environments, the memory size of each node may be different. In this
instance, when a node with a small memory size manages a large hash space, a large amount of data
must be stored in the node, requiring more frequent data replacement due to the limited memory.
In this case, the data replacement causes considerable cost, and the performance of the node may be
degraded. Therefore, the proposed scheme distributes the initial nodes considering the memory of the
nodes, and addresses the problem caused by data replacement.

Figure 2 shows an example of the identifier space of the ring-type chord. N1 to N5 represent the
nodes constituting the identifier space. The adjacent node located in the counterclockwise direction of
the node, Ni, is referred to as the predecessor of the node, Ni, and is expressed as a predecessor (Ni).
The adjacent node located in the clockwise direction of the node, Ni, is referred to as the successor
of the node, Ni, and is expressed as a successor (Ni). The chord scheme hashes the nodes and data,
and maps them to a single value on the ring. The node manages the hash space between itself and
its predecessor node, and stores the data of the corresponding hash value in the node. If a node is

Electronics 2019, 8, 546 6 of 24

approached by comparing the hash values to read the value stored in the node, the requested value
is returned.Electronics 2019, 8, x FOR PEER REVIEW 6 of 24

Figure 2. Identifier space of the chord.

The proposed scheme uses a modified chord applying a ring-based hashing scheme in order to

distribute the initial nodes in environments with different memory sizes. In environments with

different node sizes, the initial nodes are distributed considering the memory size of each node. In

the existing distribution scheme, the nodes are distributed by hashing their unique values. In this

case, the nodes with a large memory may manage a small hash space while the nodes with a small

memory may manage a large hash space. Therefore, through the distribution of the initial nodes

according to their memory sizes, the memory sizes are fully used, and the problem of frequent data

replacement is addressed. Figure 3 shows the initial node distribution that consists of five nodes and

uses a basic hash scheme. The number displayed on each node represents the memory size. When

the nodes are distributed, the basic ring-based hashing scheme distributes the nodes by hashing

information that can identify the node, such as in IP. In this instance, 5N , with a smaller memory

size than 4N , may manage more hash spaces than 4N . Therefore, the memory of the node, 5N , is

easily filled and cache replacement frequently occurs.

Figure 3. Initial nodes using the existing chord scheme.

Figure 4 shows the initial node distribution of the proposed scheme with five nodes. The

proposed scheme adjusts the hash spaces considering the memory sizes based on the existing initial

node distribution. For example, as 1N has a larger memory size than 2N , the hash space of 1N is

adjusted to manage more data. In addition, as 2N has a smaller memory size than 3N , the hash

space of 2N is not adjusted.

Figure 2. Identifier space of the chord.

The proposed scheme uses a modified chord applying a ring-based hashing scheme in order
to distribute the initial nodes in environments with different memory sizes. In environments with
different node sizes, the initial nodes are distributed considering the memory size of each node. In the
existing distribution scheme, the nodes are distributed by hashing their unique values. In this case,
the nodes with a large memory may manage a small hash space while the nodes with a small memory
may manage a large hash space. Therefore, through the distribution of the initial nodes according to
their memory sizes, the memory sizes are fully used, and the problem of frequent data replacement is
addressed. Figure 3 shows the initial node distribution that consists of five nodes and uses a basic
hash scheme. The number displayed on each node represents the memory size. When the nodes
are distributed, the basic ring-based hashing scheme distributes the nodes by hashing information
that can identify the node, such as in IP. In this instance, N5, with a smaller memory size than N4,
may manage more hash spaces than N4. Therefore, the memory of the node, N5, is easily filled and
cache replacement frequently occurs.

Electronics 2019, 8, x FOR PEER REVIEW 6 of 24

Figure 2. Identifier space of the chord.

The proposed scheme uses a modified chord applying a ring-based hashing scheme in order to

distribute the initial nodes in environments with different memory sizes. In environments with

different node sizes, the initial nodes are distributed considering the memory size of each node. In

the existing distribution scheme, the nodes are distributed by hashing their unique values. In this

case, the nodes with a large memory may manage a small hash space while the nodes with a small

memory may manage a large hash space. Therefore, through the distribution of the initial nodes

according to their memory sizes, the memory sizes are fully used, and the problem of frequent data

replacement is addressed. Figure 3 shows the initial node distribution that consists of five nodes and

uses a basic hash scheme. The number displayed on each node represents the memory size. When

the nodes are distributed, the basic ring-based hashing scheme distributes the nodes by hashing

information that can identify the node, such as in IP. In this instance, 5N , with a smaller memory

size than 4N , may manage more hash spaces than 4N . Therefore, the memory of the node, 5N , is

easily filled and cache replacement frequently occurs.

Figure 3. Initial nodes using the existing chord scheme.

Figure 4 shows the initial node distribution of the proposed scheme with five nodes. The

proposed scheme adjusts the hash spaces considering the memory sizes based on the existing initial

node distribution. For example, as 1N has a larger memory size than 2N , the hash space of 1N is

adjusted to manage more data. In addition, as 2N has a smaller memory size than 3N , the hash

space of 2N is not adjusted.

Figure 3. Initial nodes using the existing chord scheme.

Figure 4 shows the initial node distribution of the proposed scheme with five nodes. The proposed
scheme adjusts the hash spaces considering the memory sizes based on the existing initial node
distribution. For example, as N1 has a larger memory size than N2, the hash space of N1 is adjusted
to manage more data. In addition, as N2 has a smaller memory size than N3, the hash space of N2 is
not adjusted.

Electronics 2019, 8, 546 7 of 24

Electronics 2019, 8, x FOR PEER REVIEW 7 of 24

Figure 4. Initial node allocation using modified chord scheme.

Equation (1) is used to adjust the hash space of each node considering the memory size. If iN ‘s

memory size is greater than that of iN ‘s successor node, 1iN , the size of the hash space using

Equation (1) is increased. Here, iH is the hash space of iN before adjustment and 1iH is the hash

space of the node, 1iN , before adjustment, and iMH is the adjusted hash space of the node, iN :

2

1
 ii

i
HH

MH (1)

Figure 5 shows the proposed initial node allocation algorithm. We assume iH and 1iH are

the hash space of the node, iN , and the successor node of iN , respectively. Node iN compares the

memory size of its own memory with that of the successor node. If the memory size of node, iN , is

larger than the memory size of the successor node, the proposed scheme increases the hash space

using Equation (1) to store more data. If the memory size of the successor node is larger than its own

memory size, it does not adjust the hash space.

Figure 5. Initial node allocation algorithm.

3.3. Load Balancing Processing

In distributed environments, the data is distributed to multiple nodes and is shared. As the data

in each node is different in distributed environments, the data requests may be concentrated on a

specific node, and the performance may be degraded due to an increase in the load. In many cases, a

node overload is caused by the occurrence of hot data where loading is concentrated on a specific

data, or the limited node performance. Therefore, in distributed environments, it is important to

identify the cause of a node overload, distribute the load, and prevent the node from overloading. To

address the node overload problem that can occur in various situations, a load balancing scheme is

required according to the situation.

The proposed method largely distributes the load through data replication and migration. It

determines whether the current node is overloaded using the load status of the node, and identifies

Figure 4. Initial node allocation using modified chord scheme.

Equation (1) is used to adjust the hash space of each node considering the memory size. If Ni’s
memory size is greater than that of Ni’s successor node, Ni+1, the size of the hash space using
Equation (1) is increased. Here, Hi is the hash space of Ni before adjustment and Hi+1 is the hash space
of the node, Ni+1, before adjustment, and MHi is the adjusted hash space of the node, Ni:

MHi =
Hi + Hi+1

2
(1)

Figure 5 shows the proposed initial node allocation algorithm. We assume Hi and Hi+1 are the
hash space of the node, Ni, and the successor node of Ni, respectively. Node Ni compares the memory
size of its own memory with that of the successor node. If the memory size of node, Ni, is larger
than the memory size of the successor node, the proposed scheme increases the hash space using
Equation (1) to store more data. If the memory size of the successor node is larger than its own memory
size, it does not adjust the hash space.

Electronics 2019, 8, x FOR PEER REVIEW 7 of 24

Figure 4. Initial node allocation using modified chord scheme.

Equation (1) is used to adjust the hash space of each node considering the memory size. If iN ‘s

memory size is greater than that of iN ‘s successor node, 1iN , the size of the hash space using

Equation (1) is increased. Here, iH is the hash space of iN before adjustment and 1iH is the hash

space of the node, 1iN , before adjustment, and iMH is the adjusted hash space of the node, iN :

2

1
 ii

i
HH

MH (1)

Figure 5 shows the proposed initial node allocation algorithm. We assume iH and 1iH are

the hash space of the node, iN , and the successor node of iN , respectively. Node iN compares the

memory size of its own memory with that of the successor node. If the memory size of node, iN , is

larger than the memory size of the successor node, the proposed scheme increases the hash space

using Equation (1) to store more data. If the memory size of the successor node is larger than its own

memory size, it does not adjust the hash space.

Figure 5. Initial node allocation algorithm.

3.3. Load Balancing Processing

In distributed environments, the data is distributed to multiple nodes and is shared. As the data

in each node is different in distributed environments, the data requests may be concentrated on a

specific node, and the performance may be degraded due to an increase in the load. In many cases, a

node overload is caused by the occurrence of hot data where loading is concentrated on a specific

data, or the limited node performance. Therefore, in distributed environments, it is important to

identify the cause of a node overload, distribute the load, and prevent the node from overloading. To

address the node overload problem that can occur in various situations, a load balancing scheme is

required according to the situation.

The proposed method largely distributes the load through data replication and migration. It

determines whether the current node is overloaded using the load status of the node, and identifies

Figure 5. Initial node allocation algorithm.

3.3. Load Balancing Processing

In distributed environments, the data is distributed to multiple nodes and is shared. As the data in
each node is different in distributed environments, the data requests may be concentrated on a specific
node, and the performance may be degraded due to an increase in the load. In many cases, a node
overload is caused by the occurrence of hot data where loading is concentrated on a specific data,
or the limited node performance. Therefore, in distributed environments, it is important to identify
the cause of a node overload, distribute the load, and prevent the node from overloading. To address
the node overload problem that can occur in various situations, a load balancing scheme is required
according to the situation.

