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Abstract: From the growth of residential energy demands has emerged new approaches for load
scheduling to realize better energy consumption by shifting the required demand in response to
cost changes or incentive offers. In this paper, a hybrid method is proposed to optimize the load
scheduling problem for cost and energy saving. The method comprises a multi-objective optimization
differential evolution (MODE) algorithm to obtain a set of optimal solutions by minimizing the
cost and peak of a load simultaneously, as a multi-objective function. Next, an integration of the
analytic hierarchy process (AHP) and a technique for order preferences by similarity to ideal solution
(TOPSIS) methods are used as multi-criteria decision making (MCDM) methods for sorting the optimal
solutions’ set from the best to the worst, to enable the customer to choose the appropriate schedule
time. The solutions are sorted based on the load peak and energy cost as multi-criteria. Data are for
ten appliances of a household used for 24 h with a one-minute time slot. The results of the proposed
method demonstrate both energy and cost savings of around 47% and 46%, respectively. Furthermore,
the results are compared with other recent methods in the literature to show the superiority of the
proposed method.

Keywords: residential demand response; optimal load scheduling; time-of-use; differential evolution;
multi-criteria decision making

1. Introduction

The demand for energy consumption is rapidly growing due to an increase in the world wide
population, urbanization, climate changes and technological developments [1]. In addition, more
devices have been added to the traditional customers’ devices list that place a high demand on the
available generation capacity, such as electric vehicles [2,3]. The traditional solution for meeting
the required energy demand is building new generation capacities [4,5]. However, increasing the
generation capacity faces many problems such as the depletion of fossil fuel, air pollution and climate
change [6]. Furthermore, the new renewable energy resources such as photovoltaic (PV) and wind
turbine have some barriers such as the intermittent problem and high initial cost [7,8]. Therefore,
demand response (DR) plays an essential role in balancing the available generation capacity against
the demanded energy [9,10]. DR refers to the change in customer consumption profile related to the
change in energy price or incentive offers [11]. Meanwhile, the developments in information and
communication technologies (ICT) provide smart residential homes that provide optimal control for
easier monitoring by connecting all household sensors and appliances through a home area network
(HAN) [12,13]. On the other hand, the available varied pricing tariffs leads to the provision of flexible
DR schemes. Therefore, there is a great opportunity for customers to manage the load scheduling
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by using the available smart home technologies [14]. In addition, informing consumers about recent
effective programs like DR and applying load management strategies realize the desire of electricity
companies for increasing their incomes [15]. Accordingly, dynamic and optimal load scheduling is
required to manage the customer load for cost and energy saving [16].

Recently, several studies have addressed the necessity of load scheduling in DR systems.
In Reference [17], aggregated multi-objective load scheduling is proposed for household appliances
using mixed integer nonlinear programming (MINLP). A time-of-use (ToU) pricing scheme is
considered in this work. The outcomes in Reference [17] showed a cost saving of about 24%.
A multi-objective genetic approach is presented in Reference [18] for domestic load scheduling for
cost saving. The interruption risk of the supplied energy and the ideal time slots of load operation are
considered as customer dissatisfaction factors. The model presented in this work aimed to minimize
these factors of customer dissatisfaction and energy bills as a multi-objective problem formulation.
Non-dominated sorting genetic algorithm II (NSGA-II) is used to solve the formulated multi-objective
problem. The results showed about 24% as a maximum cost saving. In Reference [19], historical data
for energy consumption are used by smart meter to learn and predict the behaviour of appliances’
consumption. Based on this behavioural energy consumption, the expected appliances load scheduling
is presented. The cost savings for two residential houses that are tested in this work were about 24%
and 17%, respectively. Wang et al. [20] presented a household load scheduling approach based on a
robust optimization approach and considered uncertainty in the PV system output power. The results
showed cost savings of about 25% and 12% for high and low PV output scenarios, respectively.
Reference [21] proposed an adaptive level pricing scheme for dynamic residential load scheduling.
Based on a given permitted consumption allowance, the customers were encouraged to schedule
their load for ideal energy and cost saving. The results explained that ToU represented about 31%
and 35% for cost and energy savings, respectively. Gruber et al. [22] presented a method for optimal
scheduling regarding aggregated customer demand based on an economic criterion. By using the
aggregated demand profile and energy pricing predication, an aggregator participates directly in
the day-ahead market to maximize the cost saving. In Reference [23], an experimental analysis of
the scheduling problem regarding home appliances is proposed, which is based on a realistic aspect.
A binary integer linear programming (BILP) optimization method is presented for load scheduling.
Seeking an efficient energy management scheduling for household appliances, a distributed real-time
demand response is suggested in Reference [24]. The energy supply, energy demand and battery
energy constraints are considered to form a temporally-spatially coupled optimization problem.
This problem is decomposed into several independent sub-problems to mitigate an issue caused by
temporally-spatially coupled constraints.

The aforementioned research discussed optimization methods and customer load modelling to
solve load scheduling. On the one hand, several recent proposals deal with single or aggregated
multi-objective functions of customer load modelling to formulate the load scheduling problem.
In general, most of the methods do not provide a set of optimal solutions for certain trade-off

constraints. They provide only one solution for the whole search space that might not be a global
minimum point. Furthermore, sorting the solutions’ set from the best to the worst and selecting the
best optimal solution is not addressed in the literature.

