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Abstract: In the Distributed Management Task Force, DMTF, the management software in the Internet
of things (IoT) should have five abilities including Fault Tolerance, Configuration, Accounting,
Performance, and Security. Given the importance of IoT management and Fault Tolerance Capacity,
this paper has introduced a new architecture of Fault Tolerance. The proposed hybrid architecture
has used all of the reactive and proactive policies simultaneously in its structure. Another objective of
the current paper was to develop a measurement indicator to measure the fault tolerance capacity in
different architectures. The CloudSim simulator has been used to evaluate and compare the proposed
architecture. In addition to CloudSim, another simulator was implemented that was based on the
Pegasus-Workflow Management System (WMS) in order to validate the architecture that is proposed
in this article. Finally, fuzzy inference systems were designed in a third step to model and evaluate
the fault tolerance in various architectures. Based on the results, the positive effect of using various
combined Reactive and Proactive policies in increasing the fault tolerance in the proposed architecture
has been prominently evident and confirmed.
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1. Introduction

The evolution and transformation of the Internet have transitioned from the Internet of content to
the Internet of services and the Internet of people, and today there is the Internet of things. The Internet
of things, hereinafter referred to as IoT, consists of a series of smart sensors, which, directly and without
human intervention, work together in new kinds of applications. It is obvious that the management
and traditional architecture of the Internet must be changed. For example, the address space for
support must be changed from IPv4 to IPv6. The first and most important thing for upgrading the
management of the IoT is a requirement for a layered and flexible architecture. Many models have
been proposed for the IoT architecture. A basic model is a three-layered architecture. This architecture
has been formed from sensors, network, and process layers (See e.g., [1]).

The explosive growth of smart objects and their dependencies on wireless communication
technologies make the Internet more vulnerable to faults. These faults may be established due to
different reasons, including cyber-attacks, which are referred to in [2]. These faults may provide
daunting challenges to experts, as it becomes more important to manage the participating components
in IoT. The Distributed Management Task Force, briefly referred to as DMTF, has announced that
the cloud management software should have the ability of FCAPS. The first letter of the word that
is character F is an acronym for fault tolerance. In other words, the first feature of the management
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software should entail fault tolerance. Other management capabilities can be considered if there is a
fault tolerance feature. However, in the absence of fault tolerance, other features are not important and
they accompany no management ability. Fault tolerance refers to providing an uninterrupted service
system, even in the presence of an existing fault in the system. It is quite clear that, if we want to
review and implement the management in the IoT layered architecture, the primary focus should be
on its first feature, i.e., fault tolerance.

Different methods have been introduced to increase the fault tolerance in the IoT. For example,
in [3], the virtual form of cluster head nodes are utilized when considering that CH nodes have the
role of forwarding collected data in the IoT application. Therefore, the tolerance of the CH nodes
failure will increase in the network. Furthermore, in [4], the virtualization technique is used in wireless
sensor networks due to the growth of the IoT service. When a fault is developed in wireless sensor
network communications, it has significant impact on many virtual networks running IoT services.
The framework that is proposed in [4] provides the optimization of the fault tolerance in virtualized
wireless sensor networks, with a focus on heterogeneous networks for service-based IoT applications.
Regardless of other methods, the main techniques for increasing fault tolerance can be categorized
in three broad categories. The techniques for increasing fault tolerance have been divided into three
main groups. The first group includes redundancy techniques. These techniques can be implemented
as hardware redundancy, software redundancy, or time redundancy. The second category includes
load balancing techniques. These techniques can also be implemented as hardware, software, or in the
network. Finally, the third group of techniques to increase the fault tolerance (FT) capability is related to
the use and benefit of different policies. These policies are dependent on the environment in which they
are implemented. For example, two types of policies are used in cloud computing environments: the
proactive policy and the reactive policy. The fault will not be allowed in proactive policies and design
should be done in such a way that the fault is forecasted before creating the fault, which is possible
to be prevented. Accordingly, these types of policies cover two phases, including fault forecasting
and fault prevention. This procedure is also followed in reactive policies in which the fault tolerance
operation happens after the occurrence of the fault in the form of fault detection, fault isolation, fault
diagnosis, and fault recovery. Of course, it should be noted that the use of each of these methods in
increasing the FT capability imposes overhead costs to the system, but the highest performance for the
system is achieved when the reactive and proactive policies are used and simultaneously implemented.

The aim of the present study was evaluating the management of fault tolerance in the IoT
communication platform, i.e., its second layer architecture. In this regard, the analysis that was carried
out in [5] was used. Subsequently, a new architecture was proposed, whereby the maximum coverage
of various phases enjoyed the FT capability. The simultaneous benefit from the reactive and proactive
policies achieved the highest possible performance in the output.

The Internet has created extensive variations in industrial scopes and business models. Industrial
internet is the result of combining internet and big data and artificial intelligence and economy in
the world. A developed digital channel is responsible for information delivery based on the latest
technologies regarding the industrial Internet, so that intelligent decisions can be done in the real time
format to enhance the efficiency. To this end, there is a need for a platform in the real world to realize
the rapid integrity and reply to the market as fast as possible. The rapid integrity can be realized and it
can reply to the market as long as it uses resources given the fact that the proposed architecture in this
article was mainly applicable in real time systems. Hence, it can have a wide range of applications in
industrial internet platform and IIoT architecture.

The contributions of this paper are as follows:

• We offer a hybrid modern architecture that simultaneously uses proactive and reactive policies.
• Our proposed architecture uses all three types of reactive policies at the same time.
• Both proactive policies are implemented at the same time in our proposed architecture structure.
• Maximum use of different fault detection/recovery methods is also considered in our

proposed architecture.
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• In addition to simulations that were carried out, the design and implementation of scientific
workflows in the past architectures and our proposed architecture are one of the most important
achievements and innovations of this study.

The remainder of the article has been divided into eight sections. The related previous architectures
are presented in Section 2 of the article. In Section 3, the proposed architecture is introduced and
described. Subsequently, in Section 4, the CloudSim simulator is used to simulate the proposed
architecture and it has compared its performance with previous architectures; in Section 5, scientific
workflows are introduced and the proposed architecture is simulated. In Section 6, the evaluation
systems in fuzzy logic are designed and implemented, and the analysis of the results is discussed; and
ultimately, in Section 7, optimal decision-making is discussed. In Section 8, the conclusions and related
ideas for future work are expressed.