Electronics 2019, 8, 546 8 of 24

The proposed method largely distributes the load through data replication and migration.
It determines whether the current node is overloaded using the load status of the node, and identifies
the hot data using the node and data loads. If hot data exists in the overloaded node, the hot data
is replicated to another node to distribute the load. If there is no hot data, the hash space of the
node with a low load is adjusted to reduce the load of the overloaded node and migrates the data of
the overloaded node. Figure 6 shows the data replication and migration procedure. The nodes are
distributed using the ring-based hashing scheme, and each node holds data according to its hash space.
When an overload occurs in a node, the load is distributed through the replication or migration of the
data. The data replication process distributes the load by replicating the hot data that causes a large
load to another node. In this instance, the hash spaces are divided as evenly as possible based on the
hash ring, and the hot data is replicated to the nodes without overload. The overlapping hot data can
be stored in one node when a node with the replicated hot data is removed, preventing any problems.
In addition, the hash spaces of the overloaded node and the underloaded node are adjusted to migrate
the data and distribute the load. For example, if N1 is overloaded and has D1 (hot data), it replicates
the hot data to the nodes, N3 and N5, that are not overloaded. As the overloaded N4 does not have hot
data, the hash spaces are adjusted and D14 is migrated from N4 to N5.

Electronics 2019, 8, x FOR PEER REVIEW 8 of 24

the hot data using the node and data loads. If hot data exists in the overloaded node, the hot data is

replicated to another node to distribute the load. If there is no hot data, the hash space of the node

with a low load is adjusted to reduce the load of the overloaded node and migrates the data of the

overloaded node. Figure 6 shows the data replication and migration procedure. The nodes are

distributed using the ring-based hashing scheme, and each node holds data according to its hash

space. When an overload occurs in a node, the load is distributed through the replication or migration

of the data. The data replication process distributes the load by replicating the hot data that causes a

large load to another node. In this instance, the hash spaces are divided as evenly as possible based

on the hash ring, and the hot data is replicated to the nodes without overload. The overlapping hot

data can be stored in one node when a node with the replicated hot data is removed, preventing any

problems. In addition, the hash spaces of the overloaded node and the underloaded node are adjusted

to migrate the data and distribute the load. For example, if 1N is overloaded and has 1D (hot data),

it replicates the hot data to the nodes, 3N and 5N , that are not overloaded. As the overloaded 4N

does not have hot data, the hash spaces are adjusted and 14D is migrated from 4N to 5N .

Figure 6. Date replication and migration procedure.

The performance of a node is reduced when the amount of load that can be processed by the

node is exceeded. Therefore, in such a case, the node is identified as an overloaded node and the load

is distributed. If the amount of the load that can be processed by a node exceeds the threshold value

as shown in Equation (2), the node is identified as an overloaded node. Here, OLN represents the

threshold value of the overloaded node,  is a parameter that determines the amount of the load,

and SN is the load status of the current node:

SOL NN  (2)

If an overloaded node occurs, the hot data must be determined for data replication. The hot data

is determined based on the loads of data and node as shown in Equation (3). Here, iNL is the whole

load of node iN , kDL is the load of data k stored in node iN , and  is the threshold value. The

hot data is determined based on the ratio of the load generated by the data to the total load on the

node. When the load generated by the data exceeds the threshold value of the total load, such data is

regarded as hot data:

Figure 6. Date replication and migration procedure.

The performance of a node is reduced when the amount of load that can be processed by the
node is exceeded. Therefore, in such a case, the node is identified as an overloaded node and the
load is distributed. If the amount of the load that can be processed by a node exceeds the threshold
value as shown in Equation (2), the node is identified as an overloaded node. Here, NOL represents
the threshold value of the overloaded node, α is a parameter that determines the amount of the load,
and NS is the load status of the current node:

NOL ≥ α×NS (2)

If an overloaded node occurs, the hot data must be determined for data replication. The hot data
is determined based on the loads of data and node as shown in Equation (3). Here, NLi is the whole
load of node Ni, DLk is the load of data k stored in node Ni, and β is the threshold value. The hot data is
determined based on the ratio of the load generated by the data to the total load on the node. When the

Electronics 2019, 8, 546 9 of 24

load generated by the data exceeds the threshold value of the total load, such data is regarded as
hot data:

DLk
NLi

≥ β (3)

Figure 7 shows the load balancing processing procedure algorithm. If a particular node is
an overloaded node for a certain period of time, then data replication or data migration is performed
depending on whether hot data exists on the overload node. If hot data exists on an overload node,
then replication to the hot data is performed and otherwise the hash space is adjusted to migrate the
data. If a node performing the service in a distributed environment is added or removed, the hash
space to migrate the data is adjusted. If a new node is added, the proposed scheme sets the added
node to the predecessor node of the overload node and adjusts the hash space of the overload node to
migrate data to the new node. If an existing node is removed, the hash space is adjusted according to
the load status of the predecessor node and the successor node, and the data stored on the removed
node is migrated to the predecessor node and the successor node.

Electronics 2019, 8, x FOR PEER REVIEW 9 of 24


i

k

NL

DL
 (3)

Figure 7 shows the load balancing processing procedure algorithm. If a particular node is an

overloaded node for a certain period of time, then data replication or data migration is performed

depending on whether hot data exists on the overload node. If hot data exists on an overload node,

then replication to the hot data is performed and otherwise the hash space is adjusted to migrate the

data. If a node performing the service in a distributed environment is added or removed, the hash

space to migrate the data is adjusted. If a new node is added, the proposed scheme sets the added

node to the predecessor node of the overload node and adjusts the hash space of the overload node

to migrate data to the new node. If an existing node is removed, the hash space is adjusted according

to the load status of the predecessor node and the successor node, and the data stored on the removed

node is migrated to the predecessor node and the successor node.

Figure 7. Load balancing processing procedure algorithm.

3.4. Load Balancing through Data Replication

Hot data refers to the data that is frequently used and causes a large load on a node. As the hot

data greatly increases the load on a node, the load balancing processing scheme that uses such data

is important. The load imbalance due to the hot data can be solved by replicating such hot data to

other nodes to distribute the load of the hot data to other nodes. When the hot data is replicated to

the neighbor nodes, however, if one of those nodes is removed, the hot data can be stored again in

another node, causing an overload again. Therefore, the proposed scheme addresses the problem of

such overlapping storage of hot data. It divides the hash spaces evenly based on the hot data and

stores one replica in each divided hash space considering the load on the corresponding node. This

can address the problem of overlapping data storage when a node is removed.

Figure 8 shows the procedure of hot data replication. The entire hash space is evenly divided

according to the number of the hot data to be replicated. In each divided hash space, the nodes are

checked for overload sequentially from the one with the low hash value, and the hot data is replicated

to the node without overload. In this instance, the basic number of replicas is three, including the

original data. Therefore, the entire hash space is divided into three ranges based on the hash value of

the original data. The original data is retained in the previously stored node. The first replica is stored

in 2R after examining the loads in a sequence. The examination in 2R starts from 6N , the first

node of 2R . If 6N is overloaded, the next node, 7N , is examined. If 7N is not overloaded, the

second hot data is stored in 7N . For the second replica, 10N , the first node of 3R , is examined. If it

is not overloaded, the replica is stored in 10N .

Figure 7. Load balancing processing procedure algorithm.

3.4. Load Balancing through Data Replication

Hot data refers to the data that is frequently used and causes a large load on a node. As the hot
data greatly increases the load on a node, the load balancing processing scheme that uses such data
is important. The load imbalance due to the hot data can be solved by replicating such hot data to
other nodes to distribute the load of the hot data to other nodes. When the hot data is replicated to
the neighbor nodes, however, if one of those nodes is removed, the hot data can be stored again in
another node, causing an overload again. Therefore, the proposed scheme addresses the problem of
such overlapping storage of hot data. It divides the hash spaces evenly based on the hot data and
stores one replica in each divided hash space considering the load on the corresponding node. This can
address the problem of overlapping data storage when a node is removed.

Figure 8 shows the procedure of hot data replication. The entire hash space is evenly divided
according to the number of the hot data to be replicated. In each divided hash space, the nodes are
checked for overload sequentially from the one with the low hash value, and the hot data is replicated
to the node without overload. In this instance, the basic number of replicas is three, including the
original data. Therefore, the entire hash space is divided into three ranges based on the hash value of
the original data. The original data is retained in the previously stored node. The first replica is stored
in R2 after examining the loads in a sequence. The examination in R2 starts from N6, the first node of
R2. If N6 is overloaded, the next node, N7, is examined. If N7 is not overloaded, the second hot data

Electronics 2019, 8, 546 10 of 24

is stored in N7. For the second replica, N10, the first node of R3, is examined. If it is not overloaded,
the replica is stored in N10.
Electronics 2019, 8, x FOR PEER REVIEW 10 of 24

Figure 8. Hot data replication.

When a node is removed, the data of the node is migrated to the neighbor node. If the hot data

is replicated to the consecutive neighbor nodes, and a node with the replicated hot data is removed,

the hot data can be stored again in another node. In this case, as two hot data replicas are stored in

one node, the memory space is wasted and the load is also concentrated. Therefore, if the hot data is

stored in the hash space and divided as evenly as possible considering the loads of the nodes, the

overlapping of data storage in one node can be prevented even if a node with a replica is removed.

Equations (4) and (5) are used to obtain the hash space for the data replication. Equation (4)

calculates the hash value that is used to obtain the hash space for data replication. Here, iHRR is the

hash value that is used to obtain the replication range, MaxH is the entire hash space, NR is the

number of replicas, and HDH is the hash value of hot data. Equation (5) calculates the hash space,

iHR , for data replication using the hash value calculated through Equation (4). Here, iHR is the hash

space, and 1~ ii HRRHRR are the hash ranges obtained using the hash value calculated through

Equation (4). For hot data replication, the ranges in the hash space are determined using the

calculated value, and one data is replicated to each range to prevent the data from being replicated

to the consecutive neighbor nodes:

HD
N

Maxi H
R

i
HHRR  (4)

1~  iii HRRHRRHR (5)

After the load balancing through data replication, it is necessary to examine the load status of

the overloaded node, and confirm whether the distribution has been performed well. When an

overload occurs and the load is distributed, the load of the overloaded node decreases as shown in

Equation (6). Here, iNL is the load of node iN before replication, n is the number of replicas, m

is the number of hot data in node iN , kHDL is the load of hot data k in node iN , and iRNL is the

load of node iN after the replication of hot data. After the data replication, the load status of the

node is examined through the calculated load value, and then the load status of the node is

determined based on the calculated value:







m

k
kii HDL

n

n
NLRL

1

1
 (6)

3.5. Load Balancing through Data Migration

Figure 8. Hot data replication.

When a node is removed, the data of the node is migrated to the neighbor node. If the hot data
is replicated to the consecutive neighbor nodes, and a node with the replicated hot data is removed,
the hot data can be stored again in another node. In this case, as two hot data replicas are stored in one
node, the memory space is wasted and the load is also concentrated. Therefore, if the hot data is stored
in the hash space and divided as evenly as possible considering the loads of the nodes, the overlapping
of data storage in one node can be prevented even if a node with a replica is removed.