Multi-criteria decision-making methods (MCDM) are used in various research fields to make an
optimal decision to sort a set of solutions for a specific problem, which is dominated by multiple criteria.
In Reference [25], a multi-objective memetic algorithm is used to facilitate the scheduling schemes.
A mixed-integer linear programming (MILP) model based on the network graph is formulated with
both makespan, as well as total power consumption, criteria. Moreover, the TOPSIS decision method
is used to determine the most satisfactory non-dominated solution. An analytic network process
(ANP) method is presented in Reference [26] to solve a decision problem by selecting the optimal
location and configuration of a wind farm. The ANP method is used to capture the complexity of the
decision problem by taking into consideration dependencies between criteria. In Reference [27], an
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artificial neural network coupled with ensemble empirical mode decomposition (EEMD-ANN) is used
to decompose the original price time series into several subseries and then to forecast each of them.
A factor analysis and a technique for order of preference by similarity to ideal solution (FA-TOPSIS),
as an integrated evaluation method, is used to comprehensively evaluate the quality parameters.
In Reference [28], a multi-objective optimization model is used to maximize the minimum power of
multiple power grids. The TOPSIS method is utilized to handle this multi-objective optimization,
where the complex minimum and maximum objective function is transformed into a group of linear
formulations. Nonlinearities of the hydropower system are described approximately as polynomial
formulations. In Reference [29], a novel method based on a multi-objective optimization algorithm
and hybrid multi-criteria decision making methods proposed the configuration of a standalone
off-grid photovoltaic system. An integration between TOPSIS and AHP methods is used to sort the
configurations of the system. TOPSIS is an effective MCDM method which has been widely used to
solve problems that are dominated by multi-dimensional multi-criteria [30].

The contribution of the present research can be described by presenting a hybrid multi-objective
optimization differential evolution (MODE) model and integrated MCDM methods to solve the load
scheduling problem for cost and energy saving. The MODE algorithm deals with the load scheduling
problem as a multi-objective optimization problem. The multi-objectives are the cost and peak of
the load that are simultaneously minimized, which is rarely done in the literature and leads to a
Pareto-optimal set of solutions. Next, hybrid MCDM methods are presented to sort the obtained set of
Pareto-front solutions for given constraints. The results show the superiority of the proposed method
as compared to other recent work in the literature.

2. Problem Formulation

A company has an active connection to the smart meter where the HAN network provides the
proposed load scheduling system with access to each device. For each time slot t the total load will be
denoted as lt. For a given customer, the set of household appliances will be referred to as E and these
devices include items such as a washing machine, stove, refrigerator or any connected device. For a
given appliance e, the one-slot energy consumption scheduled at time slot t is referred to as lte. The first
objective of the multi-objective functions of the MODE algorithm is the cost of energy that is consumed
by the household. In the meantime, the peak of the load is considered the second objective. The goal of
the MODE algorithm is to schedule the load to save energy cost and peak concurrently.

The utility company provides the energy pricing function that is denoted by EPt for each time
slot. An effective customer load schedule is expressed by way of decreasing peak consumption and
minimizing the energy cost. The customer’s energy bill (EB) can then be expressed as:

EB =

T∑
t

EPt

∑
e∈E

lte (1)

Subject to:
Pomin ≤ lt ≤ Pomax (2)

where Pomin and Pomax denotes the minimum and maximum load consumption, respectively.
Equation (1) refers to customer preferences of allowable time operation for each appliance. The steps
of the proposed MODE algorithm are discussed in detail in the next subsection.

2.1. Multi-Objective Optimization Differential Evolution (MODE)

In general, evolutionary algorithms (EAs) are being utilized to solve optimization problems with
multi-objectives that are traced back to its ability to process a number of solutions and yields an optimal
Pareto front with fast convergence and high diversity [31]. The MODE algorithm model is mainly
based on a conventional differential evolution algorithm that can resolve multi-objective optimization
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(MOO) problems. For this research, the MODE algorithm has been utilized to optimize the starting
time of 10 operative appliances as a bi-objective real optimization problem. To optimize the load
scheduling problem, the cost and peak load have been utilized as the two objectives. In general, the
main significance of MOO algorithms is to offer a set of ideal solutions, as denoted by the Pareto
front [32,33]. In addition, in the selection stage of single-objective optimization algorithms, the
parent solution is exchanged for the candidate (child) solution when the last one is better than the
parent solution in terms of objective function. Meanwhile, in MOO algorithms, the replacement’s
decision is not straightforward like a single-objective optimization algorithm because there are many
objective functions that dominate the problem. The Pareto optimality (dominance) principle can be
considered one of the most rigid techniques that are adapted to realize the replacement between the
parent and child solutions in the selection stage. The details of the MODE model are depicted by the
following algorithm.

Step 1: The first phase of MODE is creating an initial population set with P individual vectors and
Q decision variables as follows:

POPG =


s11 . . . s1P
...

...
...

sQ1 . . . sQP

 (3)

where, Si is the target vector and G is an index which points to the counts of generation
(G = 1, 2, . . . . . . , Gmax), i ∈ [1, P] and j ∈ [1, Q] are two indices, which refer to the number of individual
vectors (solutions) and number of decision variables that comprises each solution, respectively. Here,
the initial values of Q elements of each individual vector are randomly chosen and uniformly distributed
in the search space. Furthermore, the search space is bounded by the upper (S j,H) and lower ( S j,L)

bounds. The elements of the initial individual vector are selected as below,

DS0
j, i = (S0

j, H − S0
j, L)i

(4)

S0
j,i = (S0

j, L)i
+ RND ∗DS0

j, i, where RND ∈ (0, 1) (5)

where RND is a pseudo-random number that is generated by using a uniform distribution and belongs
to the interval (0, 1). After that, the corresponding objective functions to current target vector are
computed and saved in vectors to use them in the next steps.

