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Abstract: We investigated a novel method for separating defects from the background for inspecting
display devices. Separation of defects has important applications such as determining whether the
detected defects are truly defective and the quantification of the degree of defectiveness. Although
many studies on estimating patterned background have been conducted, the existing studies are
mainly based on the approach of approximation by low-rank matrices. Because the conventional
methods face problems such as imperfect reconstruction and difficulty of selecting the bases for
low-rank approximation, we have studied a deep-learning-based foreground reconstruction method
that is based on the auto-encoder structure with a regression layer for the output. In the experimental
studies carried out using mobile display panels, the proposed method showed significantly improved
performance compared to the existing singular value decomposition method. We believe that
the proposed method could be useful not only for inspecting display devices but also for many
applications that involve the detection of defects in the presence of a textured background.

Keywords: defect separation; defect inspection; machine vision; deep learning; object detection

1. Introduction

Inspection of a display device for removing defective products is important for maintaining
quality during the manufacturing of display devices [1]. Despite the ongoing active research in
machine-vision-based inspection of display devices [2], the performance of the existing methods is
often unsatisfactory due to the presence of textured background caused by the display pixels [3].
In addition, the very small intensity difference between the defects and the textured background makes
the inspection more difficult.

In fact, defect detection in textured background has been studied actively because there are
several applications which requires such method [3-6]. For example, a thin film transistor panel
contains horizontal and vertical gate lines which are visible in inspecting the panel [3]. It has been
reported such textured background makes detection of defects such as mura more difficult [5]. Organic
light emitting displays also have horizontally and vertically regularly spaced pixels which constitute
textured background [7]. For such cases, it is important to separate the foreground defects from
the background region because the regular textured background should not be classified into defect.
Moreover, removing the textured background should not change the integrity of defects [7].

Separation of the foreground from the textured background has been investigated in many
previous studies [3,7-10]. Some previous investigations attempted to reconstruct the textured
background and subtract the background from the acquired image [8-10]. Other studies attempted
to estimate the foreground defects directly from the acquired image [7,11]. Both of these types of
methods relied on low-rank approximation techniques such as singular value decomposition (SVD),
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principal component analysis (PCA), and independent component analysis (ICA) [7-9,11], which will
be explained detail in Section 2.1.

The existing methods usually apply the defect detection method after extracting the defective
parts of image. In some studies, a statistical process control (SPC) method that detects defective pixels
based on the variation from the mean of the image was applied [8-11], while in an another study,
simple binarization was applied for detecting the defective regions [7].

The low-rank-based reconstruction methods have been applied for many inspection tasks,
and majority of these methods need neither a training process nor an annotated dataset. However,
we believe that the existing low-rank approximation methods have several problems. First, the
low-rank approximation may not remove the background perfectly because it is difficult to approximate
some texture patterns by low-rank matrices [12]. Second, it is difficult to determine how many rank-one
matrices must be used to reconstruct the background. It may be more difficult to select the bases for the
low-rank matrices. Although many methods have been suggested for selecting the number of low-rank
matrices and for selecting the bases [12], we believe that it is difficult to automate the procedure for
each input image. We note that imperfect reconstruction of the background due to these difficulties
will result in a significant degradation of the defect detection performance after the reconstruction [12].
In addition, the DCT based method is likely to be ineffective for detecting slowly changing defects
because it is extremely difficult to separate such slowly changing defects from the slowly changing
background [13].

To overcome these problems, we investigate an auto-encoder-based foreground estimation
system that separates the textured background from an input image. Unlike the existing methods,
the proposed method predicts the defect image after being trained using labeled data comprised by
the defect image and the displayed defect image. Here, we are inspired in part by an auto-encoder
based pixel-wised segmentation system [14-16] that determines the class of each pixel. Unlike the
pixel-wise segmentation, the proposed method generates the defect image by deep-learning-based
pixel regression. By using this approach, unlike for the existing methods, we are not required to design
a bases selection method and to determine the number of bases. Instead, the auto-encoder-based deep
learning system learns how to reconstruct the foreground image using the labeled data. During the
training, we augment the regularization function to a mean square error (MSE) based loss function
to obtain a more realistic defect image. To carry out this task, we apply a smoothness regularization
loss function that is similar to the total variation (TV). The TV regularization function has been widely
used for image processing tasks such as denoising [17] and image reconstruction [18] because it can
preserve the edges while smoothing the noise [17]. Using the regularized loss function, we attempt to
design a machine learning system that can generate more precise and less scattered defect images.