Equations (4) and (5) are used to obtain the hash space for the data replication. Equation (4) calculates
the hash value that is used to obtain the hash space for data replication. Here, HRRi is the hash value that is
used to obtain the replication range, HMax is the entire hash space, RN is the number of replicas, and HHD

is the hash value of hot data. Equation (5) calculates the hash space, HRi, for data replication using the
hash value calculated through Equation (4). Here, HRi is the hash space, and HRRi ∼ HRRi+1 are the hash
ranges obtained using the hash value calculated through Equation (4). For hot data replication, the ranges
in the hash space are determined using the calculated value, and one data is replicated to each range to
prevent the data from being replicated to the consecutive neighbor nodes:

HRRi = HMax ×
i

RN
×HHD (4)

HRi = HRRi ∼ HRRi+1 (5)

After the load balancing through data replication, it is necessary to examine the load status of the
overloaded node, and confirm whether the distribution has been performed well. When an overload
occurs and the load is distributed, the load of the overloaded node decreases as shown in Equation (6).
Here, NLi is the load of node Ni before replication, n is the number of replicas, m is the number of hot
data in node Ni, HDLk is the load of hot data k in node Ni, and RNLi is the load of node Ni after the
replication of hot data. After the data replication, the load status of the node is examined through the
calculated load value, and then the load status of the node is determined based on the calculated value:

RLi = NLi −
n− 1

n

m∑
k=1

HDLk (6)

Electronics 2019, 8, 546 11 of 24

3.5. Load Balancing through Data Migration

An overloaded node may occur due to uniform access to the data held by the node rather than
frequent access to its specific data. In this case, the load can be distributed by adjusting the hash spaces
and by performing data migration. In the proposed scheme, the node with the lowest load is selected
and its hash value is deleted. In this instance, the hash space managed by the underloaded node is
adjusted and distributed by considering the loads of the predecessor node and the successor node.
The underloaded node with the deleted hash value is assigned a hash value as the predecessor node of
the node with the largest load node to reduce the load of the overloaded node.

Figure 9 shows the procedure of deleting the hash value of the underloaded node with the lowest
load. To remove the underloaded node from the distributed environment, the managed hash space is
distributed considering the loads of the predecessor node and the successor node. The hash space
is distributed to the predecessor node and the successor node as the load increases significantly for
the successor node if it manages all the hash space. For example, if N3 is a node with the lowest load,
the hash value of N3 is deleted and the hash space and data of N3 are distributed to the predecessor
node, N1, and the successor node, N2.

Electronics 2019, 8, x FOR PEER REVIEW 11 of 24

An overloaded node may occur due to uniform access to the data held by the node rather than

frequent access to its specific data. In this case, the load can be distributed by adjusting the hash

spaces and by performing data migration. In the proposed scheme, the node with the lowest load is

selected and its hash value is deleted. In this instance, the hash space managed by the underloaded

node is adjusted and distributed by considering the loads of the predecessor node and the successor

node. The underloaded node with the deleted hash value is assigned a hash value as the predecessor

node of the node with the largest load node to reduce the load of the overloaded node.

Figure 9 shows the procedure of deleting the hash value of the underloaded node with the lowest

load. To remove the underloaded node from the distributed environment, the managed hash space

is distributed considering the loads of the predecessor node and the successor node. The hash space

is distributed to the predecessor node and the successor node as the load increases significantly for

the successor node if it manages all the hash space. For example, if 3N is a node with the lowest

load, the hash value of 3N is deleted and the hash space and data of 3N are distributed to the

predecessor node, 1N , and the successor node, 2N .

Figure 9. Deleting the hash value of an underloaded node.

Equation (7) is used to delete the hash value of an underloaded node with the low load in a

distributed environment. The loads of the neighbor nodes on both sides of the underloaded node are

compared and then the hash space of the underloaded node is distributed to those nodes. Here, pH

is the hash space of the predecessor node, pN ; iNL is the load on node iN ; jNL is the load on the

adjacent node, jN , of node iN ; and kS is the hash space of the node to be removed. For example,

if the hash space managed by 3N is 501–1000, the load on 1N is 20, and the load on 2N is 30; 1N

additionally manages the hash space of 501–800 among the hash space of 3N , and 2N additionally

manages the hash space of 801–1000 for the load balancing:

k
ji

j
p S

NLNL

NL
H 


 (7)

Figure 10 shows the added underloaded node with the deleted hashed value for reducing the

load on the node with the highest overload. The underloaded node is assigned a hash value as the

predecessor node of the overloaded node with the highest load node to reduce the load. If 2N is an

overloaded node, the underloaded node, 3N , with a deleted hash value is assigned a hash value as

the predecessor node of 2N , and the hash space and data are distributed for load balancing.

Figure 10. Assigning a hash value to the underloaded node.

When an underloaded node is assigned a new hash value, it manages part of the hash space of

the existing node and migrates the data. Equation (8) is used to adjust the hash range when the

removed underloaded node is added. Here, kH is the hash value of the added underloaded node,

kN , and jN is the hash range of the node, jN , with the highest load. For example, if 2N is the

Figure 9. Deleting the hash value of an underloaded node.

Equation (7) is used to delete the hash value of an underloaded node with the low load in
a distributed environment. The loads of the neighbor nodes on both sides of the underloaded node are
compared and then the hash space of the underloaded node is distributed to those nodes. Here, Hp is
the hash space of the predecessor node, Np; NLi is the load on node Ni; NL j is the load on the adjacent
node, N j, of node Ni; and |Sk| is the hash space of the node to be removed. For example, if the hash
space managed by N3 is 501–1000, the load on N1 is 20, and the load on N2 is 30; N1 additionally
manages the hash space of 501–800 among the hash space of N3, and N2 additionally manages the
hash space of 801–1000 for the load balancing:

Hp =
NL j

NLi + NL j
× |Sk| (7)

Figure 10 shows the added underloaded node with the deleted hashed value for reducing the
load on the node with the highest overload. The underloaded node is assigned a hash value as the
predecessor node of the overloaded node with the highest load node to reduce the load. If N2 is
an overloaded node, the underloaded node, N3, with a deleted hash value is assigned a hash value as
the predecessor node of N2, and the hash space and data are distributed for load balancing.

Electronics 2019, 8, x FOR PEER REVIEW 11 of 24

An overloaded node may occur due to uniform access to the data held by the node rather than

frequent access to its specific data. In this case, the load can be distributed by adjusting the hash

spaces and by performing data migration. In the proposed scheme, the node with the lowest load is

selected and its hash value is deleted. In this instance, the hash space managed by the underloaded

node is adjusted and distributed by considering the loads of the predecessor node and the successor

node. The underloaded node with the deleted hash value is assigned a hash value as the predecessor

node of the node with the largest load node to reduce the load of the overloaded node.

Figure 9 shows the procedure of deleting the hash value of the underloaded node with the lowest

load. To remove the underloaded node from the distributed environment, the managed hash space

is distributed considering the loads of the predecessor node and the successor node. The hash space

is distributed to the predecessor node and the successor node as the load increases significantly for

the successor node if it manages all the hash space. For example, if 3N is a node with the lowest

load, the hash value of 3N is deleted and the hash space and data of 3N are distributed to the

predecessor node, 1N , and the successor node, 2N .

Figure 9. Deleting the hash value of an underloaded node.

Equation (7) is used to delete the hash value of an underloaded node with the low load in a

distributed environment. The loads of the neighbor nodes on both sides of the underloaded node are

compared and then the hash space of the underloaded node is distributed to those nodes. Here, pH

is the hash space of the predecessor node, pN ; iNL is the load on node iN ; jNL is the load on the

adjacent node, jN , of node iN ; and kS is the hash space of the node to be removed. For example,

if the hash space managed by 3N is 501–1000, the load on 1N is 20, and the load on 2N is 30; 1N

additionally manages the hash space of 501–800 among the hash space of 3N , and 2N additionally

manages the hash space of 801–1000 for the load balancing:

k
ji

j
p S

NLNL

NL
H 


 (7)

Figure 10 shows the added underloaded node with the deleted hashed value for reducing the

load on the node with the highest overload. The underloaded node is assigned a hash value as the

predecessor node of the overloaded node with the highest load node to reduce the load. If 2N is an

overloaded node, the underloaded node, 3N , with a deleted hash value is assigned a hash value as

the predecessor node of 2N , and the hash space and data are distributed for load balancing.

Figure 10. Assigning a hash value to the underloaded node.

When an underloaded node is assigned a new hash value, it manages part of the hash space of

the existing node and migrates the data. Equation (8) is used to adjust the hash range when the

removed underloaded node is added. Here, kH is the hash value of the added underloaded node,

kN , and jN is the hash range of the node, jN , with the highest load. For example, if 2N is the

Figure 10. Assigning a hash value to the underloaded node.

When an underloaded node is assigned a new hash value, it manages part of the hash space of the
existing node and migrates the data. Equation (8) is used to adjust the hash range when the removed
underloaded node is added. Here, Hk is the hash value of the added underloaded node, Nk, and

∣∣∣N j
∣∣∣ is

Electronics 2019, 8, 546 12 of 24

the hash range of the node, N j, with the highest load. For example, if N2 is the node with the highest
load and manages the hash range of 0–1,000, the underloaded node, N3, is added as the predecessor
node of N2 and manages 0–500, half of the hash space of N2. The load of the existing overloaded
node is reduced by the newly added node, which manages part of the hash space of the node with the
highest load:

Nk =

∣∣∣N j
∣∣∣

2
(8)

After the load balancing through data migration, it is necessary to examine the load status of the
overloaded node and confirm whether the distribution has been performed well. Equation (9) calculates
the load of the overloaded node after the data migration. The load of the overloaded node has been
reduced by the load of the migrated data. Here, MNLi is the load of the node, Ni, after data migration;
NLi is the load of the node, Ni, before data migration; k is the number of the migrated data; and DLm

is the load of the migrated data, m. The load status of the node is examined through the load value
calculated after the data migration, and then, the load status of the node is determined based on the
calculated value:

MNLi = NLi −

k∑
m=1

DLm (9)

3.6. Load Balancing by Node Addition and Removal

In distributed environments, when a new node is added or a node is removed due to a failure,
the data must be redistributed to the distributed nodes. If all the data is redistributed due to the
addition or removal of a node, a load occurs on the entire system, resulting in delays in processing
user requests. When a node is added or removed, the ring-based hashing scheme does not redistribute
all data, but redistributes only some data by adjusting the hash space that needs to be managed by
other neighbor nodes. This reduces the overall system load.