Step 2: The mutant vector is generated in MODE by adding the third individual vector with
the weighted difference between two individual vectors [34]. Therefore, a mutant vector ŜG

i for any
individual vector Si, is generated as below:

DFG = SG
r2 − SG

r3 (6)

ŜG
i = SG

r1 + MSF ∗DFG (7)

where, SG
r1, SG

r2 and SG
r3 vectors are selected in a random fashion from the population set and they are

not equal to the current individual vector SG
i . The values of r1, r2 and r3 are indices that have values in

the range of [1, P]. The base vector here is defined as SG
r1 while the mutation scaling factor is indicated

as MSF, which is basically picked up within the interval [0, 1] [35].
Step 3: Within the next step of the MODE algorithm, the trial vector XG

j,i is generated by using

the mutant vector ŜG
i and the target vector XG

i . In this step, two numbers are randomly selected to
dominate the selection process between the mutant and the target vectors. The first one, RND is
randomly belongs to (0, 1) interval, while the second one is Ii, which is chosen in a random fashion
from the interval that is in the range [1, Q]. The trial vector equals to the mutant vector if the RND
number is less than or equal to the crossover control factor (CCF) or the value of Ii equals to the current
index ( j) that refers to the decision variable. Otherwise, the trial vector equals to the corresponding
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target vector and the mutant vector is neglected. It is worth to mention that the CCF is selected in a
random fashion in the range of [0, 1] [35].

Step 4: The elements of the trial vector must be analysed to determine whether these elements are
within the permitted search space or not and to validate that these are realistic values. If any element
is outside the allowed limits of the search space, then the element is exchanged with a new element,
which is computed using Equation (5).

Step 5: The last step of the MODE algorithm is the selection step, which is applied after generating
P child solutions. The selection process between the child solution (CS) and the current parent
solution (PS) is started by creating a temporary population (TP). The individual vectors of the
temporary population are chosen from both CS and PS. PS is rejected from TP if PS is dominated
by the corresponding CS and vice versa. Under other conditions, each of CS and PS are expressed
as an element of TP once the child and parent solutions are not dominating each other. Temporary
population’s size is usually expected between P and 2P. Accordingly, the temporary population’s size
is minimized to reach the value of P solutions so as to prepare it for the next generation. The size of
reduction depends on the next two sub steps [36]:

Step 5.1: In this sub step, the solution of temporary population is classified into many front
levels (FLi), where i = 1, 2, . . . , K [37,38]. The first front level FL1 is made up from solutions that are
non-dominated by other solutions and these solutions are ranked as 1. The solutions are non-dominated
by other solutions except by the ones that belong to front level FL1, which are ranked as 2 to form the
second front level F2 and so on. Meanwhile, solutions dominated only by other solutions belong to
the front levels FL1 ∪ FL2 ∪ . . . ∪ FLK−1 will be ranked as K with FLK front level. Upon the completion
of a non-dominated sorting algorithm, the newest population which has been arranged for the next
generation is to combine different solutions that apply to various non-dominated front levels. To fill
the new population, the non-dominated front level solution of rank 1 is chosen first. Then, it is tracked
by solutions that belong to front levels 2, 3 and so on. Since the temporary population’s size is within
the range [P, 2P], then not all TP solutions must be included in the new population’s P slots. Solutions
that have been eliminated in the population of the next generation are excluded. A related point to
consider is solutions that belong to the last allowable rank can be larger than other slots remained in
the next generation’s population. With such scenario, in order to choose solutions that lie in the least
crowded region, a crowding distance ranking model is utilized. This will in turn increase solutions’
diversity instead of arbitrarily discarding some solutions.

Step 5.2: In the MODE algorithm, the diversity of optimal solutions is increased by applying the
crowding distance rank principle that presented in non-dominated sorting genetic algorithm-II [39].
The solutions’ density surrounding a solution i can be estimated by computing along each objective
the average distance which corresponds with two solutions on the right and left sides of a solution
i. Thus, the circumference of a rectangle with the right and left vertices of neighbor solutions is said
to be the crowding distance of any given solution i. The best solutions are the ones that have a high
crowding distance rank, since these solutions offer much diversity in the population [37]. Along zth
objective function, a crowding distance of ith solution is calculated as:

CDRz
i =

(
O f z

i+1 −O f z
i−1

)
/
(
O f z

max −O f z
min

)
(8)

where CDRz
i refers to the value of a single crowding distance of the ith solution that relates to zth

objective function. O f z
i+1 is zth objective function for i+ 1 solution and O f z

i−1 is zth objective function for
i− 1 solution. In addition, O f z

min is the minimum and O f z
max is the maximum values of the zth objective

function. In the meantime, by obtaining the summation value of all individual crowding distances
along each objective, the total value of a crowding distance of every solution can be determined and is
represented as follows:

CDRi =
∑Z

z=1
CDRz

i (9)
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The model that is applied to calculate the crowding distance rank for every solution belongs
to an ith front level (FLi) with bi-fitness functions is illustrated in the pseudo code of MODE model
(Appendix A), which is proposed to optimize the starting time of operating electrical devices with
minimum cost and load peak.

2.2. Hybrid AHP-TOPSIS Model Load Scheduling

In this work, an AHP-TOPSIS model is utilized to sort the optimal solutions’ set of load scheduling
system that obtained by the MODE algorithm and ranked from the best solution to the FLi appropriate
weights for each criterion according to the evaluation of evaluators (expert). For the second, the
TOPSIS approach has been utilized with predefined weights, in order to sort the solutions of the
problem. The proposed hybrid AHP-TOPSIS model that obtains the optimal set of time operation
of customer load is depicted in Figure 1. The details of the proposed model will be discussed in the
following subsection.
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Figure 1. Integrated analytic hierarchy process - technique for order preferences by similarity to ideal
solution (AHP-TOPSIS) model for selection optimal solution of load scheduling problem.

2.2.1. AHP Approach for Deriving Weights of Criteria

Each criterion has a degree of importance to dominate the performance of the MCDM problem.
The degree of importance can be presented by weight value, where the weight’s sum of total criteria of
the MCDM problem must be controlled by

n∑
j=1

w j (10)

where n is the entire criteria’s count that dominates the MCDM problem and w j is the weight of
jth criteria. Saaty in 1977 [40] proposed the AHP model to derive the appropriate weights for each
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criteria in the MCDM problem. The AHP method depends on the comparisons between a pairwise
criteria. However, the total number of pairwise comparisons for n-criteria problem is n(n− 1)/2.
The pairwise comparison is achieved by using the Saaty scale which was presented by Saaty [41].
The Saaty scale comprises nine preference points to enable the evaluator to specify the number of times
a single criterion is more or less important than another. A questioner which depends on the expertise
of three experts (evaluators) is realized to accomplish a comparison between a pairwise criteria of
MCDM problem. The evaluations of experts are tabulated in Tables 1–3. The preference of evaluators
is done as three steps whereas, the first evaluator does not give preference for each criterion. In the
meanwhile, the second and third evaluators are strong and slightly favour the cost criterion over the
peak criterion, respectively.