The rest of the paper is organized as follows. We introduce a detailed description of the related
studies in Section 2. Then, we explain the proposed method in detail in Section 3. Experimental results
and conclusions are presented in Sections 4 and 5, respectively.

2. Related Works
2.1. Low-Rank-Approximation-Based Method

Low-rank-approximation-based methods reconstruct the regular textured background using
a low-rank approximation of the given image under the assumption that the textured background is
well-approximated using a low-rank matrix. Some methods first reconstruct the textured background
and subtract the reconstructed background from the input image [7,11]. Other methods attempted to
directly estimate the foreground defect image using a low-rank approximation [8-10]. After removing
the textured background, some methods relied on the SPC to detect the defective region [8-11,19],
and another method used the binarization of the background-removed image to find the defective
region [7]. To reconstruct either the foreground defect image directly or to reconstruct the textured
background image, low-rank approximation methods such as SVD [8,9], PCA [11] and ICA [7] have
been applied. In addition, in one study, DCT was applied and several coefficients related to the
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foreground images were obtained to reconstruct the foreground image [10]. One common difficulty
faced by the existing methods is the question of how to determine the bases to represent the textured
background only. Many investigations have focused on overcoming this problem [8-11].

For example, the input image may be decomposed using SVD as follows:

X =UusvT, 1)

where X is the gray scale input image with the size M x N, U is an M x R orthonormal matrix, S is
an R x R diagonal matrix, and V is an R x N orthonormal matrix, where R is the rank of X [8,9].
The matrices U and V are computed using the eigenvectors of XXT and X X, respectively and the
diagonal matrix S is composed of singular values of X [8,9]. After carrying out the SVD, the separation
of the foreground image can be attempted by subtracting the reconstructed background image from
the input image as described by:

k
X=x-) a]-ujva, )
j=1

where X is the estimated foreground image, and M x 1 vector u jand N x 1 vector v; are the jth columns
of U and V in (2), respectively, 0j is the jth diagonal element of S, and k is a design parameter for the
reconstruction of the background and foreground. The parameter k is the number of singular values
used to reconstruct the background image. It is crucial to determine not only the appropriate number
k but also effective u j,vj vectors for the reconstruction. In some methods, this was accomplished by
using the difference between the neighboring singular values [8], while in another investigation, zero
crossing point of the normalized singular values was used [9].

One previous investigation computed the principal components of a set of row vectors in the image
to reconstruct the background [11]. Another investigation applied ICA to estimate the background from
the observed image. This method determines the independent components of a defect-free image and
determines the appropriate number of large independent components to reconstruct the background [7].
A conventional DCT-based method computed the histogram of the magnitudes of the DCT coefficients
and applied thresholding using the Rosin algorithm to reconstruct the foreground [10]. One common
strategy of the existing methods is the separation of the regular background from irregular foreground
that may be due to a defect in display panel, and detect defects from separated foreground image.
In this work, we implemented an SVD-based method to conduct a comparative study of the proposed
method. To do that, we reconstruct the background image using some large singular values and
corresponding vectors. We select the number of vectors manually so as to obtain the best performance
of the reconstruction. Then, the foreground is estimated by subtracting the reconstructed image from
the input image.