In the proposed scheme, the hash spaces are adjusted by considering the load status of the nodes
when a node is added or removed using the ring-based hashing scheme. When a node is added,
the new node is added at the position of the predecessor node of the overloaded node to reduce the load
on the node with the highest overload. When a node is removed in the existing scheme, the successor
node of the removed node manages the hash space of the removed node. In this case, the load on the
successor node increases significantly. In the proposed scheme, the hash space of the removed node is
distributed to the predecessor node and the successor node considering their load status.

Figure 11 shows the procedure of adding a new node. The added node is added as the predecessor
node of the node with the highest load among all the nodes, thereby reducing the load of the node
with the highest load. For example, if N3 is newly added, it is added as the predecessor node of N2

with the highest load, and it reduces the load on N2 by migrating the hash space and data. The new
node has 50% of the hash space of the node with the highest load, and the data contained in the hash
space of the new node is migrated from the existing node. The hash value of the newly added node is
calculated using Equation (7).

Electronics 2019, 8, x FOR PEER REVIEW 12 of 24

node with the highest load and manages the hash range of 0–1,000, the underloaded node, 3N , is

added as the predecessor node of 2N and manages 0–500, half of the hash space of 2N . The load of

the existing overloaded node is reduced by the newly added node, which manages part of the hash

space of the node with the highest load:

2

j
k

N
N  (8)

After the load balancing through data migration, it is necessary to examine the load status of the

overloaded node and confirm whether the distribution has been performed well. Equation (9)

calculates the load of the overloaded node after the data migration. The load of the overloaded node

has been reduced by the load of the migrated data. Here, iMNL is the load of the node, iN , after data

migration; iNL is the load of the node, iN , before data migration; k is the number of the migrated

data; and mDL is the load of the migrated data, m . The load status of the node is examined through

the load value calculated after the data migration, and then, the load status of the node is determined

based on the calculated value:





k

m
mii DLNLMNL

1
 (9)

3.6. Load Balancing by Node Addition and Removal

In distributed environments, when a new node is added or a node is removed due to a failure,

the data must be redistributed to the distributed nodes. If all the data is redistributed due to the

addition or removal of a node, a load occurs on the entire system, resulting in delays in processing

user requests. When a node is added or removed, the ring-based hashing scheme does not

redistribute all data, but redistributes only some data by adjusting the hash space that needs to be

managed by other neighbor nodes. This reduces the overall system load.

In the proposed scheme, the hash spaces are adjusted by considering the load status of the nodes

when a node is added or removed using the ring-based hashing scheme. When a node is added, the

new node is added at the position of the predecessor node of the overloaded node to reduce the load

on the node with the highest overload. When a node is removed in the existing scheme, the successor

node of the removed node manages the hash space of the removed node. In this case, the load on the

successor node increases significantly. In the proposed scheme, the hash space of the removed node

is distributed to the predecessor node and the successor node considering their load status.

Figure 11 shows the procedure of adding a new node. The added node is added as the

predecessor node of the node with the highest load among all the nodes, thereby reducing the load

of the node with the highest load. For example, if 3N is newly added, it is added as the predecessor

node of 2N with the highest load, and it reduces the load on 2N by migrating the hash space and

data. The new node has 50% of the hash space of the node with the highest load, and the data

contained in the hash space of the new node is migrated from the existing node. The hash value of

the newly added node is calculated using Equation (7).

Figure 11. Node addition.

Figure 12 shows the procedure of removing a node. If the node is removed, the successor node

manages the hash space of the removed node. The successor node of the removed node then manages

more hash space, and its amount of data increases, resulting in an increased load. To address this

Figure 11. Node addition.

Figure 12 shows the procedure of removing a node. If the node is removed, the successor node
manages the hash space of the removed node. The successor node of the removed node then manages
more hash space, and its amount of data increases, resulting in an increased load. To address this

Electronics 2019, 8, 546 13 of 24

problem, the hash spaces of the predecessor node and the successor node of the removed node are
adjusted considering their load status. When the node, N3, is removed, N2, the predecessor node of
N3, and N1, the successor node, divide and manage the hash space of N3. When a node is removed,
the hash values of the predecessor node and the successor node are calculated using Equation (6).

Electronics 2019, 8, x FOR PEER REVIEW 13 of 24

problem, the hash spaces of the predecessor node and the successor node of the removed node are

adjusted considering their load status. When the node, 3N , is removed, 2N , the predecessor node

of 3N , and 1N , the successor node, divide and manage the hash space of 3N . When a node is

removed, the hash values of the predecessor node and the successor node are calculated using

Equation (6).

Figure 12. Node removal.

3.7. Metadata Synchronization of Hot Data

In the distributed environments, the nodes that hold the data are accessed through the load

balancer. If the data requests an increase, however, the load on the load balancer increases and its

performance is degraded, lowering the overall system performance. In addition, as clients request

data to the nodes, the data used by the nodes are changed, and the metadata information of the hot

data managed by the load balancer is also modified. In this instance, if the metadata information of

the hot data held by the clients differs from that of the load balancer, it is highly probable that

incorrect accesses are performed upon data requests. The probability of incorrect accesses is lowered

by organically adjusting the communication cycle (τ) of each client, and by updating the hot data

metadata information of the clients. As each client directly accesses the nodes without going through

the load balancer, the time required to access the hot data is reduced.

Figure 13 represents the update of the hot data metadata according to the communication cycle.

The client #1 organically communicates with the load balancer at every communication cycle (τ) and

updates its hot data metadata information. The communication cycle (τ) with the load balancer for

the hot data update of the client is determined according to the update rate of the metadata updated

by the load balancer. If the update rate of the client exceeds the threshold value, the load balancer

updates the metadata of the client. This is because the old metadata information held by the client is

replaced with the up-to-date metadata information of the load balancer. If the update rate is lower

than the threshold value, the metadata information of the load balancer is updated. As the clients and

the load balancer update and synchronize hot data metadata through an organic communication

cycle, when client #1 requests 1D , it can directly access the node and obtain 1D without going

through the load balancer, thereby reducing the unnecessary processing time.

Figure 13. Update of the hot data metadata according to the communication cycle.

Figure 12. Node removal.

3.7. Metadata Synchronization of Hot Data

In the distributed environments, the nodes that hold the data are accessed through the load
balancer. If the data requests an increase, however, the load on the load balancer increases and its
performance is degraded, lowering the overall system performance. In addition, as clients request
data to the nodes, the data used by the nodes are changed, and the metadata information of the hot
data managed by the load balancer is also modified. In this instance, if the metadata information
of the hot data held by the clients differs from that of the load balancer, it is highly probable that
incorrect accesses are performed upon data requests. The probability of incorrect accesses is lowered
by organically adjusting the communication cycle (τ) of each client, and by updating the hot data
metadata information of the clients. As each client directly accesses the nodes without going through
the load balancer, the time required to access the hot data is reduced.

Figure 13 represents the update of the hot data metadata according to the communication cycle.
The client #1 organically communicates with the load balancer at every communication cycle (τ) and
updates its hot data metadata information. The communication cycle (τ) with the load balancer for
the hot data update of the client is determined according to the update rate of the metadata updated
by the load balancer. If the update rate of the client exceeds the threshold value, the load balancer
updates the metadata of the client. This is because the old metadata information held by the client is
replaced with the up-to-date metadata information of the load balancer. If the update rate is lower
than the threshold value, the metadata information of the load balancer is updated. As the clients and
the load balancer update and synchronize hot data metadata through an organic communication cycle,
when client #1 requests D1, it can directly access the node and obtain D1 without going through the
load balancer, thereby reducing the unnecessary processing time.

Electronics 2019, 8, x FOR PEER REVIEW 13 of 24

problem, the hash spaces of the predecessor node and the successor node of the removed node are

adjusted considering their load status. When the node, 3N , is removed, 2N , the predecessor node

of 3N , and 1N , the successor node, divide and manage the hash space of 3N . When a node is

removed, the hash values of the predecessor node and the successor node are calculated using

Equation (6).

Figure 12. Node removal.

3.7. Metadata Synchronization of Hot Data

In the distributed environments, the nodes that hold the data are accessed through the load

balancer. If the data requests an increase, however, the load on the load balancer increases and its

performance is degraded, lowering the overall system performance. In addition, as clients request

data to the nodes, the data used by the nodes are changed, and the metadata information of the hot

data managed by the load balancer is also modified. In this instance, if the metadata information of

the hot data held by the clients differs from that of the load balancer, it is highly probable that

incorrect accesses are performed upon data requests. The probability of incorrect accesses is lowered

by organically adjusting the communication cycle (τ) of each client, and by updating the hot data

metadata information of the clients. As each client directly accesses the nodes without going through

the load balancer, the time required to access the hot data is reduced.

Figure 13 represents the update of the hot data metadata according to the communication cycle.

The client #1 organically communicates with the load balancer at every communication cycle (τ) and

updates its hot data metadata information. The communication cycle (τ) with the load balancer for

the hot data update of the client is determined according to the update rate of the metadata updated

by the load balancer. If the update rate of the client exceeds the threshold value, the load balancer

updates the metadata of the client. This is because the old metadata information held by the client is

replaced with the up-to-date metadata information of the load balancer. If the update rate is lower

than the threshold value, the metadata information of the load balancer is updated. As the clients and

the load balancer update and synchronize hot data metadata through an organic communication

cycle, when client #1 requests 1D , it can directly access the node and obtain 1D without going

through the load balancer, thereby reducing the unnecessary processing time.

Figure 13. Update of the hot data metadata according to the communication cycle. Figure 13. Update of the hot data metadata according to the communication cycle.

Electronics 2019, 8, 546 14 of 24

If the organic cache metadata update policy is not applied, when the user requests D1, client #1
retrieves its metadata and accesses the node to obtain D1. If D1 is not present in the node due to data
replacement, however, client #1 must communicate with the load balancer to determine the location
where D1 is stored and request D1. When this problem occurs, it takes a long time to access the data if
the hot data metadata of the load balancer and that of the client are not synchronized.

Figure 14 shows the algorithm for the hot data metadata synchronization of the client. The load
balancer updates the metadata for the hot data and calculates the update rate of the metadata through
Equation (10) at each communication cycle. At this time, t represents the time of updating the metadata,
URt represents the renewal rate at time t of the metadata, NUMt represents the number of metadata
updated at time t, and NMt represents the number of metadata held by the client at time t. If the
renewal rate is above the threshold, the client’s metadata through metadata synchronization is updated

Electronics 2019, 8, x FOR PEER REVIEW 14 of 24

If the organic cache metadata update policy is not applied, when the user requests 1D , client #1

retrieves its metadata and accesses the node to obtain 1D . If 1D is not present in the node due to data

replacement, however, client #1 must communicate with the load balancer to determine the location

where 1D is stored and request 1D . When this problem occurs, it takes a long time to access the data

if the hot data metadata of the load balancer and that of the client are not synchronized.