2. Related Works

As expressed in [5], the fault-tolerant architectures of cloud computing are divided into two
general categories according to the policies that will benefit them. The first group is formed by
proactive architectures and the second group includes reactive architectures. As expressed in [6–8],
the preemptive migration and self-healing policies are used in proactive architectures. The Check
Point/Restart, Replication, and Job Migration policies have also been used in reactive architectures.
The Map-Reduce and FT- cloud architectures are examples of proactive architectures. The Map-Reduce
that was introduced in [9–13] has used both proactive policies in its structure. The FT- cloud described
in [14] has only used the self-healing policy.

The FTWS, LLFT, FTM-2, FTM, MPI, Gossip, BFT-Cloud, Haproxy PLR, AFTRC, Vega Warden,
MagiCube, and Candy, as presented in [15–28], are among the reactive architectures. Each of these
architectures simultaneously uses one or two policies. Of course, the architectures of the PLR, AFTRC,
FTM, as presented in [15–17], have used all three reactive policies. The difference between the FTM
with two architectures is that AFTRC and PLR are devoted to real-time systems, whereas FTM is not
devoted to such systems. The difference between PLR with AFTRC is that the PLR has a lower Wall
Clock Time than the AFTRC. An explanation of all architectures mentioned in [5] has been described
in detail. As expressed in [5,16], the AFTRC architecture has benefited from five modules: Recovery
Cache (RC), Decision Maker (DM), Reliability Assessor (RA), Time Checker (TC), and Acceptance Test
(AT) in its internal structure. The AT module is responsible for checking the output value of the virtual
machine. TC performs time checking, i.e., the time that is required for generating the output of the virtual
machine. The RA module that evaluates the reliability of the output, in fact, identifies the percentage of
the output credit that is based on two previous parameters, i.e., the AT and TC. DM module is responsible
for determining and selecting the final output and, finally, the RC module is the storage of the checkpoints
in the case of operation replication. Figure 1 shows the structure of this architecture.
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The two main phases of the FT capability are fault detection and fault recovery. Fault detection
and fault recovery can be conducted in different ways. The Gossip architecture that is presented in [20],
the FTM presented in [15], and the PLR presented in [17] have used the self-detection method. This is
the weakest method of fault detection, because a node itself should detect the fault. Since the PLR
architecture has only used the method in the fault detection phase, it has a very weak capability of
fault detection, and it is a great disadvantage of this architecture. Nevertheless, the architectures of the
FTM and Gossip have also used the methods of other detection and group detection, in addition to
this method.

The majority of the architectures that are proposed in the FT field of cloud computing have
implemented the other detection method in their own fault detection phase. It should be noted that
only the fault group detection method has been in architectures, such as the LLFT and BFT-Cloud,
as presented in [19,22]. The dominant method in fault recovery is also the system recovery method
whereby the recovery is performed at the overall level of the system. Again, it can be seen in this phase
that the LLFT and Vega-Worden architectures that are presented in [22,26] perform the fault recovery
at the node level, which is a weaker method than the previous method. The weakest recovery method
is the fault mask mode in which it sought to exploit the techniques for removing and covering the fault
effect. The FTM and AFTRC architectures that are introduced in [15,18] have used this technique with
other methods.

It is extremely important that all of the studied architectures so far are reactive or proactive.
In addition, the architecture described in [27] is a hybrid one, which is termed as VFT. VFT architecture
utilizes Self-healing, Preemptive Migration, and Replication policies. In [28], it is stated that the
architecture introduced in [27], simultaneously used both proactive and reactive policies. Figure 2
shows the structure of this architecture.
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A computational algorithm, called the success rate for each node, has been individually applied in
VFT architecture. The algorithm decides based on two factors. The first factor is PR, which represents
the performance rate. The second factor is the max success rate, which represents the maximum level
that is considered for the success rate. If the SR of a node is less than or equal to zero, in this case,
the load balancer does not assign tasks to the virtual machine in the next cycles.

It would be possible to decide the failure of a node according to the parameters of SC and TDC.
Parameter SC stands for Status Checker and parameter TDC stands for Task Deadline Checking. If all
of the nodes also fail, the FDM, Which stands for Final Decision-Making, sends feedback to the fault
handler in order to make it aware of this issue. The fault handler detects and recovers the fault, based
on the techniques that are defined and implemented for fault detection and fault recovery. It is worth
noting that the architecture in the fault detection phase acts based on the other detection method
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according to the scenario of the VFT architecture. The fault recovery method in the VFT architecture
has also been implemented at the system level.

The approaches that are presented in [29–33] can be mentioned as some instances of architectural
models of fault tolerance, which have been presented according to other architectural models of the
IoT. Fault tolerance implemented on the internet of military objects has been investigated in [29]. In the
presented model, which is shortly called IOMT, is an approach called MM and presented by Malek
and Maeny, which has been used in order to facilitate fault detection. This method is the majority
of the duplicate entries that have been sent to a dual-processor. In this architecture, the fault mask
technique has also been used on the fault recovery phase. In addition, fault tolerance on routing IoT
is the proposed method in [30]. Layer fault management, which as a plan for end-to-end transfer,
has been introduced in [31]. In [32], another method has been presented using the concept of virtual
services. In the present article, a genetic algorithm, which is known as NSG-ii, has been used. Fault
tolerance that is based on the architecture of the middle base ware has been shown in [33]. In this
method, redundancy on the services’ level has been implemented. To conclude, the shortcomings of
the existing solutions are as follows:

• The highest efficiency of the fault tolerance architecture is obtained through hybrid architectures.
Among all of the investigated architectures, VFT architecture is the hybrid one, so the lack of
hybrid architecture is extensively felt in this scope.

• VFT architecture enjoys proactive policies in the integrative way. However, it has only used
the replication method among reactive policies and it has not utilized all of the methods in an
integrative way. Thus, it cannot have the maximum reliability.