2.2. Auto-Encoder Based Segmentation

Convolutional auto-encoder based pixel-wise segmentation methods have been successfully
applied for several applications [20-22]. These methods predict the probability of each pixel belonging
to some class that can be used to classify each pixel into different classes, naturally resulting in
pixel-wise segmentation. The encoder component of the auto-encoder-based segmentation system is
composed of convolutional layers and pooling layers that extract useful features while the decoder
component is composed of the unpooling layer and the convolutional layer that increase the size of
the feature map and generate high-resolution images using the low-resolution feature maps. The final
layer of the decoder is a softmax layer that predicts the probability of each pixel belonging to different
classes. The softmax function is defined as follows:

ezmnc
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where Y. is the element at (m, n, ¢) of the output of the softmax layer, and Z,,,. is the logit value of
the element at (m, 1, ¢) in the softmax layer. Additionally, m is the index in the row direction, and  is
the index in the column direction, and c is the index of class. The softmax function increases the values
of large values and decreases the values of small values while keeping the sum of the output values
equal to one, which is similar to the probability. Using the output of softmax layer, the entire system is
trained by minimizing the loss function, which in this case is the cross-entropy function defined by:

1 N M C
L= m 2 2 2 Tnne log Yinne, (4)

n=1m=1c=1

where L is the value of the loss, Ty is the element at (m,1,¢) in the label data T, and Yy is the
element at (1,1, c) in the output of the softmax layer Y. Both T and Y have the size of M x N x C,
where M specifies the length of the rows, N specifies the length of the columns, and C specifies
the number of classes. The cross-entropy loss is calculated as the product of the label data and the
logarithm of the calculated result of softmax. Thus, the cross-entropy values measures how close the
calculated result is to the label data.

Because the auto-encoder-based system may encounter a resolution problem during decoding,
several studies investigated the SegNet method for transferring the indices of max values from the
max pooling layer in the encoder to the unpooling layer in the corresponding decoder for effective
up-sampling [14]. Another study investigated the U-Net method for concatenating the feature map
from the encoder to the feature maps in the corresponding decoder for obtaining enhanced results [15].
In addition, the U-Segnet method that combines the two methods for generating high-resolution result
has been investigated [16].

The goal of the segmentation is not separating defective image from background image but
dividing defective regions from background regions. Therefore, it is difficult to apply the segmentation
method to separate defective image. Even though, we attempt to do it by subtracting the average value
of background regions from the values of foreground regions (i.e., defective regions). We compare the
performance of this method with our proposed method which will be explained in the next section.

3. Proposed Method

3.1. Problem Formulation

We model an acquired image of the display device for inspection as follows:

o(x,y) = f(s(x,y)(t(x,y) +d(x,y))) +n(x,y), (5)

where o(x,y) is the acquired image, s(x,y) is non-uniform illumination, f(x,y) is the textured
background image, d(x,y) is the defect of the display device at location (x,y), f(-) is a nonlinear
mapping of the input to the acquired image, and n(x, y) is the additive noise. Therefore, we seek to
accurately estimate d(x,y) from the acquired image o(x, y). The nonlinear mapping f(-) reflects the
characteristics of the display device and the imaging device. The estimation problem is extremely
difficult because none of f(-),s(x,y), t(x,y), n(x,y) are known.

We attempt to solve the problem using a deep-learning-based approach. In this approach,
we collect the training data using display panels that have no defects. By displaying some synthesized
defective images, we acquire labeled training data for separating the foreground defects from the
textured backgrounds. Using the training data, we seek to train a machine learning system by
supervised learning to learn an approximate inverse mapping from the acquired image o(x, y) to the
defect image d(x,y).
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3.2. Separating Defects Using Auto-Encoder Based Regression with Regularization

We propose a method that estimates d(x,y) from o(x,y) in (5) using an auto-encoder-based
machine learning system. Figure 1 shows the architecture of the proposed auto-encoder-based machine
learning system that predicts the values of the defect images. The entire system has a similar
architecture to that of the auto-encoder based pixel-wise segmentation method. However, one
important difference is that the final layer of the proposed system is not a softmax layer that is
used for pixel-wise classification. Rather, we use a regression layer to predict the value of each pixel
after removing not only the textured background but also other artifacts that are due to the imaging
system. In the proposed method, the final convolutional layer in the decoder, which has only one
3 x 3 convolution acts as pixel-wise regression layer. We note that the output of the network shown in
Figure 1 should be a foreground defect image (i.e., the textured-background-removed image) that has
the same size as the input image.