Figure 14 shows the algorithm for the hot data metadata synchronization of the client. The load

balancer updates the metadata for the hot data and calculates the update rate of the metadata through

Equation (10) at each communication cycle. At this time, t represents the time of updating the

metadata, tUR represents the renewal rate at time t of the metadata, tNUM represents the number

of metadata updated at time t, and tNM represents the number of metadata held by the client at

time t. If the renewal rate is above the threshold, the client’s metadata through metadata

synchronization is updated

Figure 14. Client hot data metadata synchronization algorithm.

t

t
t

NM

NUM
UR  (10)

4. Performance Evaluation

4.1. Evaluation Environment

To verify the effectiveness of the proposed load balancing scheme, various performance

evaluations were conducted using the existing load balancing schemes. For the performance

evaluation, a simulation was performed using a Java program on a PC using an Intel(R) Core(TM) i5-

4440 CPU, 3.10 GHz, RAM 8.00 GB, and Microsoft Window 7 64-bit operating system. Table 1 shows

the performance evaluation parameters. The number of initial nodes was 4–16, the memory size of

each node was 16–256 MB, the number of replicas was 3, the load of the nodes was 30–80, and the

number of data requests was 1000–5000. For convenience, the scheme proposed in [33] is called

Adaptive Performance Aware (APA). The APA calculates the costs of the nodes based on their hit

rates and usage rates, and distributes the load by adjusting the hash spaces based on the calculated

values [33]. The R-Memcached considers the hot data that causes a high load on a node and

distributes the load by replicating the hot data to other nodes [34]. Both schemes distribute the load

considering only one feature when the load is unbalanced. The performance evaluation was

conducted using APA and R-Memcached, which are considered as representative load balancing

schemes.

Figure 14. Client hot data metadata synchronization algorithm.

URt =
NUMt

NMt
(10)

4. Performance Evaluation

4.1. Evaluation Environment

To verify the effectiveness of the proposed load balancing scheme, various performance evaluations
were conducted using the existing load balancing schemes. For the performance evaluation, a simulation
was performed using a Java program on a PC using an Intel(R) Core(TM) i5-4440 CPU, 3.10 GHz,
RAM 8.00 GB, and Microsoft Window 7 64-bit operating system. Table 1 shows the performance
evaluation parameters. The number of initial nodes was 4–16, the memory size of each node was
16–256 MB, the number of replicas was 3, the load of the nodes was 30–80, and the number of
data requests was 1000–5000. For convenience, the scheme proposed in [33] is called Adaptive
Performance Aware (APA). The APA calculates the costs of the nodes based on their hit rates and
usage rates, and distributes the load by adjusting the hash spaces based on the calculated values [33].
The R-Memcached considers the hot data that causes a high load on a node and distributes the load by
replicating the hot data to other nodes [34]. Both schemes distribute the load considering only one
feature when the load is unbalanced. The performance evaluation was conducted using APA and
R-Memcached, which are considered as representative load balancing schemes.

Electronics 2019, 8, 546 15 of 24

Table 1. Performance evaluation parameters.

Parameter Value

of initial nodes (n) 4–16
memory size (MB) 16–256

of replicas (n) 3
the load of the nodes 30–80

of queries (n) 1000–5000

To verify the success of the proposed scheme, the performances, including the load balancer
access frequency, the node access frequency, and the query execution time, were compared with APA
and R-Memcached. The number of query requests and the number of nodes were changed during
this comparison. In the performance evaluation, the query processing time was measured while the
number of nodes and the number of query requests were changed. The load balancer access and node
access frequencies were measured while the number of query requests was changed.

4.2. Self-Performance Evaluation

The existing load balancing schemes distribute the load using either the replication method or the
migration method. When only one method was used, it could not solve the overload problems caused
by various issues. Therefore, in order to prove that the scheme that uses both replication and migration
is superior to the schemes that use only one method, a performance comparison was carried out.
For the performance comparison using the proposed scheme, the query processing time was measured
using replication, migration, and replication+migration while the number of nodes was changed.
Figure 15 shows the measured query execution times according to the number of nodes. When the
number of queries is 5000, the execution time was measured while the number of nodes was changed.
Since the load balancing is performed using either replication or migration, load imbalance problems
that occur in various situations could not be addressed. The load balancing scheme, which combines
data replication and migration, addresses the load imbalance due to node performance and hot data,
thus providing better performance than schemes using only data replication or data migration. In terms
of the query processing time, the replication+migration scheme was improved by up to 21% over data
migration only and by up to 16% over data replication only.

Electronics 2019, 8, x FOR PEER REVIEW 15 of 24

Table 1. Performance evaluation parameters.

Parameter Value

of initial nodes (n) 4–16

memory size (MB) 16–256

of replicas (n) 3

the load of the nodes 30–80

of queries (n) 1000–5000

To verify the success of the proposed scheme, the performances, including the load balancer

access frequency, the node access frequency, and the query execution time, were compared with APA

and R-Memcached. The number of query requests and the number of nodes were changed during

this comparison. In the performance evaluation, the query processing time was measured while the

number of nodes and the number of query requests were changed. The load balancer access and node

access frequencies were measured while the number of query requests was changed.

4.2. Self-Performance Evaluation

The existing load balancing schemes distribute the load using either the replication method or

the migration method. When only one method was used, it could not solve the overload problems

caused by various issues. Therefore, in order to prove that the scheme that uses both replication and

migration is superior to the schemes that use only one method, a performance comparison was

carried out. For the performance comparison using the proposed scheme, the query processing time

was measured using replication, migration, and replication+migration while the number of nodes

was changed. Figure 15 shows the measured query execution times according to the number of nodes.

When the number of queries is 5000, the execution time was measured while the number of nodes

was changed. Since the load balancing is performed using either replication or migration, load

imbalance problems that occur in various situations could not be addressed. The load balancing

scheme, which combines data replication and migration, addresses the load imbalance due to node

performance and hot data, thus providing better performance than schemes using only data

replication or data migration. In terms of the query processing time, the replication+migration

scheme was improved by up to 21% over data migration only and by up to 16% over data replication

only.

Figure 15. Query processing time according to the number of nodes.

To demonstrate the effectiveness of the scheme that uses replication+migration even when the

number of query requests is changed, the query processing time was measured using replication,

migration, and replication+migration. Figure 16 shows the measured query execution times

according to the number of query requests. When the number of initial nodes is 8, the execution time

Figure 15. Query processing time according to the number of nodes.

To demonstrate the effectiveness of the scheme that uses replication+migration even when the
number of query requests is changed, the query processing time was measured using replication,
migration, and replication+migration. Figure 16 shows the measured query execution times according

Electronics 2019, 8, 546 16 of 24

to the number of query requests. When the number of initial nodes is 8, the execution time was measured
while the number of query requests was changed. As the proposed scheme combines replication and
migration to address the load imbalance problems that occur due to various causes, such as hot data
or node performance, it showed better performance than the schemes that use either replication or
migration even if the number of query requests was changed. The results of the performance evaluation
revealed that the scheme that used replication+migration showed a maximum 15% reduction in the
query processing time compared to the scheme that used migration, and a maximum 13% reduction
compared to the scheme that used replication.

Electronics 2019, 8, x FOR PEER REVIEW 16 of 24

was measured while the number of query requests was changed. As the proposed scheme combines

replication and migration to address the load imbalance problems that occur due to various causes,

such as hot data or node performance, it showed better performance than the schemes that use either

replication or migration even if the number of query requests was changed. The results of the

performance evaluation revealed that the scheme that used replication+migration showed a

maximum 15% reduction in the query processing time compared to the scheme that used migration,

and a maximum 13% reduction compared to the scheme that used replication.

Figure 16. Query processing time according to the number of query requests.

4.3. Load Balancer Access Frequency

The existing schemes obtained data from the nodes through the load balancer. When the load is

concentrated on the load balancer, however, the load balancer is overloaded. Therefore, it is

important to reduce the load on the load balancer. The load balancer access frequency was measured

to show that the access to the load balancer was reduced. To compare the load balancer access

frequencies according to the user requests, the load balancer access frequency was measured

according to the user requests. Figure 17 shows the measured load balancer access frequencies

according to the number of query requests. When the number of initial nodes is 8, the load balancer

access frequency was measured while the number of query requests was changed between 1000 and

5000. For all cases in which APA and R-Memcached users request data, the corresponding node is

accessed through the load balancer. If the load is concentrated on the load balancer, the load balancer

can be overloaded, lowering the overall performance. In the proposed scheme, however, the load

balancer manages the hot data metadata, and periodically synchronizes the metadata with the clients.

Therefore, when a client accesses the hot data, it directly accesses the node without going through

the load balancer, and rapidly requests the data. It also reduces access to the load balancer to prevent

the overload of the load balancer. As the amount of hot data increases with the number of query

requests, the load balancer access frequency decreases further. The results of the performance

evaluation revealed that the proposed scheme showed a maximum 24% reduction in the load

balancer access frequency compared to APA and R-Memcached.

Figure 16. Query processing time according to the number of query requests.

4.3. Load Balancer Access Frequency

The existing schemes obtained data from the nodes through the load balancer. When the load is
concentrated on the load balancer, however, the load balancer is overloaded. Therefore, it is important
to reduce the load on the load balancer. The load balancer access frequency was measured to show that
the access to the load balancer was reduced. To compare the load balancer access frequencies according
to the user requests, the load balancer access frequency was measured according to the user requests.
Figure 17 shows the measured load balancer access frequencies according to the number of query
requests. When the number of initial nodes is 8, the load balancer access frequency was measured while
the number of query requests was changed between 1000 and 5000. For all cases in which APA and
R-Memcached users request data, the corresponding node is accessed through the load balancer. If the
load is concentrated on the load balancer, the load balancer can be overloaded, lowering the overall
performance. In the proposed scheme, however, the load balancer manages the hot data metadata,
and periodically synchronizes the metadata with the clients. Therefore, when a client accesses the hot
data, it directly accesses the node without going through the load balancer, and rapidly requests the
data. It also reduces access to the load balancer to prevent the overload of the load balancer. As the
amount of hot data increases with the number of query requests, the load balancer access frequency
decreases further. The results of the performance evaluation revealed that the proposed scheme showed
a maximum 24% reduction in the load balancer access frequency compared to APA and R-Memcached.