• Fault detection method in architecture has been done in another detection way, which is an average
method among the detecting methods.

• The fault recovery method of the VFT architecture has been the only previous hybrid architecture
in the system level, in which the refinement of faults has not happened in VMs’ level. Moreover,
the fault mask method has not enjoyed this method in fault recovery phase of architecture.

3. Proposed Approach

The architecture that is proposed in this paper has been called PRP-FRC. This architecture is
considered as a hybrid architecture in terms of implementing the reactive and proactive policies.
It has been sought in the PRP-FRC that proactive policies, including preemptive migration and
self-healing and reactive policies, including Checkpoint/Restart and Job Migration and Replication can
be simultaneously implemented. Figure 3 shows the proposed PRP-FRC architectural structure.

In the proposed architecture of PRP-FRC, tasks are initially divided between physical nodes,
which are the hosts, by the load balancer. Subsequently, they are divided between virtual nodes by the
manager available in each node with the help of the mapping table. Output accuracy and checking the
reliability of the output for a virtual machine is achieved by the AT module. If the output validity of
a virtual node is not confirmed by the AT, then the task will be assigned to another virtual machine
by the manager via feedback that is available from the AT to the manager. The TC module makes
decisions on the time validity of a virtual machine’s generated output. In fact, the task of the TC is to
check that the virtual machine has produced an output in the time that is taken to respond or has spent
a more defined period to generate the time departure.

The importance of the mentioned module is very critical, because the proposed architecture of
PRP-FRC, such as the AFRC architecture, is intended for real-time applications. The RA module decides
on the reliability rate of a node that is based on the output values of the two previous parameters (AT and
TC). In other words, if the percentage of node reliability is less than the limit that is defined in the RA
modules, then a new task will not be assigned to the virtual node in the next cycles. In the process of
verifying the time validity of the virtual nodes, if none of the nodes have the desired output, the TC issues
an “All Nodes Failed” message. The request for job migration is activated in this case, and the guest
virtual node on another host is selected by the MPI architecture and the job migration is done.
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In the case where all of the nodes are not failed and only some of them have gained the reliability
that is necessary for the production of the Trust Output, and then two modes will be implemented
based on the decision of the DM module, which stands for Decision Making. The first case is that the
task’s restart operation is performed from the last checkpoint that is based on the storage of checkpoints
in the architectural structure. The second case is that the job migration to a virtual machine happens on
another host, regardless of the checkpoint. The choice of a method in this step depends on the policies
that are defined in the DM module. Algorithm 1 shows the algorithm of the proposed architecture of
the PRP-FRC.

Algorithm 1: The algorithm of the PRP-FRC

1: Begin
2: SRL = System-Reliability-Level
3: RC = Repository-of-Checkpoints
4: AT = Acceptance-Test (its check the result-validity)
5: TC = Time-Check (its check cloudlet-execution-time)
6: T = Max Acceptable Time
7: k = Number of Cloudlet Replica
8: #Step 1
9: Cloudlet-List = Create_Job (with Random-details)
10: #Step 2
11: Load-Balancer (input: Cloudlet-List):
12: chosen-host = Choose execution-environment with Host-Allocation-Policy
13: # it can be a local-host
14: # or chosen from an external Host & communicate with MPI-Application
15: for each Cloudlet in Cloudlet-List:
16: {
17: Send Cloudlet to Manager of chosen-host
18: #Step 3
19: Manager (input: cloudlet):
20: Allocate K new ‘VM’
21: Create K ‘Replica’ of each ‘Cloudlet’
22: Add Replica to Replica-List
23: for each Replica in Replica-List:
24: { Send Replica to VM[i]
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25: i = i + 1
26: #Step 4
27: result = Run (Replica in VM & create CheckPoint in every t second)
28: if (result = ‘OK’):
29: {
30: AT=True
31: if (execute_Time < T):
32: {
33: TC=True
34: }
35: else:
36: {
37: TC=False
38: }
39: }
40: else:
41: {
42: AT=False
43: TC=False
44: }
45: if (AT=True & TC=True):
46: {
47: {VM(i)-Status = Success
48: }
49: else:
50: {
51: VM(i)-Status = Fail
52: }
53: }
54: #Step 5
55: if (All-VM-Status is ‘Fail’):
56: {
57: Cloudlet Migrate to other Host with ‘MPI-Application’
58: }
59: RA = Calculate Reliability of VM’s that run this Cloudlet
60: DM = Find VM with Best Reliability and save Best-RA
61: #Step 6
62: if (Best-RA < SRL):
63: {
64: #do Preemptive-Migration:
65: Kill VM with Minimum Reliability
66: Allocate New VM
67: Add Cloudlet to67 Cloudlet-List again
68: Restart Cloudlet68 on other VM - from last CheckPoint stored in RC
69: #or
70: #do Job-Migration
71: Send Cloudlet to MPI-Application
72: Start Cloudlet from ‘Begin’
73: }
74: else:
75: {
76: Final-Result = Result of VM with Best-RA
77: }
78: }
79: End
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As a result, the following issues can be mentioned if we want to state the proposed strength to
cover the weaknesses of the previous architecture.

• The proposed architecture is a hybrid architecture, so it is expected to have the highest efficiency.
• The proposed architecture enjoys all reactive and proactive policies in an integrated way, so it

leads the system to achieve the highest level of fault tolerance.
• The proposed architecture has simultaneously utilized two methods of self-detection and other

detection in the detection phase of the faults.
• The proposed architecture has used every refinery fault, which is unlike the previous architectures

and hybrid VFT ones. It also masks the faults and refines the faults that are in Vms levels. Finally,
it prepares the refinement of the faults in the system level.

4. Simulation of the Proposed Architecture in CloudSim

CloudSim is used to simulate and compare the proposed architecture with previous architectures.
This simulator can generate various reports on energy consumption, cost, and execution time of
each Cloudlet. The ease of implementation, simulation of different types of network topologies and
architectures, the defining of multiple DataCenter, ease of implementation of different policies for
allocating Vm and Host, and support for Space Shared and Time-Shared scheduling are the benefits of
this simulator.