Table 1. First evaluators’ comparison according to Saaty’s scale.

Criteria

Extremely
Favor

Very Strong
Favor

Strong
Favor

Slightly
Favor Equal Slightly

Favor
Strong
Favor

Very Strong
Favor

Extremely
Favor Criteria

9 7 5 3 1 3 5 7 9

cost 4 peak

Table 2. Second evaluators’ comparison according to Saaty’s scale.

Criteria

Extremely
Favor

Very Strong
Favor

Strong
Favor

Slightly
Favor Equal Slightly

Favor
Strong
Favor

Very Strong
Favor

Extremely
Favor Criteria

9 7 5 3 1 3 5 7 9

cost 4 peak

Table 3. Third evaluators’ comparison according to Saaty’s scale.

Criteria

Extremely
Favor

Very Strong
Favor

Strong
Favor

Slightly
Favor Equal Slightly

Favor
Strong
Favor

Very Strong
Favor

Extremely
Favor Criteria

9 7 5 3 1 3 5 7 9

cost 4 peak

According to the evaluator preferences, Table 4 depicts the construction of a comparison matrix.
The comparison matrix is normalized by dividing each element belongs to a column by the sum of the
column’s elements. After that, the elements of each row of the normalized matrix are aggregated and
finally divided by the sum of them to acquire weights of each criteria.

Table 4. Analytic hierarchy process (AHP) processing matrix for calculating the criteria’s weights.

Evaluators Criteria
Original Matrix Normalized Matrix Aggregation Weight
Cost Peak Cost Peak

First
evaluator

Cost 1 1 0.5 0.50 1.00 0.50
Peak 1 1 0.5 0.50 1.00 0.50
Sum 2 2 - - 2.00 -

Second
evaluator

Cost 1 5 0.83 0.83 1.67 0.83
Peak 0.2 1 0.17 0.17 0.33 0.17
Sum 1.2 6 - - 2.00 -

Third
evaluator

Cost 1 3 0.75 0.75 1.50 0.75
Peak 0.33 1 0.25 0.25 0.50 0.25
Sum 1.33 4 - - 2.00 -

2.2.2. Technique for Order Preferences by Similarity to Ideal Solution (TOPSIS)

Yoon and Hwang proposed TOPSIS in 1980 to solve multi-dimensional MCDM problems [30].
In this method, the shortest and fastest distances from the negative ideal and ideal solutions play an
important role in sorting the alternatives. For simplicity, the MCDM problem may be presented in a
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matrix with m alternatives and n criteria which have variables weight (w j, where j = 1, 2, . . . ., n) that
have been previously derived by the AHP method. The decision matrix (DM) that represents the
MCDM (Equation (11)) comprises of the performance (ai j) of ith alternative (Ai) in terms of jth criteria
(C j), where i = 1, 2, . . . , m and j = 1, 2, . . . , n. The TOPSIS technique can be expressed according to the
next steps:

DM =

C1 . . . . . . .. . . . Cn

w1 . . . . . . .. . . . wn

A1
...

Am


a11 . . . . . . . . . a1n

... . . . . . . . . .
...

am1 . . . . . . . . . anm


(11)

Step 1: Constructing normalized decision matrix:
In general, DM’s criteria differ in measuring units (multi-dimension criteria). Therefore, the

elements of DM should be normalized using the following formula.

ri j =
ai j√∑m

k=1

(
akj

)2
(12)

Accordingly, normalized decision matrix (R) can be defined as

R =


r11 · · · r1n
...

. . .
...

rm1 · · · rmn

 (13)

Step 2: Constructing normalized weighted decision matrix:
The normalized weighted decision matrix (V) is constituted by utilizing the normalized decision

matrix (R) with weights that have been acquired through AHP model. The elements of V are computed
by multiplying the elements of R by the corresponding weight as given by;

vi j = w jri j, for i = 1, 2, . . . , m and j = 1, 2, . . . , n (14)

Thus, the obtained matrix from step 2 can be described by

V =


v11 · · · v1n

...
. . .

...
vm1 · · · vmn

 (15)

Step 3: Calculating the negative ideal and ideal solutions:
In steps 3, ideal (A∗) and negative (A−) solutions are computed as follow

A∗ =
{(

maxi vi j
∣∣∣ j ∈ J

)
,
(
mini vi j

∣∣∣ j ∈ J−
)
, i = 1, 2, . . . , m

}
=

{
v∗1, v∗2, . . . , v∗n

}
(16)

A− =
{(

mini vi j
∣∣∣ j ∈ J

)
,
(
maxi vi j

∣∣∣ j ∈ J−
)
, i = 1, 2, . . . , m

}
=

{
v−1 , v−2 , . . . , v−n

}
(17)

where J is a set of benefit criteria with period [1, n] and J− is the complement set of J with period [1, n],
which refers to the cost criterion. Above all, the most preferable solution (alternative) is the ideal
solution (A∗). On the other hand, the least preferable solution is the negative ideal solution (A−).