The network consists of three encoder blocks and three decode blocks, with each encoder block
consisting of two convolutional blocks and one max pooling layer, and each convolutional block
consisting of one convolutional layer, a batch normalization layer and a relu layer as activation layer.
Encoder blocks extract useful features, and decode blocks combine the extracted features to generate
results which only have the defective parts of the image. Each decoder consist of one unpooling layer
and two convolutional blocks. The size and number of kernels in the architecture are shown in Table 1.

Table 1. The size and numbers of kernels of each layer of the proposed system.

The Size of Kernels The Number of Kernels

conv 3x3 64

Encoderl conv 3x3 64
maxpool 3x3

conv 3x3 128

Encoder2 conv 3x3 128
maxpool 3x3

conv 3x3 256

Encoder3 conv 3x3 256
maxpool 2x2
unpool 2x2

Decoder3 conv 3x3 256

conv 3x3 256
unpool 3x3

Decoder2 conv 3x3 128

conv 3x3 128
unpool 3x3

Decoderl conv 3x3 64

conv 3x3 64

Pixel-wise regression conv 3x3 1

In the last convolutional block of the decoder, we used leaky relu with slope of 0.01 for negative
values as an activation function to prevent dying relu problem. In addition, the max pooling layers
in the encoder blocks are connected to the unpooling layers in the corresponding decoder blocks.
The connection conveys the information about the indices of max values from the max pooling layer to
the unpooling layer for efficient up-sampling [14].
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Figure 1. Structure of the network of the proposed method.

We design the loss function for training the network using a data fidelity term and regularization
term because the use of the data fidelity term only may give rise to noisy images. First, we define the
data fidelity loss function by the mean square error (MSE) between the labeled data and the predicted
value according to:

1 M N o,

Lmse = m Z Z (Ymn - Ymn) ’ (6)
m=1n=1

where Y, is the element at (m, 1) of Y that is the labeled result of the final layer of the network with

the size M x N, and Ym,n is the element at (m, n) of Y that is the calculated result of the final layer of

the network with the size M x N. The loss function calculates the mean of the square of the difference

between the resulting and labeled images, and its minimization causes the result image to be close to

the labeled image.

In the result image that we seek, the neighboring pixels have similar values, while the loss
function that calculates only the MSE does not consider the connectivity of the pixels. This can result
in scattered result images. To address this problem, we propose a loss function that calculates the MSE
with total variation as the regularization term. Previously, several studies have applied the regularized
loss function to machine learning systems based on the convolutional auto-encoder structure [23-25].
They applied a loss function with normalized cut regularization [23] and a loss function with structured
edge regularization [24] to pixel-wise segmentation, and a loss function with total-variation-based
regularization for pre-processing to generate a smoothed input segmentation image [25]. Using the
regularization term for the loss function, these studies obtained the results reflecting the properties of
the regularization term. Similar to these previous studies, we seek to obtain clustered results using a
loss function with the total-variation-based regularization. The total-variation-based regularization
has been used successfully for image restoration and reconstruction problems [17,18] because it can
alleviate the effect of noise without the severe blurring of true edges [17].
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We design the smoothness regularization function as follows:

1 M N
Lreg = m Z Z \/(Ym,n - Ym—l,n)2 + (Ym,n - Ym,n—l)2 + 52: (7)

m=2n=2

where € is a design parameter, Y is the results obtained by the proposed system with the size of M x N,
and Y, is the element of Y at (m, n). The regularization function, Lyeg behaves as a 1-norm of the
difference between neighbor pixels if € is very small. If € is large, the regularization function behaves
as a 2-norm of the difference between the neighboring pixels. Therefore, it is considered that € acts
to control the behavior of the regularization function. Figure 2 shows the curves of v/ x2 + €2 for 1D
case with different values of €. As shown in Figure 2, the variation term in (7) approaches closer to the
absolute total value with decreasing value of €.