The implemented scenario in this article has been designed in the cloudSim simulator in a two-host
DataCenter with a number of different processors. Each host has four VMs with various specifications.
The ability of VMs is differently defined to deal with different versions of each Cloudlet, whose different
behaviors and functions have been examined. Tables 1 and 2 show the configuration specifications of
DataCenter and Vm, respectively.

Table 1. Datacenter Configuration.

Date Center Configuration

- Host#0 Host#1

PE’s Number 5 2
RAM 4096 4096

Storage (MB) 1000000 1000000
BandWidth 10000 10000

MIPS 3000 3000

Table 2. Virtual Machine Configuration.

Virtual Machine Configuration

- VM#0 VM#1 VM#2 VM#3

Image Size (MB) 10000 10000 10000 10000
RAM 512 512 512 512
MIPS 1600 700 2900 1200

BandWidth 1000 1000 1000 1000
PE’s Number 1 1 1 1

VMCostPerSec($) 3 1 4 2

Moreover, a number of Cloudlet have been designed and implemented with a different processing
length. The purpose of this type of design was to have a different length of Cloudlets to create different
modes of faults on the system.
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After designing DataCenter, Host, Vm, and Cloudlet, and before simulation, it has become
necessary to extend the CloudSim based on the proposed architecture. According to which, the manner
of distribution of computational resources, such as Ram and especially PEs among requests, should be
determined. This scheduling can be in the form of Space Shared, Time-Shared, or Customized policy
definition. In all simulations, we have used all resources in Space Shared manner.

In the Reliability calculation algorithms, the calculations are done in such a way that the effect
of a fail or a Success causes changes with a slower slope in the reliability of each step. Additionally,
at the beginning of a Vm, the fail has a different effect with the fails occurred after several requests.
Obviously, the reliability in each stage of the simulation becomes equal to the average reliability of all
of the VMs at that stage. The simulation results in Tables 3–5 and Figure 4 is shown. These results have
demonstrated the positive effect of using all policies as hybrids in the proposed architecture.

Table 3. Results of Simulating AFTRC in CloudSim.

Event
Host VM#0 VM#1 VM#2 VM#3

- AT TC RA AT TC RA AT TC RA AT TC RA

- 0 1 1 1 1 1 1 1 1 1 1 1 1

- 0 1 1 1 1 0 0.52 1 1 1 1 1 1

VM#3 Failed 0 1 1 1 1 1 0.61 1 1 1 0 - 0.53

- 0 1 1 1 1 0 0.34 1 1 1 1 1 0.63

- 0 1 0 0.56 1 0 0.21 1 1 1 1 0 0.37

All-Failed 0 1 0 0.35 1 0 0.15 1 0 0.58 1 0 0.24

Jon Mig. To Host#1 1 1 1 0.67 1 1 0.57 1 1 0.79 1 1 0.62

VM#3 CheckPointing & Failed 0 1 1 0.74 1 1 0.66 1 1 0.83 0 - 0.37

VM#3 Restart on VM#1 0 - - 0.74 1 1 0.83 - - 0.83 - - 0.62

- 0 1 1 0.79 1 1 0.86 1 1 0.86 1 1 0.69

VM#2 Failed 0 1 1 0.83 1 1 0.89 0 - 0.58 1 1 0.75

VM#0 & VM#2 Failed 0 0 - 0.56 1 1 0.91 0 - 0.43 1 1 0.80

- 0 1 1 0.65 1 1 0.93 1 1 0.54 1 1 0.84

VM#2 CheckPointing & Failed 0 1 1 0.72 1 0 0.60 0 - 0.43 1 1 0.87

Restat on VM#3 - - - 0.72 - - 0.60 - - 0.54 1 1 0.93

VM#2 CheckPointing & Failed 0 1 1 0.77 1 0 0.45 0 - 0.44 1 1 0.95

Restat on VM#1 - - - 0.77 1 1 0.72 - - 0.54 - - 0.95

- 0 1 1 0.82 1 0 0.52 1 1 0.63 1 1 0.96

VM#2 Failed 0 1 1 0.85 1 1 0.61 0 - 0.51 1 1 0.96

- 0 1 1 0.88 1 1 0.80 1 1 0.61 1 1 0.97

- 0 1 1 0.90 1 1 0.84 1 1 0.69 1 1 0.97

VM#0 & VM#2 Failed 0 0 - 0.74 1 1 0.87 0 - 0.57 1 1 0.98

- 0 1 1 0.79 1 1 0.90 1 1 0.66 1 1 0.98

VM#0 & VM#2 Failed 0 0 - 0.70 1 1 0.92 0 - 0.57 1 1 0.98
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Table 4. Results of Simulating VFT in CloudSim.

Event

Cloudlet
Host#1 Host#2

VM#1 VM#2 VM#3 VM#4 VM#1 VM#2 VM#3 VM#4
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R
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VM#1 Failed 2 250 0 0.5 1 1 1 1 1 1 - - - - - - - -