Step 4: Separation measure’s calculation process:
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In this step, the n-dimension Euclidean distance has been utilized to calculate the separation
distance between each alternative in matrix V and the negative ideal and ideal solutions. Where the
distance (SPi ) of an alternative (Ai) from the ideal solution (v∗j) can be indicated by

SPi =

√∑n

j=1
(vi j − v∗j)

2, for i = 1, 2, . . . , m (18)

Similarly, the distance (SNi ) between an alternative (Ai) and the negative ideal solution (v−j ) can be
computed by

SNi =

√∑n

j=1
(vi j − v−j )

2, for i = 1, 2, . . . , m (19)

However, at the end of step 4 every alternative belongs to matrix V poses two distance values,
which are SPi and SNi to express the nearest and farthest of alternative from the negative ideal and
ideal solutions.

Step 5: Calculating the relative closeness to the ideal solution:
For this stage, relative closeness of alterative (Ai for i = 1, 2, . . . ., m) as regards to ideal solution

(A∗i for i = 1, 2, . . . ., m) can be computed by

CI =
SNi

SNi + SPi

, where i = 1, 2, . . . , m (20)

In addition, C∗i values are within the range [0, 1], where CI = 1 if and only if SPi = 0
(
i.e., Ai = A∗i

)
and CI = 0 iff SNi = 0

(
i.e., Ai = A−i

)
.

Step 6: Sorting the solution according to the closeness to the ideal solution:
The set of solutions (Ai for i = 1, 2, . . . , m) in matrix V are organized in descending order

depending on its closeness’s value to the ideal solution (CI) that computed in previous step. Thus, the
best alternative is the one which has the biggest closeness value (i.e., it has the longest distance from
the A−i and the shortest distance to A∗i ).

3. Results and Discussion

3.1. Case Study

A new load scheduling approach is proposed based on the hybridization of a multi-objective
optimization algorithm and integrated MCDM methods to obtain the optimal load scheduling
for various appliances. A MODE algorithm is presented to minimize the cost and peak of load
simultaneously based on optimality of the Pareto front. After that, seeking to sort the preferred
solutions, hybrid multi-criteria decision making techniques have been utilized to sort according to the
suggested weights that were developed by the developers (experts). The weights reflect the priority of
one criterion relative to another one. Thus, the decision matrix (DM) of the TOPSIS method comprises
the solutions (starting of operation time for each appliance). The various solutions represented in
DM are dominated by the criteria, which are the cost and peak of load. The actual customer load
data adopted from Reference [17], which studied a typical household in South Africa containing 10
appliances. The rated power of each appliance, duration to complete its operation and the allowable
starting and ending time (tS, tE) are mentioned for each appliance and shown in Table 5.
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Table 5. The appliances data [17].

S/No. Appliances Name Duration (slot/day) Power Rate (W)
Allowance Time

tS (slot) tE (slot)

1 Teakettle 10 1900 05:30 07:30
2 Teakettle 10 1900 17:40 20:00
3 Pop-up toaster 10 1010 05:00 07:00
4 Steam Iron 48 1235 16:00 21:00
5 Water heater 120 2600 04:00 08:10
6 Water heater 120 2600 16:00 22:00
7 Oven 10 1230 16:00 19:00
8 Dryer 30 3300 16:00 20:20
9 Dishwasher 150 2500 20:00 24:00
10 Stove 30 3000 05:00 07:00
11 Stove 50 3000 16:00 20:00
12 Cloth washing 45 3000 16:00 22:00
13 Cleaner 30 1200 08:00 10:20

These customer data have been collected within one month and for all weekdays. In a typical
working-class household, the majority of activities happen in the morning and after work. Based on
Table 5, device 1 (a teakettle) managed to operate two times a day for 10 min in the evening and in the
morning. In addition, appliance 2 (pop-up toaster) is managed to operate once a day for 10 min as
illustrated in Table 5. The proposed technique has a 24 h optimization period and a 1 min sampling
time, which encourages a shorter waiting period for behaviour change.

The pricing scheme that has been considered in this work is a ToU tariff, same as in Reference [17].
In a normal period, a tariff of 0.4554 R/kWh is applied and in the peak period, 1.4452 R/kWh tariff is
utilized. R denotes the South African currency, ZAR or rand. The normal periods of consumption
per day are supposed to be 19 h from 20:00 to 01:00, 01:00 to 07:00 and 10:00 to 18:00. In addition, the
periods of peak consumption are considered to be 5 h, from 18:00 to 20:00 and 7:00 to 10:00. The search
space of each appliance is the permitted period of operation, which is represented in Table 5 as the
allowance time.

For the best MODE performance in terms of convergence to global optimal solution, the MSF and
CCF values are recommended by Reference [35] to be 0.75 and 0.5, respectively. Based on Reference [42]
and to increase the diversity of solutions, the preferred P value belongs to the range [5Q, 10Q] and is
chosen to be 10Q, where Q is the count of appliances (decision variables). Based on several extensive
simulation tests, the maximum generation number is found to be 50, which is adequate for obtaining
optimal solutions while minimizing both objectives.

The optimal Pareto front points, which relates the cost and peak of load objectives, are tabulated
in Table 6. Table 6 comprises 130 points that relate the multi-objectives in three columns. According to
these results, the minimum peak of load is 4900 W with cost R18.446. On the contrary, the maximum
peak of load is 8100 W with R13.447 as cost. In the meanwhile, the minimum cost (R12.987) is obtained
with 7535 W, as peak of load. On the other hand, the maximum cost is R21.948 with peak of load is
5600 W.
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Table 6. Optimal Pareto front solutions of the multi-objective optimization differential evolution
(MODE) algorithm.