0 ]
-5 0 5

&

Figure 2. Example of the change in the smoothness due to the variation in € (1D).

The black line in Figure 2 indicates the total variation where € is zero. By contrast, the red line shows
a quadratic smoothness function near zero. Therefore, € controls the behavior of the regularization
function. Using the regularization function, we design an augmented total loss function as follows:

L= Lmse + /\Lreg/ (8)

where A controls the weights of the TV term that controls the smoothness. If A has a large value,
the result becomes smoothed, while with a small value, the result becomes less smoothed. While
it may appear that the proposed method involves two hyper-parameters € and A, as we will show
in the results section, the performance of the proposed method with A = 0 and some fixed € value
outperforms the conventional method, implying that the tuning of hyper-parameters is not a hurdle for
improving on the performance of the existing method. Rather, the introduction of the hyper-parameters
is useful for improving the performance of the proposed auto-encoder-based background separation
method.

4. Results

We conducted experiments to detect the defects of a 5.5 inch mobile display panels with
2880 x 1440 resolution. We acquired the images of the display panel with a machine vision camera
(LPMVC-CL50M, Laon People Co., Ltd., Seongnam, Korea) in a chamber. The camera is based on
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4.6 pm x 4.6 um pixel size CMOS image sensor, which has 7920 x 6004 monochrome pixels. Figure 3
shows the setup for our experiment.

Figure 3. Image acquisition devices.

To test the performance of the proposed method through a comparison with the existing methods,
we generated 5 types of defects; vivid dot, faint dot, line, stain and mura images. The vivid and
faint dots have circle or square shape with relatively large and small difference from background,
respectively, and the line has either horizontal or vertical linear shape. The stain defect has a faint circle
type shape, and the mura defect has an irregular shape. After generating defect image, we applied
Gaussian type filter for some defects to smooth the defects. We pre-determined the ranges of size, pixel
intensity, length and variance of the smoothing filter. The locations, sizes and intensities of the defects
are generated randomly within the pre-determined ranges. We summarize the ranges of parameters
for generating defects in Table 2.

We displayed the generated images on the testing mobile display and acquired images using the
camera. Then, we applied the proposed method to detect the generated defects with the assumption
that the display is defect-free. Note that the acquired image is gray scale because the camera we used
for the experiments is monochrome. The size of the acquired image was approximately 7920 x 5600.
We generated a dataset that contains the fine details of the display panel by subdividing an image
into regions with the size of 700 x 990. We have chosen the image size as 700 x 990 considering the
limitation of GPU memories. We allowed 700 x 400 pixels overlapping to increase the number of
training dataset and generated 5466 images for training. However, we did not allow overlapping for
generating test dataset. The number of generated test sub-images was 6797. In summary, the entire
dataset is divided into training dataset (45%) and testing dataset (55%).

Examples of the images of the dataset are shown in Figure 4. As one can see in Figure 4,
images exhibit regular patterns in the background because the pixels of the display panel are shown.
We generated the ground truths for the separated foreground images manually using the information
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about the shape and intensity values of the patterns displayed on the device. The ground truth image
has the values of the foreground only and does not contain artifacts such as the regular pattern of
background, noise and non-uniform illumination.

Table 2. Ranges and settings for defects.

Vivid Dot Faint Dot Line Stain Mura
square or square or vertical or
Shape qu au horizontal ellipse irregular
circle circle .
line
width: [4, 7]
. . length: maximum
Range of d1amet.er or d1arnet.er or [2/3 of vertical or horizontal lgngth qf size:
size one side: one side: side of image minor axis : half of
[11,14] (11, 14] half of vertical or horizontal (40, 100] image
side of image]
Range of
pixel intensities [40, 44] [35, 40] [20, 44] [15, 25] [13, 20]
Type O.f none Gaussian Gaussian or none Gaussian Gaussian
smoothing
Range of
variance of none [3, 30] [3,30] [3,30] [5, 30]
smoothing filter
Range of
size of none [2, 5] [2, 5] [20, 30] [30, 40]

smoothing filter

Figure 5a,b show 3D plots of the acquired image and the ground truth for each pixels with the
stain and mura type defects shown in Figure 5c,d. As shown in Figure 5b,d, the ground truth is
defective parts of image with no distorted components. However, in the acquired image, due to the
many artifacts including non-uniform illumination, noise, and texture patterns of the background, it is
difficult to separate the defects because these defects are embedded in the artifact.