Electronics 2019, 8, 546 17 of 24
Electronics 2019, 8, x FOR PEER REVIEW 17 of 24

Figure 17. Load balancer access frequency according to the number of query requests.

To demonstrate that the load balancer access frequency decreases even when the number of

nodes is changed, a performance evaluation was conducted using the existing schemes while the

number of nodes was changed. Figure 18 shows the measured load balancer access frequencies

according to the number of nodes. As the number of nodes increased, the overall memory size

increased, and a large amount of data could be stored. In APA and R-Memcached, the load balancer

manages all metadata, so the load balancer needs to be accessed each time for data access. As a result,

an increase in the number of nodes does not change the rate of access to the load balancer. The

proposed scheme compares the update rate of the metadata and if the metadata changes above the

threshold, the client updates the metadata through synchronization with the load balancer. As the

number of nodes increases, the stored data increases, which increases the change in hot data.

Therefore, as the number of nodes increases, the client stores the latest metadata, which can reduce

the access frequency of the load balancer. The results of the performance evaluation showed that the

proposed scheme demonstrates a maximum 33% reduction in the load balancer access frequency

compared to APA and R-Memcached.

Figure 18. Load balancer access frequency according to the number of nodes.

4.4. Node Access Frequency

If the load is concentrated on a specific node, the node is overloaded and the performance of the

system is degraded. Therefore, it is important to evenly distribute the load to the nodes. To show that

the access is evenly distributed to the nodes, the access frequency was measured while the number

Figure 17. Load balancer access frequency according to the number of query requests.

To demonstrate that the load balancer access frequency decreases even when the number of nodes
is changed, a performance evaluation was conducted using the existing schemes while the number of
nodes was changed. Figure 18 shows the measured load balancer access frequencies according to the
number of nodes. As the number of nodes increased, the overall memory size increased, and a large
amount of data could be stored. In APA and R-Memcached, the load balancer manages all metadata,
so the load balancer needs to be accessed each time for data access. As a result, an increase in the
number of nodes does not change the rate of access to the load balancer. The proposed scheme
compares the update rate of the metadata and if the metadata changes above the threshold, the client
updates the metadata through synchronization with the load balancer. As the number of nodes
increases, the stored data increases, which increases the change in hot data. Therefore, as the number of
nodes increases, the client stores the latest metadata, which can reduce the access frequency of the load
balancer. The results of the performance evaluation showed that the proposed scheme demonstrates
a maximum 33% reduction in the load balancer access frequency compared to APA and R-Memcached.

Electronics 2019, 8, x FOR PEER REVIEW 17 of 24

Figure 17. Load balancer access frequency according to the number of query requests.

To demonstrate that the load balancer access frequency decreases even when the number of

nodes is changed, a performance evaluation was conducted using the existing schemes while the

number of nodes was changed. Figure 18 shows the measured load balancer access frequencies

according to the number of nodes. As the number of nodes increased, the overall memory size

increased, and a large amount of data could be stored. In APA and R-Memcached, the load balancer

manages all metadata, so the load balancer needs to be accessed each time for data access. As a result,

an increase in the number of nodes does not change the rate of access to the load balancer. The

proposed scheme compares the update rate of the metadata and if the metadata changes above the

threshold, the client updates the metadata through synchronization with the load balancer. As the

number of nodes increases, the stored data increases, which increases the change in hot data.

Therefore, as the number of nodes increases, the client stores the latest metadata, which can reduce

the access frequency of the load balancer. The results of the performance evaluation showed that the

proposed scheme demonstrates a maximum 33% reduction in the load balancer access frequency

compared to APA and R-Memcached.

Figure 18. Load balancer access frequency according to the number of nodes.

4.4. Node Access Frequency

If the load is concentrated on a specific node, the node is overloaded and the performance of the

system is degraded. Therefore, it is important to evenly distribute the load to the nodes. To show that

the access is evenly distributed to the nodes, the access frequency was measured while the number

Figure 18. Load balancer access frequency according to the number of nodes.

4.4. Node Access Frequency

If the load is concentrated on a specific node, the node is overloaded and the performance of the
system is degraded. Therefore, it is important to evenly distribute the load to the nodes. To show that
the access is evenly distributed to the nodes, the access frequency was measured while the number
of query requests were changed. To compare the node access frequencies according to the number

Electronics 2019, 8, 546 18 of 24

of query requests, the node access frequencies were measured and their standard deviations were
calculated. The node access frequency means the number of memory accesses when processing a query
in the node. Figure 19 shows the measured node access frequencies according to the number of query
requests. The node access frequency was measured while the number of query requests was changed
between 1000 and 5000. Figure 19a shows the node access frequency when performing 1000 queries.
The difference in the number of accesses by the node was 87 for APA and 99 for R-Memcached,
which gave APA good load balancing performance. The proposed scheme achieved the best load
balancing performance over the existing schemes since the maximum difference of the access frequency
by the node is 54. Figure 19b–e show the node access frequency when performing 2000 queries,
3000 queries, 4000 queries, and 5000 queries, respectively. The performance evaluation results of
Figure 19b–e are similar to those of Figure 19a. As a result, the performance evaluations according to
the number of query requests resulted in APA achieving a better performance than R-Memcached and
the best load balancing performance of the proposed scheme. In the case of APA, the costs of the nodes
are calculated and the hash spaces of the nodes are adjusted using the calculated values. When the
load of the neighbor node is high, however, the overload problem cannot be addressed because the
adjustment amounts of the hash spaces are low. Furthermore, when hot data exists, a large amount of
data is migrated, causing a considerable migration cost. R-Memcached replicates the hot data to two
of the successor nodes to distribute the load. When a node is deleted, however, overlapping hot data
can be stored in one node, thereby rapidly increasing the load on a specific node again. In addition,
this scheme does not propose any load balancing method for cases where hot data does not exist in the
overloaded node. Therefore, when there is no hot data, the load cannot be distributed. In the proposed
scheme, however, when an overloaded node occurs, load balancing methods are proposed according
to the situations. If there is any hot data, it divides the hash space evenly and replicates the hot data
evenly to the nodes, thereby preventing overlapping hot data from being stored in one node when
a node is deleted. If there is no hot data, the load is distributed by adjusting the hash spaces based on
the loads of the nodes.

Electronics 2019, 8, x FOR PEER REVIEW 18 of 24

of query requests were changed. To compare the node access frequencies according to the number of

query requests, the node access frequencies were measured and their standard deviations were

calculated. The node access frequency means the number of memory accesses when processing a

query in the node. Figure 19 shows the measured node access frequencies according to the number

of query requests. The node access frequency was measured while the number of query requests was

changed between 1000 and 5000. Figure 19a shows the node access frequency when performing 1000

queries. The difference in the number of accesses by the node was 87 for APA and 99 for R-

Memcached, which gave APA good load balancing performance. The proposed scheme achieved the

best load balancing performance over the existing schemes since the maximum difference of the

access frequency by the node is 54. Figures 19b, 19c, 19d, and 19e show the node access frequency

when performing 2000 queries, 3000 queries, 4000 queries, and 5000 queries, respectively. The

performance evaluation results of Figures 19b, 19c, 19d, and 19e are similar to those of Figure 19a. As

a result, the performance evaluations according to the number of query requests resulted in APA

achieving a better performance than R-Memcached and the best load balancing performance of the

proposed scheme. In the case of APA, the costs of the nodes are calculated and the hash spaces of the

nodes are adjusted using the calculated values. When the load of the neighbor node is high, however,

the overload problem cannot be addressed because the adjustment amounts of the hash spaces are

low. Furthermore, when hot data exists, a large amount of data is migrated, causing a considerable

migration cost. R-Memcached replicates the hot data to two of the successor nodes to distribute the

load. When a node is deleted, however, overlapping hot data can be stored in one node, thereby

rapidly increasing the load on a specific node again. In addition, this scheme does not propose any

load balancing method for cases where hot data does not exist in the overloaded node. Therefore,

when there is no hot data, the load cannot be distributed. In the proposed scheme, however, when

an overloaded node occurs, load balancing methods are proposed according to the situations. If there

is any hot data, it divides the hash space evenly and replicates the hot data evenly to the nodes,

thereby preventing overlapping hot data from being stored in one node when a node is deleted. If

there is no hot data, the load is distributed by adjusting the hash spaces based on the loads of the

nodes.

(a)

Figure 19. Cont.

Electronics 2019, 8, 546 19 of 24Electronics 2019, 8, x FOR PEER REVIEW 19 of 24

(b)

(c)

(d)

Figure 19. Cont.

Electronics 2019, 8, 546 20 of 24Electronics 2019, 8, x FOR PEER REVIEW 20 of 24

(e)

Figure 19. Node access frequency according to the number of query requests. (a) 1000 queries. (b)

2000 queries. (c) 3000 queries. (d) 4000 queries. (e) 5000 queries.

Figure 20 compares the standard deviations of the node access frequency according to the

number of query requests. As shown in the figure, the standard deviations of the node access

frequency using the proposed scheme were the lowest compared to the existing schemes. Therefore,

it can be seen that the proposed scheme has more uniform node access than the existing schemes. The

results of the performance evaluation revealed that the proposed scheme showed a maximum 47%

reduction in the standard deviation of the node access frequency compared to APA and a maximum

57% reduction compared to R-Memcached.

Figure 20. Standard deviation of the node access frequency according to the number of query

requests.

4.5. Query Processing Time

It is important to process user queries rapidly in distributed systems. To demonstrate that the

proposed scheme has a better query processing time than the existing schemes, a performance

evaluation was conducted while the number of nodes and the number of query requests were varied.

To compare the query processing time between the existing schemes and the proposed scheme, the

query processing time was measured while the number of query requests was changed. Figure 21

Figure 19. Node access frequency according to the number of query requests. (a) 1000 queries. (b) 2000
queries. (c) 3000 queries. (d) 4000 queries. (e) 5000 queries.

Figure 20 compares the standard deviations of the node access frequency according to the number of
query requests. As shown in the figure, the standard deviations of the node access frequency using the
proposed scheme were the lowest compared to the existing schemes. Therefore, it can be seen that the
proposed scheme has more uniform node access than the existing schemes. The results of the performance
evaluation revealed that the proposed scheme showed a maximum 47% reduction in the standard deviation
of the node access frequency compared to APA and a maximum 57% reduction compared to R-Memcached.

Electronics 2019, 8, x FOR PEER REVIEW 20 of 24

(e)

Figure 19. Node access frequency according to the number of query requests. (a) 1000 queries. (b)

2000 queries. (c) 3000 queries. (d) 4000 queries. (e) 5000 queries.