Cost (Of1) Peak (Of2) Cost (Of1) Peak (Of2) Cost (Of1) Peak (Of2)

12.98692 7535 16.76540 5600 13.75072 7235
13.36800 7500 16.84450 6300 13.81011 5900
13.49626 7230 16.85704 5600 14.06424 6300
13.49626 7230 16.93977 6000 14.09385 7535
13.61875 7235 16.99429 5600 14.39087 7230
13.73637 6830 17.11983 5500 14.41224 6835
13.74577 5600 17.14722 5600 14.58760 6300
13.75732 5765 17.26781 5600 14.67833 5600
13.92228 5600 17.28958 5600 14.74423 6830
14.05591 5600 17.29989 5100 14.75586 6300
14.07092 5600 17.29989 5100 14.89064 8100
14.11744 6300 17.39442 5600 15.01618 5600
14.23217 7235 17.44317 5100 15.16803 5600
14.31820 6610 17.71536 5600 15.57269 6300
14.37924 6300 17.71759 5100 15.74871 6000
14.40745 6300 17.76667 6610 16.01406 5600
14.45480 6610 17.77186 5500 16.16806 6300
14.47657 6300 17.99457 5600 16.22505 6000
14.51748 6610 18.07804 6000 16.24881 5600
14.53151 6300 18.09668 5600 16.77975 6610
14.57225 5600 18.16416 5600 16.85919 6300
14.64566 5600 18.19385 5100 17.03215 5600
14.70645 6300 18.30380 5600 17.27169 5900
14.74877 6300 18.44567 4900 17.30988 5600
14.76691 5600 18.68537 5600 17.75776 5600
14.84610 5600 18.82254 5900 17.87051 6610
14.96677 5600 18.87805 5600 18.02501 6300
15.15953 5600 19.20048 6300 18.15063 6000
15.48122 8100 19.32676 5735 18.34009 5600
15.48996 7500 19.37278 5465 18.69032 5600
15.49161 5600 19.85193 5900 18.90288 5600
15.62895 5900 20.02605 5600 19.33839 6000
15.64346 6835 20.07109 5100 19.38128 5600
15.67918 7535 20.16710 5500 19.95347 6300
15.72925 5600 20.20281 5100 20.16710 5500
15.79424 5600 20.50503 6830 20.35623 5600
16.07535 6300 20.56211 5510 20.64492 6610
16.09885 6610 20.80304 5510 20.80824 6000
16.14933 6000 20.87777 5500 21.08077 5500
16.18398 5600 20.87777 5500 21.94791 5600
16.23627 5600 21.54894 5510 13.44718 8100
16.25046 5100 21.69791 5500 14.62356 6300
16.53181 7500 13.36470 8100 - -
16.58435 5600 13.61561 7535 - -

Following an earlier discussion, the MODE algorithm candidate is an optimal solutions’ set of
load scheduling problems, which is defined by an optimal Pareto front. Next, the set of optimal
solutions is utilized as an input for the hybrid AHP-TOPSIS model to order the of optimal solutions’
preference. To summarize, the first ten scoring solutions of the load scheduling of every evaluator are
listed in Tables 7–9, respectively. The first 13 rows of each table present the start of the appliance’s
operation time. The fourteen (SP) and fifteen (SN) rows represent the measurements of separation
for every alternative (solution) in DM which are relative to both ideal solutions and negative ideal
solutions, respectively. The sixteen row (CI) refers to the closeness degree to the ideal solution. The last
two rows present the criteria that are used in the MCDM method. According to Tables 7–9, the set
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of the starting time slot for the operation of 10 appliances (380 (i.e., 06:20), 990 (i.e., 16:30), 1051 (i.e.,
17:31), 356 (i.e., 05:56), 1074 (i.e., 17:54), 325 (i.e., 05:25), 976 (i.e., 16:16), 555 (i.e., 09:15), 276 (i.e., 04:36),
1191 (i.e., 19:51), 1277 (i.e., 21:17), 1201(i.e., 20:01) and 1043 (i.e., 17:23) is better efficient to offer an
acceptance balance between the cost and peak of load. The score of closeness for the previous starting
time set is 0.83771 with a cost and peak of load about R13.74577 and 5600 W, respectively. In fact, the
integrated AHP-TOPSIS implies the optimal and best solutions according to the evaluators’ weights.
Moreover, the weights of the first, second and third developers for the cost criterion were 0.5, 0.83
and 0.75, respectively. In the meantime, the weights of the first, second and third developers for the
peak of load criterion were 0.5, 0.17 and 0.25, respectively. The weight differences make the sorting
configuration of the first developer different to those of second and third evaluators. That is traced to
the second developer which gives equal weights for each criterion.

Based on the integrated AHP-TOPSIS approach, the average scores of closeness to the ideal
solution and the distance between an alternative and ideal and negative ideal solutions are obtained.
These scores, for all developers, with a starting time for all appliances as well as their associated cost
and peak of load are tabulated in Table 10. The set of operation starting times for the 10 appliances
(380, 990, 1051, 356, 1074, 325, 976, 555, 276, 1191, 1277, 1201 and 1043) still has the highest closeness
score to the ideal solution at around 0.87994.
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Table 7. Scores based on integrated analytic hierarchy process-technique for order preferences by similarity to ideal solution (AHP-TOPSIS) for first developer.

Device Starting Time of Operation for Each Device (Each Column Represents an Alternative)

Appliances

Teakettle 356 399 437 344 402 348 419 379 402 412
Teakettle 1074 1092 1156 1146 1104 1096 1130 1070 1104 1128

Pop-up toaster 325 344 318 380 319 400 365 350 319 398
Steam Iron 976 1023 962 1038 1000 973 1042 1025 1000 1006

Water heater 276 278 246 251 255 255 282 312 255 279
Water heater 1191 1192 1190 1196 1200 1181 1198 1187 1200 1195

Oven 1051 1012 1063 978 1014 970 997 1121 1044 1061
Dryer 1043 1028 1046 1040 996 1002 968 1037 996 1040

Dishwasher 1277 1263 1280 1252 1269 1289 1279 1254 1269 1286
Stove 380 312 371 365 337 369 308 306 337 302
Stove 990 972 968 963 1038 1034 1014 968 1038 979

Cloth washing 1201 1216 1226 1197 1219 1210 1191 1198 1185 1181
Cleaner 555 512 585 543 581 571 543 486 568 525

MCDM indices
SP 0.00388 0.00432 0.00443 0.00482 0.00487 0.00492 0.00655 0.00669 0.00668 0.00694
SN 0.03323 0.03303 0.03257 0.03271 0.03207 0.03201 0.03143 0.03122 0.03014 0.02987
CI 0.89536 0.88428 0.88024 0.87163 0.86817 0.86679 0.82744 0.82357 0.81867 0.81141

Criteria
Cost 13.7458 13.7573 13.9223 13.8101 14.0559 14.0709 14.0642 14.1174 14.5723 14.6457
Peak 5600 5765 5600 5900 5600 5600 6300 6300 5600 5600
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Table 8. Scores based on integrated AHP-TOPSIS for second developer.