To detect such defects, we tested the proposed method and compared it with the SVD-based
low-rank approximation method and the segmentation based method. For the segmentation based
method, we used SegNet based architecture. This architecture has 3 encoder and decode blocks, and
each block has 2 convolutional blocks with relu layer as activation function. In addition, the size
of max pooling was 2 x 2 for all max pooling layers in the architecture. The number of kernels of
convolutional layer for each encoder block is 64, 128, 256 in order. Because SegNet architecture only
divides foreground and background regions, we have implemented SegNet based segmentation and
subtract the average value of background value from the segmented defect image. We refer to the
low-rank approximation based method as LRS (low-rank-approximation-based separation), and the
segmentation based method as SBS (segmentation based separation), and the proposed method as
PRRS (pixel regression with regularization-based separation).

Figure 6 shows the change in loss and root-mean-square-error (RMSE) of the proposed method
during training as the function of the number of iterations. In the graphs, the blue lines indicate the
loss and RMSE of the training set the training loss and the validation loss, respectively. As shown in
Figure 6, loss and RMSE decreased as the number of iteration increased, and gradually the variations
decreased and converged.

We implemented all the method for the experiments using MATLAB (2018b, MathWorks, Natick,
MA, USA). We run codes for each method using a workstation with 4 TITAN Xp GPUs (NVIDIA,
Santa Clara, CA, USA) and Xeon E5-2630 CPU (Intel, Santa Clara, CA, USA) with 128 Gbytes RAM.
The accuracies of the result are measured by the mean absolute error (MAE) between the estimated
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foreground image and the ground truth, and Dice similarity coefficient [26] and intersection over union
(IoU) scores [27]. For calculation of Dice and IoU, we determine regions that have positive intensity
values as foreground regions.

(a) vivid dot (b) faint dot

(c) line (d) stain

(e) mura

Figure 4. Examples of display panel images.

Table 3 shows the results of LRS, SBS, PRRS with zero value of A, and PRRS with the value of 1 for
A. We set € value for PRRS method by 0.001. In the table, we showed the best result in bold. As shown
in the table, PRRS showed a significantly improved performance from both the LRS and SBS in terms of
MAE. In addition, PRRS with A = 1 showed the best performance in terms of Dice, IoU and MAE of
defective region. Note that the performance of the SBS method was better in terms of Dice and IoU
than MAE. We think this is because the SBS method was able to segment defective region but failed to
estimate the values of defective regions.
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Figures 7-9 show the results for the experimental dataset. Figure 7 shows the result for the faint
dot type that has relatively strong edges. Although the defect is clearly visible due to the high intensity
difference of the background, the LRS method was not able to remove the textured background pattern
as shown in Figure 7c. This remaining background can degrade the performance of the subsequent

detection method or of the quantification of defects.
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Figure 5. 3D plots of the input data and result.
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Table 3. Comparative results of the proposed method with other methods.

LRS SBS PRRS(A=0 PRRS(A=1)
MAE of all region 4430  0.566 0.152 0.116
MAE of defective region 15.458 25.306 6.080 5.594
MAE of sound region 4314  0.157 0.068 0.029
Mean of Dice 0.101  0.785 0.747 0.771
Dice of defective region ~ 0.037  0.580 0.501 0.548
Dice of sound region 0.165  0.991 0.993 0.994
Mean of IoU 0.057  0.745 0.709 0.739
IoU of defective region ~ 0.023  0.504 0.430 0.487
IoU of sound region 0.091  0.986 0.989 0.990
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Figure 6. Graph of the loss and RMSE during the PRRS training.