Figure 20 compares the standard deviations of the node access frequency according to the

number of query requests. As shown in the figure, the standard deviations of the node access

frequency using the proposed scheme were the lowest compared to the existing schemes. Therefore,

it can be seen that the proposed scheme has more uniform node access than the existing schemes. The

results of the performance evaluation revealed that the proposed scheme showed a maximum 47%

reduction in the standard deviation of the node access frequency compared to APA and a maximum

57% reduction compared to R-Memcached.

Figure 20. Standard deviation of the node access frequency according to the number of query

requests.

4.5. Query Processing Time

It is important to process user queries rapidly in distributed systems. To demonstrate that the

proposed scheme has a better query processing time than the existing schemes, a performance

evaluation was conducted while the number of nodes and the number of query requests were varied.

To compare the query processing time between the existing schemes and the proposed scheme, the

query processing time was measured while the number of query requests was changed. Figure 21

Figure 20. Standard deviation of the node access frequency according to the number of query requests.

4.5. Query Processing Time

It is important to process user queries rapidly in distributed systems. To demonstrate that the proposed
scheme has a better query processing time than the existing schemes, a performance evaluation was
conducted while the number of nodes and the number of query requests were varied. To compare the query
processing time between the existing schemes and the proposed scheme, the query processing time was
measured while the number of query requests was changed. Figure 21 shows the query processing time
according to the number of query requests. The evaluation was performed while the number of query
requests was varied from 1000 to 5000. As mentioned in the previous performance evaluation, unlike APA

Electronics 2019, 8, 546 21 of 24

and R-Memcached, the clients retain the metadata information about the hot data in the proposed scheme
and they request the hot data directly to the node without going through the load balancer, resulting in
the fast node access speed. When an overloaded node occurs, APA uses the data migration method and
R-Memcached uses the data replication method. The proposed scheme, however, analyzes the root-cause
of the overloaded node. Based on the cause, if any hot data exists in the overloaded node, the data
replication method is used. If hot data does not exist, the data migration approach is used. The results of the
performance evaluation revealed that the proposed scheme showed a maximum 23% reduction in the query
processing time compared to APA, and a maximum 18% reduction compared to R-Memcached.

Electronics 2019, 8, x FOR PEER REVIEW 21 of 24

shows the query processing time according to the number of query requests. The evaluation was

performed while the number of query requests was varied from 1000 to 5000. As mentioned in the

previous performance evaluation, unlike APA and R-Memcached, the clients retain the metadata

information about the hot data in the proposed scheme and they request the hot data directly to the

node without going through the load balancer, resulting in the fast node access speed. When an

overloaded node occurs, APA uses the data migration method and R-Memcached uses the data

replication method. The proposed scheme, however, analyzes the root-cause of the overloaded node.

Based on the cause, if any hot data exists in the overloaded node, the data replication method is used.

If hot data does not exist, the data migration approach is used. The results of the performance

evaluation revealed that the proposed scheme showed a maximum 23% reduction in the query

processing time compared to APA, and a maximum 18% reduction compared to R-Memcached.

Figure 21. Query processing time according to the number of query requests.

To demonstrate the performance of the proposed scheme even when the number of nodes is

changed, the query processing time was measured according to the number of nodes. Figure 22

shows the query processing time according to the number of nodes. The evaluation was performed

using 5000 query requests. As mentioned earlier, unlike APA and R-Memcached, the clients in the

proposed scheme request the hot data directly to the node without going through the load balancer,

thereby rapidly accessing the data node. In addition, based on the cause of the overload, if any hot

data exists in the overloaded node, the data replication method is used. If hot data does not exist, the

data migration method is used. The proposed scheme showed a reduced query processing time

compared to the existing schemes even when the number of nodes was changed. The results of the

performance evaluation revealed that the proposed scheme showed a maximum 20% reduction in

the query processing time compared to APA, and a maximum 14% reduction compared to R-

Memcached.

Figure 21. Query processing time according to the number of query requests.

To demonstrate the performance of the proposed scheme even when the number of nodes is changed,
the query processing time was measured according to the number of nodes. Figure 22 shows the query
processing time according to the number of nodes. The evaluation was performed using 5000 query requests.
As mentioned earlier, unlike APA and R-Memcached, the clients in the proposed scheme request the hot
data directly to the node without going through the load balancer, thereby rapidly accessing the data node.
In addition, based on the cause of the overload, if any hot data exists in the overloaded node, the data
replication method is used. If hot data does not exist, the data migration method is used. The proposed
scheme showed a reduced query processing time compared to the existing schemes even when the number
of nodes was changed. The results of the performance evaluation revealed that the proposed scheme
showed a maximum 20% reduction in the query processing time compared to APA, and a maximum 14%
reduction compared to R-Memcached.Electronics 2019, 8, x FOR PEER REVIEW 22 of 24

Figure 22. Query processing time according to the number of nodes.

5. Conclusion

In this paper, we proposed a load balancing scheme considering the load characteristics of the

nodes in distributed in-memory environments. The proposed scheme allocates the initial nodes

considering the memory of the nodes. If an overloaded node occurs and hot data exists, it evenly

divides the hash space and replicates the hot data to each divided hash space. If hot data does not

exist, the hash space is adjusted based on the loads of the nodes. In addition, when a node is added

or removed in a cluster environment, the load is distributed by adjusting the hash spaces considering

the loads of the predecessor node and the successor node. Finally, the clients retain the metadata of

the hot data and periodically update the metadata by communicating with the load balancer, thereby

increasing the access efficiency to the hot data. This improves the load balancing performance of each

node, and thus, the load of each node can be distributed more effectively, and the node overload can

be reduced. As a result, the problem of the load being concentrated on a specific node due to popular

data or data that attracts people’s attention can be addressed more efficiently. This scheme can be

used to perform load balancing in structured file sharing systems that use memory or streaming

services. The results of the performance evaluation confirmed that the proposed scheme showed

better performance in the query processing time than the existing schemes. Compared to the existing

schemes, the load balancer access frequency was reduced by a maximum of 24%, and the standard

deviation of the node access frequency was decreased by a maximum of 57%. The query processing

time was reduced by a maximum of 23%.

Author Contributions: Conceptualization, K.B, K.C., D.C, J.L and J.Y.; methodology, K.B, K.C., D.C and J.L;

validation, K.C.; writing—original draft preparation, K.B and K.C.; supervision, J.Y.; writing—review and

editing, J.Y.

Funding: This work was supported by Institute of Information & Communications Technology Planning &

Evaluation (IITP) grant funded by the Korea government (MSIT) (No.B0101-15-0266, Development of High

Performance Visual BigData Discovery Platform for Large-Scale Realtime Data Analysis), by Next-Generation

Information Computing Development Program through the National Research Foundation of Korea (NRF)

funded by the Ministry of Science, ICT (No. NRF-2017M3C4A7069432), and by “Human Resources Program in

Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted

financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No. 20164030201330)

Conflicts of Interest: The authors declare no conflict of interest.

Reference

1. Gandomi, A.; Haider, M. Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag.

2015, 35, 137–144.

2. Khan, N.; Yaqoob, I.; Hashem, I.A.T.; Inayat, Z.; Ali, W.K.M.; Alam, M.; Shiraz, M.; Gani, A. Big Data:

Survey, Technologies, Opportunities, and Challenges. Sci. World J. 2014, 2014, 712826.

Figure 22. Query processing time according to the number of nodes.

Electronics 2019, 8, 546 22 of 24

5. Conclusions

In this paper, we proposed a load balancing scheme considering the load characteristics of the
nodes in distributed in-memory environments. The proposed scheme allocates the initial nodes
considering the memory of the nodes. If an overloaded node occurs and hot data exists, it evenly
divides the hash space and replicates the hot data to each divided hash space. If hot data does not
exist, the hash space is adjusted based on the loads of the nodes. In addition, when a node is added or
removed in a cluster environment, the load is distributed by adjusting the hash spaces considering
the loads of the predecessor node and the successor node. Finally, the clients retain the metadata
of the hot data and periodically update the metadata by communicating with the load balancer,
thereby increasing the access efficiency to the hot data. This improves the load balancing performance
of each node, and thus, the load of each node can be distributed more effectively, and the node overload
can be reduced. As a result, the problem of the load being concentrated on a specific node due to
popular data or data that attracts people’s attention can be addressed more efficiently. This scheme can
be used to perform load balancing in structured file sharing systems that use memory or streaming
services. The results of the performance evaluation confirmed that the proposed scheme showed
better performance in the query processing time than the existing schemes. Compared to the existing
schemes, the load balancer access frequency was reduced by a maximum of 24%, and the standard
deviation of the node access frequency was decreased by a maximum of 57%. The query processing
time was reduced by a maximum of 23%.

Author Contributions: Conceptualization, K.B., K.C., D.C., J.L. and J.Y.; methodology, K.B., K.C., D.C. and J.L.;
validation, K.C.; writing—original draft preparation, K.B. and K.C.; supervision, J.Y.; writing—review and editing, J.Y.

Funding: This work was supported by Institute of Information & Communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) (No.B0101-15-0266, Development of High
Performance Visual BigData Discovery Platform for Large-Scale Realtime Data Analysis), by Next-Generation
Information Computing Development Program through the National Research Foundation of Korea (NRF) funded
by the Ministry of Science, ICT (No. NRF-2017M3C4A7069432), and by “Human Resources Program in Energy
Technology” of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial
resource from the Ministry of Trade, Industry & Energy, Republic of Korea. (No. 20164030201330).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gandomi, A.; Haider, M. Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manag.
2015, 35, 137–144. [CrossRef]

2. Khan, N.; Yaqoob, I.; Hashem, I.A.T.; Inayat, Z.; Ali, W.K.M.; Alam, M.; Shiraz, M.; Gani, A. Big Data: Survey,
Technologies, Opportunities, and Challenges. Sci. World J. 2014, 2014, 712826. [CrossRef] [PubMed]

3. Chen, C.L.P.; Zhang, C. Data-intensive applications, challenges, techniques and technologies: A survey on
Big Data. Inf. Sci. 2014, 275, 314–347. [CrossRef]

4. Oussous, A.; Benjelloun, F.Z.; Lahcen, A.A.; Belfkih, S. Big Data technologies: A survey. J. King Saud Univ.-Comput.
Inf. Sci. 2018, 30, 431–448. [CrossRef]

5. Lv, Z.; Song, H.; Basanta-Val, P.; Steed, A.; Jo, M. Next-Generation Big Data Analytics: State of the Art,
Challenges, and Future Research Topics. IEEE Trans. Ind. Inform. 2017, 13, 1891–1899. [CrossRef]

6. Azzedin, F. Towards a scalable HDFS architecture. In Proceedings of the International Conference on
Collaboration Technologies and Systems, San Diego, CA, USA, 20–24 May 2013; pp. 155–161.