Device Starting Time of Operation for Each Device (Each Column Represents an Alternative)

Appliances

Teakettle 356 402 399 407 437 344 350 377 348 419
Teakettle 1074 1104 1092 1095 1156 1146 1094 1082 1096 1130

Pop-up toaster 325 319 344 388 318 380 328 346 400 365
Steam Iron 976 1000 1023 1209 962 1038 1176 1183 973 1042

Water heater 276 255 278 274 246 251 259 258 255 282
Water heater 1191 1200 1192 971 1190 1196 1197 1196 1181 1198

Oven 1051 1014 1012 1013 1063 978 1117 1028 970 997
Dryer 1043 996 1028 979 1046 1040 1039 1041 1002 968

Dishwasher 1277 1269 1263 1237 1280 1252 1241 1254 1289 1279
Stove 380 337 312 300 371 365 378 313 369 308
Stove 990 1038 972 1025 968 963 996 966 1034 1014

Cloth washing 1201 1219 1216 1271 1226 1197 966 1027 1210 1191
Cleaner 555 581 512 580 585 543 589 556 571 543

MCDM indices
SP 0.00388 0.00432 0.00443 0.00482 0.00487 0.00492 0.00655 0.00669 0.00668 0.00694
SN 0.03323 0.03303 0.03257 0.03271 0.03207 0.03201 0.03143 0.03122 0.03014 0.02987
CI 0.89536 0.88428 0.88024 0.87163 0.86817 0.86679 0.82744 0.82357 0.81867 0.81141

Criteria
Cost 13.7458 13.7573 13.9223 13.8101 14.0559 14.0709 14.0642 14.1174 14.5723 14.6457
Peak 5600 5765 5600 5900 5600 5600 6300 6300 5600 5600
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Table 9. Scores based on integrated AHP-TOPSIS for third developer.

Device Starting Time of Operation for Each Device (Each Column Represents an Alternative)

Appliances

Teakettle 356 402 407 399 437 344 407 397 397 397
Teakettle 1074 1104 1095 1092 1156 1146 1078 1063 1063 1063

Pop-up toaster 325 319 388 344 318 380 332 383 328 382
Steam Iron 976 1000 1209 1023 962 1038 1209 1000 1176 1176

Water heater 276 255 274 278 246 251 274 259 259 285
Water heater 1191 1200 971 1192 1190 1196 971 1197 1197 1197

Oven 1051 1014 1013 1012 1063 978 1071 973 995 1011
Dryer 1043 996 979 1028 1046 1040 979 1024 1039 1031

Dishwasher 1277 1269 1237 1263 1280 1252 1237 1262 1241 1231
Stove 380 337 300 312 371 365 300 382 339 300
Stove 990 1038 1025 972 968 963 1025 992 997 997

Cloth washing 1201 1219 1271 1216 1226 1197 1201 966 966 966
Cleaner 555 581 580 512 585 543 580 589 589 589

MCDM indices
SP 0.00370 0.00394 0.00431 0.00439 0.00492 0.00498 0.00572 0.00644 0.00610 0.00610
SN 0.03593 0.03582 0.03554 0.03518 0.03461 0.03455 0.03559 0.03871 0.03655 0.03655
CI 0.90675 0.90089 0.89179 0.88917 0.87552 0.87397 0.86157 0.85743 0.85694 0.85694

Criteria
Cost 13.7458 13.7573 13.8101 13.9223 14.0559 14.0709 13.7364 12.9869 13.4963 13.4963
Peak 5600 5765 5900 5600 5600 5600 6830 7535 7230 7230
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Table 10. Average scores based on integrated AHP-TOPSIS for all developers.

Device Starting Time of Operation for Each Device (Each Column Represents an Alternative)

Appliances

Teakettle 356 399 402 437 344 407 348 419 379 402
Teakettle 1074 1092 1104 1156 1146 1095 1096 1130 1070 1104

Pop-up toaster 325 344 319 318 380 388 400 365 350 319
Steam Iron 976 1023 1000 962 1038 1209 973 1042 1025 1000

Water heater 276 278 255 246 251 274 255 282 312 255
Water heater 1191 1192 1200 1190 1196 971 1181 1198 1187 1200

Oven 1051 1012 1014 1063 978 1013 970 997 1121 1044
Dryer 1043 1028 996 1046 1040 979 1002 968 1037 996

Dishwasher 1277 1263 1269 1280 1252 1237 1289 1279 1254 1269
Stove 380 312 337 371 365 300 369 308 306 337
Stove 990 972 1038 968 963 1025 1034 1014 968 1038

Cloth washing 1201 1216 1219 1226 1197 1271 1210 1191 1198 1185
Cleaner 555 512 581 585 543 580 571 543 486 568

MCDM indices
SP 0.00433 0.00480 0.00493 0.00518 0.00522 0.00554 0.00674 0.00698 0.00708 0.00736
SN 0.03235 0.03176 0.03199 0.03132 0.03127 0.03156 0.02961 0.02937 0.02927 0.02898
CI 0.87994 0.86692 0.86370 0.85655 0.85537 0.84745 0.81386 0.80756 0.80474 0.79705

Criteria
Cost 13.74577 13.92228 13.75732 14.05591 14.07092 13.81011 14.57225 14.64566 14.67833 14.76691
Peak 5600 5600 5765 5600 5600 5900 5600 5600 5600 5600
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A comparison of the load scheduling before and after applying the proposed method is presented
in Figure 2. The peak load consumption was about 10.5 kW, while the best optimal solution based
on MODE-AHP-TOPSIS is 5.6 kW (i.e., 47% energy saving). The cost of energy consumption before
using the proposed scheduling method was about R25.37, while after applying the proposed method it
decreased to R13.74 (i.e., a 46% cost saving).
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Figure 2. Total load before and after load scheduling.