Figure 8 shows the result for the stain defects and Figure 9 shows the result for the mura defects.
For the defects with a small intensity difference, the defects are not easily noticeable, as shown in
Figures 8a and 9a. The SBS method was not able to predict accurate values for the defective pixels
on those defects and remove background pattern on defective pixels, as shown in Figures 8d and 9d,
although it was able to segment defective regions. We think this is because the SBS method is not based
on a foreground estimation method but a segmentation method. On the other hand, even though the
defects were not clearly visible because of the small intensity difference from the background, PRRS
was able to remove the textured background and detect the defects. We have found that the texture
patterns of the background are almost completely removed in the results obtained by PRRS. For all
of the images, PRRS showed extremely improved results relative to LRS and SBS. In addition, PRRS
with A of 1 predicted more accurate values for defective pixels than PRRS with A of 0. In summary,
we verified that the proposed PRRS method can separate the defects from the background for various
types of defects.
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(a) Test Image (b) Ground Truth

(c) Result of LRS (d) Result of SBS

(e) Result of PRRS (A = 0) (f) Result of PRRS (A = 1)

Figure 7. Examples of display panel images with faint dot type.
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(a) Test Image (b) Ground Truth
Figure 8. Cont.
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(c) Result of LRS (d) Result of SBS

(e) Result of PRRS (A = 0) (f) Result of PRRS (A = 1)
Figure 8. Examples of display panel images with stain defects.
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(a) Test Image (b) Ground Truth

(c) Result of LRS (d) Result of SBS

Figure 9. Cont.
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(e) Result of PRRS (A = 0) (f) Result of PRRS (A =1)
Figure 9. Examples of display panel images with mura defects.

We have used a regularization term which has a hyper-parameter €. To study the effect of the
hyper-parameter, we have tested the performance of the proposed method while changing e. Table 4
shows the results of the proposed method with different values of €. In terms of the MAE of all region,
€ has the best value at 1. On the other hand, in terms of the MAE of defective region, the best value of
€ is 0.001, and from the perspective of the MAE of sound region, the best value of € is 0.1. From the
perspective of Dice and IoU, the best value of € is 0.001. Therefore, we think that one must judiciously
select the hyper-parameter considering which measure to optimize.

Table 4. Results of the proposed method with different values of €.

€=0001 €=001 €=01 e€e=1

MAE of all region 0.116 0.112 0.112  0.111
MAE of defective region 5.594 7.284 8.001  7.523
MAE of sound region 0.029 0.021 0.014  0.022
Mean of Dice 0.771 0.759 0.753  0.753

Dice of defective region 0.548 0.524 0.510 0.512
Dice of sound region 0.994 0.994 0.996  0.994
Mean of IoU 0.739 0.723 0712 0.715

IoU of defective region 0.487 0.456 0.433  0.441
IoU of sound region 0.990 0.989 0.992  0.990

Table 5 summarizes the results for the proposed method with different values of A. On most
results of Dice and IoU, the experiment with the value of 2 for A shows the best performance. However,
from the perspective of MAE of defective region, the experiment with the value of 2 for A shows the
worst performance. Even though, it is apparent that the regularization is effective because non-zero A
showed better performance than zero A for every case.

Table 5. Results of the proposed method with different values of A.