7. Rasooli, A.; Down, D.G. A Hybrid Scheduling Approach for Scalable Heterogeneous Hadoop Systems.
In Proceedings of the SC Companion: High Performance Computing, Networking, Storage and Analysis,
Salt Lake City, UT, USA, 10–16 November 2012; pp. 1284–1291.

8. Maneas, S.; Schroeder, B. The Evolution of the Hadoop Distributed File System. In Proceedings of the International
Conference on Advanced Information Networking and Applications Workshops, Krakow, Poland, 16–18 May 2018;
pp. 67–74.

9. Inoubli, W.; Aridhi, S.; Mezni, H.; Maddouri, M.; Nguifo, E.M. An experimental survey on big data
frameworks. Future Gener. Comput. Syst. 2018, 86, 546–564. [CrossRef]

http://dx.doi.org/10.1016/j.ijinfomgt.2014.10.007
http://dx.doi.org/10.1155/2014/712826
http://www.ncbi.nlm.nih.gov/pubmed/25136682
http://dx.doi.org/10.1016/j.ins.2014.01.015
http://dx.doi.org/10.1016/j.jksuci.2017.06.001
http://dx.doi.org/10.1109/TII.2017.2650204
http://dx.doi.org/10.1016/j.future.2018.04.032

Electronics 2019, 8, 546 23 of 24

10. Dong, B.; Zheng, Q.; Tian, F.; Chao, K.; Godwin, N.; Ma, T.; Xu, H. Performance models and dynamic
characteristics analysis for HDFS write and read operations: A systematic view. J. Syst. Softw. 2014, 93,
132–151. [CrossRef]

11. Bok, K.; Hwang, J.; Lim, J.; Kim, Y.; Yoo, J. An efficient MapReduce scheduling scheme for processing large
multimedia data. Multimed. Tools Appl. 2017, 76, 17273–17296. [CrossRef]

12. Tiwari, D.; Solihin, Y. MapReuse: Reusing Computation in an In-Memory MapReduce System. In Proceedings
of the International Parallel and Distributed Processing Symposium, Phoenix, AZ, USA, 19–23 May 2014;
pp. 61–71.

13. Wei, L.; Lian, W.; Liu, K.; Wang, Y. Hippo: An enhancement of pipeline-aware in-memory caching for HDFS.
In Proceedings of the International Conference on Computer Communication and Networks, Shanghai, China,
4–7 August 2014; pp. 1–5.

14. Zhang, J.; Wu, G.; Hu, X.; Wu, X. A Distributed Cache for Hadoop Distributed File System in Real-Time Cloud
Services. In Proceedings of the ACM/IEEE International Conference on Grid Computing, Beijing, China,
20–23 September 2012; pp. 12–21.

15. Han, Z.; Zhang, Y. Spark: A Big Data Processing Platform Based on Memory Computing. In Proceedings
of the International Symposium on Parallel Architectures, Algorithms and Programming, Nanjing, China,
12–14 December 2015; pp. 172–176.

16. Safaei, A.A. Real-time processing of streaming big data. Real-Time Syst. 2017, 53, 1–44. [CrossRef]
17. Hu, X.; Wang, X.; Zhou, L.; Luo, Y.; Ding, C.; Jiang, S.; Wang, Z. Optimizing Locality-Aware Memory

Management of Key-Value Caches. IEEE Trans. Comput. 2017, 66, 862–875. [CrossRef]
18. Cai, O.; Zhang, H.; Guo, W.; Chen, G.; Ooi, B.C.; Tan, K.; Wong, W. MemepiC: Towards a Unified In-Memory

Big Data Management System. IEEE Trans. Big Data 2019, 5, 4–17. [CrossRef]
19. Cheng, W.; Ren, F.; Jiang, W.; Zhang, T. Modeling and Analyzing Latency in the Memcached system.

In Proceedings of the International Conference on Distributed Computing Systems, Atlanta, GA, USA,
5–8 June 2017; pp. 538–548.

20. Issa, J.; Figueira, S. Hadoop and memcached: Performance and power characterization and analysis.
J. Cloud Comput. 2012, 1, 1–10. [CrossRef]

21. Liao, J.; Peng, X. A Data-Consistency Scheme for the Distributed-Cache Storage of the Memcached System.
J. Comput. Sci. Eng. 2017, 11, 92–99. [CrossRef]

22. Fitzpatrick, B. Distributed caching with memcached. Linux J. 2004, 2004, 5.
23. Nishtala, R.; Fugal, H.; Grimm, S.; Kwiatkowski, M.; Lee, H.; Li, H.C.; McElroy, R.; Paleczny, M.; Peek, D.;

Saab, P.; et al. Scaling Memcache at Facebook. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation, Lombard, IL, USA, 2–5 April 2013; pp. 385–398.

24. Hafeez, U.U.; Wajahat, M.; Gandhi, A. ElMem: Towards an Elastic Memcached System. In Proceedings of the
International Conference on Distributed Computing Systems, Vienna, Austria, 2–6 July 2018; pp. 278–289.

25. Zhao, S.; Shen, L.; Li, Y.; Stones, R.J.; Wang, G.; Liu, X. An Efficient Fault Tolerance Framework for Distributed
In-Memory Caching Systems. In Proceedings of the International Conference on Parallel and Distributed
Systems, Singapore, 11–13 December 2018; pp. 553–560.

26. Jyothi, M. Effective Load Balancing Technique and Memory Management in Cloud. Int. J. Res. Comput.
Commun. Technol. 2014, 3, 1246–1251.

27. Archer, A.; Aydin, K.; Bateni, M.; Mirrokni, V.S.; Schild, A.; Yang, R.; Zhuang, R. Cache-aware load balancing
of data center applications. Proc. VLDB Endow. 2019, 12, 709–723. [CrossRef]

28. Liu, Z.; Bai, Z.; Liu, Z.; Li, X.; Kim, C.; Braverman, V.; Jin, X.; Stoica, I. DistCache: Provable Load Balancing
for Large-Scale Storage Systems with Distributed Caching. In Proceedings of the USENIX Conference on File
and Storage Technologies, Boston, MA, USA, 25–28 February 2019; pp. 143–157.

29. Chen, S.; Zhou, X.; Zhou, G.; Sinnott, R.O. Distributed Data Load Balancing for Scalable Key-Value
Cache Systems. In Proceedings of the Conference on Advanced Computer Architecture, Yingkou, China,
10–11 August 2018; pp. 181–194.

30. Azqueta-Alzúaz, A.; Brondino, I.; Patiño-Martínez, M.; Jiménez-Peris, R. Load balancing for Key Value Data
Stores. In Proceedings of the International Conference on Extending Database Technology, Venice, Italy,
21–24 March 2017; pp. 506–509.

http://dx.doi.org/10.1016/j.jss.2014.02.038
http://dx.doi.org/10.1007/s11042-016-4026-6
http://dx.doi.org/10.1007/s11241-016-9257-0
http://dx.doi.org/10.1109/TC.2016.2618920
http://dx.doi.org/10.1109/TBDATA.2017.2789286
http://dx.doi.org/10.1186/2192-113X-1-10
http://dx.doi.org/10.5626/JCSE.2017.11.3.92
http://dx.doi.org/10.14778/3311880.3311887

Electronics 2019, 8, 546 24 of 24

31. Huq, S.; Shafiq, M.Z.; Ghosh, S.; Khakpour, A.R.; Bedi, H. Distributed Load Balancing in Key-Value
Networked Caches. In Proceedings of the International Conference on Distributed Computing Systems,
Atlanta, GA, USA, 5–8 June 2017; pp. 583–593.

32. Ban, Y.; Chen, H.; Wang, Z. EALARM: Enhanced Autonomic Load-Aware Resource Management for P2P
Key-Value Storage in Cloud. In Proceedings of the International Symposium on Service-Oriented System,
Engineering, San Francisco, CA, USA, 25–28 March 2013; pp. 150–155.

33. Hwang, J.; Wood, T. Adaptive performance-aware distributed memory caching. In Proceedings of the
International Conference on Autonomic Computing, San Jose, CA, USA, 26–28 June 2013; pp. 33–43.

34. Lu, Y.; Sun, H.; Wang, X.; Liu, X. R-Memcached: A consistent cache replication scheme with Memcached.
In Proceedings of the Middleware Posters & Demos Session, Bordeaux, France, 8–12 December 2014;
pp. 29–30.

35. Zhang, C.; Chen, H.; Gao, S. ALARM: Autonomic Load-Aware Resource Management for P2P Key-Value
Stores in Cloud. In Proceedings of the International Conference on Dependable, Autonomic and Secure
Computing, Sydney, Australia, 12–14 December 2011; pp. 404–410.

36. Zhang, W.; Hwang, J.; Wood, T.; Ramakrishnan, K.K.; Huang, H.H. Load balancing of heterogeneous
workloads in memcached clusters. In Proceedings of the International Workshop on Feedback Computing,
Philadelphia, PA, USA, 17 June 2014.

37. Bok, K.; Choi, K.; Lim, J.; Yoo, J. Load balancing scheme for supporting real-time processing of big data in
distributed in-memory systems. In Proceedings of the Conference on Research in Adaptive and Convergent
Systems, Honolulu, HI, USA, 9–12 October 2018; pp. 170–174.

38. Stoica, I.; Morris, R.; Liben-Nowell, D.; Karger, D.; Kaashoek, M.; Dabek, F.; Balakrishnan, H. Chord:
A scalable peer-to-peer lookup service for Internet applications. In Proceedings of the ACM SIGCOMM
Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication,
San Diego, CA, USA, 27–31 August 2001; pp. 149–160.

39. Yu, D.; Chen, X.; Chang, Y. An improved P2P model based on chord. In Proceedings of the International
Conference on Parallel and Distributed Computing Applications and Technologies, Dalian, China,
5–8 December 2005; pp. 807–811.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Proposed Load Balancing Scheme
	Architecture
	Initial Data Distribution
	Load Balancing Processing
	Load Balancing through Data Replication
	Load Balancing through Data Migration
	Load Balancing by Node Addition and Removal
	Metadata Synchronization of Hot Data

	Performance Evaluation
	Evaluation Environment
	Self-Performance Evaluation
	Load Balancer Access Frequency
	Node Access Frequency
	Query Processing Time

	Conclusions
	References