Pree. Mig. To VM#2 - - - 0.83 1 1 1 - 1 - - - - - - - -

VM#2 Failed 3 500 1 0.88 0 0.66 1 1 1 1 - - - - - - - -

Pree. Mig. To VM#1 - - 1 0.92 - 0.88 - 1 - 1 - - - - - - - -

VM#3 Failed 4 750 1 0.95 1 0.92 0 0.75 1 1 - - - - - - - -

Pree. Mig. To VM#2 - - 1 0.96 - 0.92 - 0.91 - 1 - - - - - - - -

VM#4 Failed 5 1000 1 0.97 1 0.95 1 0.94 0 0.8 - - - - - - - -

Pree. Mig. To VM#1 - - 1 0.98 - 0.95 - 0.94 - 0.93 - - - - - - - -

Fails > 1 =>
Migration 6 7500 0 0.66 0 0.66 0 0.66 0 0.66 - - - - - - - -

Pree. Mig. - - 0 0.57 0 0.57 0 0.57 0 0.57 - - - - - - - -

Fails > 1 =>
Migration 7 7800 0 0.5 0 0.5 0 0.5 0 0.5 - - - - - - - -

Pree. Mig. - - 0 0.44 0 0.44 0 0.44 0 0.44 - - - - - - - -

Fails > 1 =>
Migration 8 3700 0 0.4 0 0.4 1 0.5 0 0.5 - - - - - - - -

Pree. Mig. - - - 0.4 0 0.36 1 0.54 - 0.5 - - - - - - - -

Fails > 1 =>
Migration 9 3800 0 0.36 0 0.33 1 0.58 1 0.54 - - - - - - - -

Pree. Mig. - - 0 0.33 - 0.33 - 0.58 1 0.58 - - - - - - - -

Fails > 1 =>
Migration 10 3600 0 0.30 0 0.30 1 0.61 1 0.61 - - - - - - - -

Pree. Mig. - - 0 0.28 0 0.28 - 0.61 - 0.61 - - - - - - - -

Fails > 1 =>
Migration 11 3650 0 0.26 0 0.26 1 0.64 1 0.64 - - - - - - - -

Pree. Mig. - - 0 0.25 0 0.25 - 0.64 - 0.64 - - - - - - - -

VM#1 Failed 12 250 0 0.23 1 0.29 1 0.66 1 0.66 - - - - - - - -

Pree. Mig. To VM#2 - - - 0.23 1 0.33 1 0.68 1 0.68 - - - - - - - -

VM#2 Failed 13 500 1 0.27 0 0.31 1 0.70 1 0.70 - - - - - - - -

Pree. Mig. To VM#1 - - 1 0.31 0 0.3 1 0.72 - 0.70 - - - - - - - -

VM#3 Failed 14 750 1 0.35 1 0.33 0 0.68 1 0.72 - - - - - - - -

Pree. Mig. To VM#2 - - 1 0.38 - 0.33 - 0.68 - 0.72 - - - - - - - -

VM#4 Failed 15 1000 1 0.40 1 0.36 1 0.7 0 0.68 - - - - - - - -

Pree. Mig. To VM#1 - - 1 0.43 - 0.36 - 0.7 - 0.68 - - - - - - - -

VM#1 Failed 16 250 0 0.41 1 0.39 1 0.71 1 0.7 - - - - - - - -

Pree. Mig. To VM#2 - - - 0.41 1 0.41 - 0.71 - 0.7 - - - - - - - -

VM#1 Failed 17 250 0 0.4 1 0.44 1 0.72 1 0.71 - - - - - - - -

Pree. Mig. To VM#2 - - - 0.4 1 0.46 - 0.72 - 0.71 - - - - - - - -

VM#1 Failed 18 250 0 0.38 1 0.48 1 0.73 1 0.72 - - - - - - - -

Pree. Mig. To VM#2 - - - 0.38 1 0.5 - 0.73 - 0.72 - - - - - - - -

VM#1 Failed 19 250 0 0.37 1 0.51 1 0.75 1 0.73 - - - - - - - -

Pree. Mig. To VM#2 - - - 0.37 1 0.53 - 0.75 - 0.73 - - - - - - - -

VM#1 Failed 20 250 0 0.35 1 0.54 1 0.76 1 0.75 - - - - - - - -

Pree. Mig. To VM#2 - - - 0.35 1 0.56 0.76 0.75 - - - - - - - -
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Table 5. Results of Simulating PrP-FRC in CloudSim.