A=0 A=05 A=1 A=2

MAE of all region 0.152 0.113 0.116 0.118
MAE of defective region  6.080  6.108  5.594 6.372
MAE of sound region 0.068 0.026 0.029 0.027

Mean of Dice 0.747 0.734 0.771  0.798
Dice of defective region  0.501  0.474  0.548 0.604
Dice of sound region 0993 0993 0.994 0.993

Mean of IoU 0.709 0.692 0.739 0.768
IoU of defective region =~ 0.430  0.397  0.487 0.546
IoU of sound region 0.989 0988  0.990 0.989
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We also studied the effect of noise and illumination. To do that, we conducted simulation studies
using a new data shown in Figure 10. We generated a new dataset adding zero-mean Gaussian noise
and Gaussian shape illumination to previous dataset, as shown in Figure 10. We randomly selected
variance of the Gaussian noise in the range of [0.002, 0.01]. The variance of Gaussian shape illumination
was 300 pixels and the center position of Gaussian shape was determined randomly in the range
of [-200, 200] from the center of an image. We refer to this dataset the shaded and noised dataset.
As shown in Figure 10, it is extremely hard to distinguish defects from background.

(a) vivid dot (b) faint dot

(c) line (d) stain

(e) mura

Figure 10. Examples of shaded and noised dataset.

Table 6 compares the results of original dataset with shaded and noised dataset. One can see
that the the performance for the shaded and noised dataset is degraded from the performance using
original dataset, which implies that non-uniform illumination and noise may degrade the performance
of a defect separation method.
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Table 6. Results with the change of illumination and noise.

Original Dataset Shaded and Noised Dataset

MAE of all region 0.116 0.271
MAE of defective region 5.594 10.597
MAE of sound region 0.029 0.066

Mean of Dice 0.771 0.726

Dice of defective region 0.548 0.467
Dice of sound region 0.994 0.985
Mean of IoU 0.739 0.682

IoU of defective region 0.487 0.392
IoU of sound region 0.990 0.973

One might think that a traditional edge detection based method can separate foreground and
background regions by finding edges between the two regions. For examples, one may attempt to use
a gradient based method described in [28,29]. However, the edge detection based method usually fails
to find boundaries due to regular texture patterns. To confirm this fact, we implemented a gradient
based edge detection method which is similar to the method described in [28,29]. We first applied
5 x 5 median filter to a display panel image and calculated magnitude of gradient for each pixel.
The magnitude of gradient was calculated by summing absolute values of horizontal gradient and
vertical gradient at each pixel. Figure 11 shows an example of the magnitude of gradient image.
As shown in Figure 11, because there exist large gradient magnitude values inside both foreground
and background regions due to texture patterns, it is extremely difficult to detect boundaries between
the two regions using gradient values.

(a) Input image (mura) (b) Input image (stain)
(c) Gradient image (mura) (d) Gradient image (stain)

Figure 11. Examples of result of gradient and binary images.
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Inference time is one of the most important parameters in real-time systems. We measured the
inference time for 100 images and averaged the testing time per one image. The testing time only
includes inference time, not training time. Table 7 reports the values of the average testing time per
one image for LRS and the proposed PRRS.

Table 7. Average computation time for one image.

Type of Experiment Average Computation Time (per Image)

LRS 183 ms
PRRS 313 ms

As shown in Table 7, LRS was faster than the proposed method. We believe this is because LRS is
relatively simple and SVD can be carried out efficiently. On the other hand, the machine-learning-based
PRRS requires many more computations than LRS. Nevertheless, because the computation time of
PRRS is less than 320 ms, it can be applied in real-time inspection systems.

Although the inference time of the proposed method is less than 320 ms, the method needs to
repeat inspection several parts of an image of mobile device. Note that the proposed method only
process 700 x 990 size image due to the limitation of computing resources.

For future works, we plan to investigate improved deep learning system to remove background
patterns more perfectly. In addition, we plan investigate an automatic method to determine hyper-
parameters using a method such as Bayesian optimization [30].

5. Conclusions

We proposed a novel method to separate the defects from the background using regularized
auto-encoder-based regression. The conventional low-rank-approximation-based methods face
difficulties in separating faint and large defects such as mura from the texture background. To address
this problem, we proposed a novel method based on auto-encoder and pixel regression. During the
training of the proposed system. we applied the loss function with a regularization term in order
to obtain similar intensity values for the neighbor pixels in the results. In experiments using mobile
display images, we verified the utility of the proposed method by a comparison to a conventional
low-rank-approximation method and a segmentation-based method.
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