3.2. Validation of The Proposed Scheduling Model

To highlight the differences between the proposed method and the previously published methods, a
comparison between the methods presented in References [17,21] and the proposed method is conducted.
The same customer data and pricing scheme (ToU) are common for all methods. The comparison
results of these methods are presented in Table 11. According to these results, and before applying
any scheduling method, the total energy consumption and total cost are about 27.18 kWh and R25.37,
respectively, while the peak load is about 10.5 kW. Before scheduling, all cited parameters are the same
for all methods because scheduling is based on baseline customer data. While after scheduling, in
Reference [17] the total cost reduces to R18.80 (i.e., a 25% cost reduction) and peak load decreases to
8.4 kW (a 20% peak load reduction). In Reference [21], the total cost and peak load become 17.38 (i.e., a
31% cost reduction) and 6.8 kW (i.e., a 35% peak reduction). For the proposed method, the total cost of
customer consumption reduces to R13.74 (i.e., a 46% cost reduction) and the peak load decreases into
5.6 kW (i.e., a 47% peak reduction). According to these results, the proposed method provides higher
reduction for both cost and peak load than two other methods, when the same total utility revenue for
all method was assumed. The proposed method benefits both customers and utility companies to save
energy and cost concurrently.
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Table 11. Comparison results.

References
Before Scheduling After Scheduling

Total Energy
(kWh)

Peak Load
(kW)

Total
Cost (R)

Total Energy
(kWh)

Peak Load
(kW)

Total
Cost (R)

Cost
Reduction (%)

Peak Load
Reduction (%)

[17] 27.18 10.5 25.37 27.18 8.4 18.80 25 20
[21] 27.18 10.5 25.37 27.18 6.8 17.38 31 35

Proposed
method 27.18 10.5 25.37 27.18 5.6 13.74 46 47

4. Conclusions

Optimal and dynamic load scheduling is proposed to tackle the energy shortage crisis and
supports effective cost and energy savings. A hybrid MODE algorithm and MCDM method is proposed
to optimize the load scheduling problem. The MODE algorithm offers a set of optimal solutions, which
are sorted by the integration of AHP-TOPSIS methods based on the cost of energy and the peak of load
criteria. According to the results of the proposed method, the peak of load is reduced from 10.5 kW to
5.6 kW, which is about a 47% peak reduction. In the meantime, the cost of energy is reduced from
R23.37 to R13.74 for a 46% cost reduction. The superiority of the approach is explained by verifying
the acquired outcomes with the results of various techniques proposed in the literature. The presented
load scheduling provides a holistic DR solution that encourages the customer to schedule their energy
bill and allows the utility company to manage aggregated energy consumption.
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Appendix A

Pseudo code of the MODE model:
Initialization the algorithm
Set parameter limits [SL, SH], population size (P), maximum number of generation (Gmax), MSF, CCF

and data of 10 appliances.
Randomly generate initial population
for i = 1 to P

for j = 1 to Q
DS0

j, i = (S0
j, H − S0

j, L)i
end for
compute O f1, O f2
save O f1 and O f2 in fitness function vectors

end for
G = 1
While G < Gmax

for i = 1 to P
Generate mutant vector
Randomly choose three distinct individual vectors SG

r1, SG
r2 and SG

r3 from the current population
DFG = SG

r2 − SG
r3

ŜG
i = SG

r1 + MSF ∗DFG

Generate the trial vector
Choose Ii randomly belongs to the range [1, Q] and RND ∈ (0, 1)

www.uomustansiriyah.edu.iq
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for j = 1 to Q
if (RND ≤ CCF) or ( j = Ii)

XG
j,i = ŜG

j,i
else

XG
j,i = SG

j,i
end if

end for
for j = 1 to Q

if (XG
j,i < S j,L) or (XG

j,i > S j,H)

DS0
j, i = (S0

j, H − S0
j, L)i

XG
j,i = (S0

j, L)i
+ RND ∗DS0

j, i
end if

end for
Compute O f1 and O f2 for trial vectors

end for
Selection the best solutions to construct the new population
for i = 1 to P

if PS dominate CS
save PS in TP and discard CS

elseif CS dominate PS
save CS in TP and discard PS

else
save both CS and PS in TP

end if
end for
if size of TP > P

sort the solutions according to O f1
if O f1,i = O f1,i+1

sort the i and i+1 solution based on O f2
end if
Initialize the rank value, rk = 1
for i = 1 to P
RSi = rk
Remove solution Si from TP

P = P− 1
for j = 1 to P
if O f1

(
S j

)
= O f1(Si) and O f2

(
S j

)
= O f2(Si)

RS j = rk

elseif O f2
(
S j

)
< O f2(Si)

RS j = rk
end if

rk = rk + 1
end for

end for
Fill the POPG+1 by the solutions belong to the lowest rank front level
if the number of the last front level’s (FL) solutions>remaining slots in POPG+1

set NSL=number of solutions in FL

for z = 1 to Z
sort the solutions of FL in ascending order O fz
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set CDRz
1 = CDRz

NSL = ∞.
for i = 2 to (NSL-1)

CDRz
i =

(
O f z

i+1 −O f z
i−1

)
/
(
O f z

max −O f z
min

)
end for

end for
CDRi =

∑Z
z=1 CDRz

i
end if
else if

POPG+1 = TP

end if
G=G+1

end while
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