Event
Host VM#0 VM#1 VM#2 VM#3 RA

- AT TC RA AT TC RA AT TC RA AT TC RA -

- 0 1 1 1 1 1 1 1 1 1 1 1 1 1

- 0 1 1 1 1 0 0.52 1 1 1 1 1 1 0.88

VM#3 Failed 0 1 1 1 1 1 0.61 1 1 1 0 - 0.53 -

Pree. Mig. To VM#1 0 - - 1 1 1 0.80 - - 1 - - 1 0.95

- 0 1 1 1 1 0 0.45 1 1 1 1 1 1 0.86

TC-Fail > 2 0 1 0 0.58 1 0 0.27 1 1 1 1 0 0.56 -

Pree. Mig. 0 - - - - - - 1 1 1 - - - 0.68

All-Failed 0 1 0 0.37 1 0 0.19 1 0 0.60 1 0 0.35 0.38

Jon Mig. To Host#1 1 1 1 0.79 1 1 0.73 1 1 0.86 1 1 0.78 0.79

VM#3 CheckPointing & Failed 0 1 1 0.83 1 1 0.78 1 1 0.89 0 - 0.46 -

VM#3 Restart on VM#1 0 - - 0.83 1 1 0.89 - - 0.89 - - 0.78 0.85

- 0 1 1 0.86 1 1 0.91 1 1 0.91 1 1 0.82 0.88

VM#2 Failed 0 1 1 0.89 1 1 0.93 0 - 0.62 1 1 0.86 -

VM#2 Pree. Mig. To VM#1 0 - - 0.89 1 1 0.96 - - 0.91 - - 0.86 0.90

VM#0 & VM#2 Failed 0 0 - 0.62 1 1 0.97 0 - 0.63 1 1 0.88 -

Pree. Mig. To VM#1 & VM#3 0 - - 0.89 1 1 0.98 - - 0.91 1 1 0.94 0.93

- 0 1 1 0.91 1 1 0.98 1 1 0.93 1 1 0.95 0.94

VM#2 Failed 0 1 1 0.93 1 0 0.67 0 - 0.66 1 1 0.96 -

VM#2 Pree. Mig. To VM#3 0 - - 0.93 - - 0.67 - - 0.93 1 1 0.98 0.88

VM#2 Failed 0 1 1 0.94 1 0 0.52 0 - 0.67 1 1 0.98 -

VM#2 Pree. Mig. To VM#1 0 - - 0.94 1 1 0.76 - - 0.93 - - 0.98 0.90

- 0 1 1 0.95 1 0 0.57 1 1 0.94 1 1 0.98 0.86

VM#2 Failed 0 1 1 0.96 1 1 0.65 0 - 0.70 1 1 0.99 -

VM#2 Pree. Mig. To VM#1 0 - - 0.96 1 1 0.82 - - 0.94 - - 0.99 0.93

- 0 1 1 0.97 1 1 0.86 1 1 0.95 1 1 0.99 0.94

- 0 1 1 0.97 1 1 0.89 1 1 0.96 1 1 0.99 0.95

VM#0 & VM#2 Failed 0 0 - 0.84 1 1 0.91 0 - 0.76 1 1 0.99 -

Pree. Mig. To VM#1 & VM#3 0 - - 0.97 1 1 0.95 - - 0.96 1 1 0.99 0.97

- 0 1 1 0.98 1 1 0.96 1 1 0.97 1 1 0.99 0.97

VM#0 & VM#2 Failed 0 0 - 0.87 1 1 0.97 0 - 0.79 1 1 0.99 -

Pree. Mig. To VM#1 & VM#3 0 - - 0.98 1 1 0.98 - - 0.97 1 1 0.99 0.98
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As it can be understood from the data center configuration and Vms of Tables 1 and 2, the Cloudlets
had a data size with a constant value of 300. However, the lengths of jobs were considered to be
different, so that, when it faced different faults, various behaviors could be appeared. Regarding the
time variation value, the acceptable time for the implementation was considered to be between 1 to 7 s.
Thus, in the case that one Vm presented an output in less than 1 s, it would be unaccepted, and if this
time was more than 7 s, the output would be unacceptable, as well. Therefore, this time range should
be considered in the first phase of analyzing virtual machines’ outputs. Regarding the second phase,
if the output was produced in the acceptable time range, the validation of the output’s amount would
be considered to see whether the amount of the produced output of Vm is acceptable or not.

The reliability of a Host Vm equals the average of all Vms’ reliability of one Host. It is well
evident that, when all Vms have acceptable outputs, the amount of total reliability would be increased.
Moreover, when all of the Vms fail, it is quite natural that their total reliability would be decreased.
These two, are respectively the best and worst possible modes, which include the Max and Min
of the reliability. In the case that Vm has some acceptable outputs and lacks the expected output,
the reliability would be high or low. On the other hand, as time passes, the results become more
important. Our criteria is the current time and status of each Vm. It is possible that a Vm may have
had an acceptable output before, but it lacks proper output at the present, or vice versa. Therefore,
the number of successful outputs or failed ones, as well as the success-effect coefficient versus the
fail-effect coefficient is considered to be the effective parameters when doing calculations.

For example, we assume that the Success-Effect coefficient, which is indicated as SE, equals to 0.1
and the Fail-Effect coefficient, indicated as FE, equals to 0.03, the importance factor, indicated as IF,
equals 0.6, whose highest value would be 1. The number of success and failure would be considered,
respectively, as CSC and CFC, in which CSC is the abbreviation for Continues Success Counter and CFC
is the abbreviation for Continues Fail Counter, whose first values are considered to be zero. As a result,
the amount of every Vm’s reliability equals to the amount of previous round’s reliability, plus the
multiplication of the previous round’s reliability when multiplied in CSC and the success-effect or
fail-effect coefficient, which is multiplied to the importance factor.

5. Validation Platform

5.1. Simulation Environment

Many scientific calculations use workflow technologies to manage complexity [6]. Workflow
technology is used to the schedule calculating tasks on distributed resource to manage task
interdependence. The aim of this scheduling is to optimize the mapping between tasks and appropriate
resources. One of the important factors that have a great influence on choosing a scheduling strategy
is the dependence and independence among the tasks. Some tasks have to be done in succession;
these kinds of tasks are called dependent tasks. In contrast, there is another category of tasks that are
simultaneously run or in a special order; these kinds of tasks are called independent tasks. Scheduling
dependent tasks is known as workflow scheduling.

A simulated environment has been implemented based on the Pegasus-WMS workflow
management system to validate the architecture proposed in this article (Pegasus-WMS). In Pegasus,
the workflows are described as Direct A cycle Graphs (DAGs). In DAG, each node represents one of
the tasks. The edges of a DAG also represent the interdependence between those tasks. Montage and
CyberShake are the most famous scientific workflows. Montage is applied for the processing and
transmitting images that have been used in NASA. Figure 5a shows the Montage Workflow. Figure 5b
also shows CyberShake Workflow. Cybershake Workflow has been used to process the waves at the
California Seismological Center.
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The Pegasus-WMS approach acts as a bridge between the field of science and the field of action
expressing the connection between them. In addition to executing a described abstract workflow,
the Pegasus Workflow Management System has the ability to translate the tasks into the jobs.
Subsequently, it also attends the running of those jobs. This workflow management system is capable
of simultaneously executing data management and running the jobs. Additionally, it has the ability
to monitor job execution and tracking. Eventually, Pegasus can handle them in the case of failure.
The mentioned actions are performed by the five Pegasus subsystems. Figure 6 shows the architecture
of the Pegasus workflow management system.Electronics 2019, 8, x FOR PEER REVIEW 13 of 23 
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The first major Pegasus subsystem is Mapper. Mapper is the producer of an executive workflow
that is based on an abstract workflow that was provided by the user. The second sub-system is the
local execution engine, which is responsible for submitting the jobs that are defined by the workflow.
Submitting the jobs is done based on the workflow. Subsequently, jobs’ states are tracked and the
readiness timing of running those jobs is determined. The next sub-system is job scheduler, which
is responsible for the management of unique job scheduling and monitoring their implementation
on local or remote resources. The remote execution engine’s sub-system manages the execution of
one or more tasks based on the possible or probable structures of a sub-workflow on one or more
remote computing nodes. Finally, the subsystem of the monitoring component is responsible for
monitoring at run time, which monitors the execution of a workflow. The analysis of jobs in a workflow,
and populating them in a workflow database, is the responsibility of this subsystem.

Basic structures or main components of a scientific workflow include process, pipeline, data
distribution, data aggregation, and, finally, data redistribution. The VFT and AFTRC architectures are
depicted in Figure 7a,b, respectively.
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The PrP-FRC workflow proposed architecture has been presented in Figure 8. Obviously, the basic
structures of the process, data distribution, data aggregation, and pipeline have been exploited,
in the implementation of the workflows of VFT and AFTRC architectures and the proposed
PrP-FRC architecture.

The evaluations of the proposed architecture when compared to the VFT and AFTRC architectures
have been conducted in terms of the run time of the relevant workflows. The experiments have been
performed using the above-described simulation environment. In the following subsections, the results
of the carried-out simulations have been described in detail.
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5.2. Simulation Results

Tables 6–8 presented the results of the simulations of AFTRC and VFT architectures and the
proposed PrP-FRC architecture in the Pegasus-WMS simulator.

The proposed PrP-FRC architecture has been evaluated with VFT and AFTRC architectures in terms
of two criteria. The average execution time and reliability are considered as two comparative criteria.

Figure 9 shows the average execution time for each architectural workflow. It is clear that the
PrP-FRC architecture had the highest average of execution time, since it has implemented all Proactive
and Reactive policies. The AFTRC architecture also had the lowest average of execution time, which
was not a hybrid architecture, rather it was considered as Reactive architecture.

On the other hand, as shown in Figure 10, the highest level of fault tolerance was provided
by the proposed PrP-FRC architecture, and the VFT hybrid architecture was in the second place.
The reliability of this architecture was less than PrP-FRC and more than the reliability of AFTRC
architecture. Additionally, in Figure 11, the number of failed and succeed tasks or jobs has been
illustrated in one of the proposed simulation rounds as an example.
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Table 6. Results of simulating AFTRC in Pegasus-WMS.

AFTRC

Event
VM #1 VM #2 VM #3 VM #4

Job-Number AT &TC Reliability AT & TC Reliability AT & TC Reliability AT & TC Reliability Fail-Count AVG.
- Start 1 0.500 1 0.500 1 0.500 1 0.500 0 0.50

- 1 0 0.49 1 0.53 1 0.53 0 0.49 2 0.51

- 2 0 0.47 1 0.57 1 0.57 1 0.53 1 0.53

- 3 0 0.44 0 0.55 1 0.62 0 0.51 3 0.53

Job #5 Migrating to other Host 4 0 0.49 0 0.59 0 0.66 0 0.56 4 0.57

Job #6 Migrating to other Host 5 0 0.51 0 0.61 0 0.68 0 0.58 4 0.59

- 6 1 0.56 1 0.68 0 0.61 1 0.65 1 0.62

- 7 1 0.63 0 0.66 0 0.53 1 0.73 2 0.63

- 8 1 0.71 1 0.75 1 0.59 0 0.7 1 0.68

- 9 1 0.81 1 0.86 0 0.56 1 0.8 1 0.75

- 10 1 0.93 0 0.81 0 0.52 0 0.77 3 0.75
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Table 7. Results of simulating VFT in Pegasus-WMS.

VFT

Event
VM #1 VM #2 VM #3 VM #4

Job-Number SC & TDC SR SC &TDC SR SC & TDC SR SC& TDC SR Fail-Count AVG.
- 1-default 1 0.50 1 0.50 1 0.5 1 0.50 0 0.50

Replica #1 & #2 failed 1 0 0.49 1 0.53 1 0.53 0 0.49 2 -

Increase Failed-VM Reliability - half-recovery 0.49 - - - - half-recovery 0.49 - -

Replica #1 preemptive migrate to VM #4 - - - - - - - 1 0.52 - -

Replica #4 preemptive migrate to VM #1 - 1 0.52 - - - - - - - -

Final Reliability - - 0.52 - 0.53 - 0.53 - 0.52 - 0.52

above events done for each failed job’s -

- 2 0 0.54 1 0.57 1 0.57 1 0.56 1 0.56

- 3 0 0.55 0 0.58 1 0.62 0 0.57 3 0.58

- 4 0 0.55 0 0.59 0 0.63 0 0.58 4 0.58

- 5 0 0.54 0 0.59 0 0.64 0 0.58 4 0.58

- 6 1 0.59 1 0.66 0 0.63 1 0.65 1 0.63

- 7 1 0.66 0 0.68 0 0.60 1 0.73 2 0.66

- 8 1 0.75 1 0.77 1 0.68 0 0.74 1 0.73

- 9 1 0.86 1 0.88 0 0.69 1 0.84 1 0.81

- 10 1 0.99 0 0.88 0 0.69 0 0.84 3 0.85
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Table 8. Results of simulating PrP-FRC in Pegasus-WMS.

PRP-FRC

Event
VM #1 VM #2 VM #3 VM #4

Job-Number SC&TDC SR SC&TDC SR SC&TDC SR SC&TDC SR Fail-Count AVG.
- 1-default 1 0.50 1 0.50 1 0.5 1 0.50 0 0.50

Replica #1 & #2 failed 1 0 0.49 1 0.53 1 0.53 0 0.49 2 -

Increase Failed-VM Reliability - half-recovery 0.49 - - - - half-recovery 0.49 - -

Replica #1 preemptive migrate to VM #4 - - - - - - - 1 0.52 - -

Replica #4 preemptive migrate to VM #1 - 1 0.52 - - - - - - - -

Final Reliability - - 0.52 - 0.53 0.53 - 0.52 - 0.52

Repeat first 5 formula 2 0 0.54 1 0.57 1 0.57 1 0.56 1 0.56

Repeat first 5 formula 3 0 0.55 0 0.58 1 0.62 0 0.57 3 0.58

Job migration - Reliability increasing 4 0 0.57 0 0.62 0 0.66 0 0.61 4 0.61

Job migration - Reliability increasing 5 0 0.56 0 0.63 0 0.68 0 0.63 4 0.62

Repeat first 5 formula 6 1 0.62 1 0.69 0 0.67 1 0.69 1 0.66

Repeat first 5 formula 7 1 0.69 0 0.71 0 0.64 1 0.77 2 0.70

Repeat first 5 formula 8 1 0.78 1 0.80 1 0.7 0 0.78 1 0.77

Repeat first 5 formula 9 1 0.89 1 0.91 0 0.73 1 0.89 1 0.85

Repeat first 5 formula 10 1 1 0 0.91 0 0.7 0 0.89 3 0.88
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6. Modelling and Fuzzy Analysis of Architectures

Our real world is the world of uncertainties and ambiguities. Given that fault tolerance is a
qualitative parameter and it is associated with uncertainty, the fuzzy logic is used in modelling and
analysing this important feature. Different methods have been presented in different papers for
reliability analysis. One of these methods, as referred in [35], is the modelling of the fault tolerance
based on fuzzy logic. The support of fuzzy systems from the rapid pattern generation and incremental
optimization increases the importance of the results. Furthermore, the evaluating frameworks having
the tolerant characteristic of the faults have been introduced in the various architectures of [36,37].
The evaluating frameworks were fuzzy-base, which analysed and measured the intended capability
while considering various parameters, like those methods that were used in detection phases and fault
refinements of various designed fuzzy Inference systems. A fuzzy evaluation has been formed of four
main parts, including the Fuzzier, Defuzzier, and Fuzzy Inference System, which are briefly referred to
as FIS and eventually the Fuzzy Data Base Rules.

The role of the fuzzier of this system is to convert the input terms to a linguistic term set. This is
conducted to be the membership function. The fuzzy inference engine uses the database of fuzzy rules
in order to obtain the fuzzy output. It is clear that the fuzzy rules have been stored on a particular
database and the fuzzy inference engine exploits them. Additionally, the defuzzier converts the fuzzy
output of the fuzzy inference engine to a crisp value. An assessment of the architectures has been
carried out on four separate fuzzy engines. These engines are termed FIS (1), FIS (2), FIS (3), and FIS (4),
respectively. Figure 12 shows the inputs and outputs of the engines.
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All of the designed engines have an output. The engines of FIS (1), FIS (2), and FIS (3) have three
inputs. In addition, the number of database rules and engine membership functions have similarities
and differences. The trapezoid membership functions have been used for designing the FIS (1) engine.
Each of the triple inputs of these engines has been considered as a three-level input, including the low,
medium, and high levels. Moreover, the output of this fuzzy evaluation engine has been designed on
five levels. The labels of the linguistic variables in FIS (1) are very low, low, medium, high, and very
high. The results of the assessments that were conducted by each architecture by FIS (1) engine have
been reported in Table 9. An important point is that the VFT architecture and the proposed PRP-FRC
architecture, which are considered to be hybrid architectures, are not valuable to this engine, because
the first input of this engine is designed as a three-level input. The first input of this engine is related
to the situation of the policies that are used in the architecture.

The trapezoid membership functions have been used for designing the FIS (2) engine like the
FIS (1) engine. The main difference between the two engines is in terms of the numbers of the first
input linguistic variables of these engines. The first input is dedicated to the policies that are used in
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each of the architectures. This input has been considered as three-level on FIS (1). On FIS (2), the policy
input has been designed as five-level, with the labels being very low, low, medium, high, and very
high. Table 10 shows the results reported on the assessments that were conducted on the measurement
of the fault tolerance of each architecture.

Table 9. Assessment results of the architectures in our proposed FIS (1) engine.

Fault Tolerance
Architectures Policy Level Fault Detection

Level
Fault Recovery

Level
Fault Tolerance

Present Rule No.

Map—Reduce Medium Medium High 66.67 15
Haproxy Medium Medium High 66.67 15

BFT-Cloud Low High High 66.67 9
Gossip Low High High 66.67 9

MPI Medium Medium High 66.67 15
FTM High Medium High 83.33 24

FTM-2 Medium Medium High 66.67 15
LLFT Low High Medium 50.00 8
FTWS Medium Medium High 66.67 15
Candy Low Medium High 50.00 6

FT-Cloud Low Medium High 50.00 6
Magi Cube Medium Medium High 66.67 15

Vega Warden Medium Medium Medium 50.00 14
AFTRC High Medium High 83.33 24

PLR High Low High 66.67 21

Table 10. Comparing FT capability of our proposed architecture with other existing architectures in the
FIS (2) engine.

Fault Tolerance
Architectures Policy Level Fault Detection

Level
Fault Recovery

Level
Fault Tolerance

Present Rule No.

Map—Reduce Low Medium High 50% 15
Haproxy Low Medium High 50% 15

BFT-Cloud Very Low High High 50% 18
Gossip Very Low High High 50% 18

MPI Low Medium High 50% 15
FTM Medium Medium High 50% 24

FTM-2 Low Medium High 50% 15
LLFT Very Low High Medium 50% 8
FTWS Low Medium High 50% 15
Candy Very Low Medium High 50% 6

FT-Cloud Very Low Medium High 50% 6
Magi Cube Low Medium High 50% 15

Vega Warden Low Medium Medium 50% 14
AFTRC Medium Medium High 50% 24

PLR Medium Low High 50% 21
VFT Medium Low Low 50% 19

PRP-FRC (Proposed) Very High Medium High 75% 42

It is observed that architectures’ VFT and PRP-FRC, in which the FIS (1) engine was not evaluated,
have been measured by the FIS (2) engine. The weakness of the FIS (2) engine on the conducted
assessments could be due to the numbers of the membership functions that are considered on the
output of this engine. The FIS (2) output had been produced on a five-level with labels, such as very
low, low, medium, high, and very high. The FIS (3) engine has been designed in order to improve the
performance of this engine on the assessments.

FIS (3) was designed in order to render the assessment results better and more accurate. The main
difference between FIS (2) and FIS (3) can be expressed in two cases. The first one is that FIS (3),
unlike FIS (2), which uses trapezoid membership functions, has used triangle membership functions.
The second, FIS (3) output is a linguistic variable with seven levels. The FIS (3) output labels include
very low, low, low medium, medium, high medium, high, and very high. Thus, on the basis of the
obtained results of the evaluating architectures, the accuracy on the measurement of the FT ability of
the architectures has remarkably increased. Table 11 presents the results of this assessment.
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Table 11. Comparing FT capability of our proposed architecture with other existing architectures in the
FIS (3) engine.

Fault Tolerance
Architectures Policy Level Fault Detection

Level
Fault Recovery

Level
Fault Tolerance

Present Rule No.

Map—Reduce Low Medium High 50% 15
Haproxy Low Medium High 50% 15

BFT-Cloud Very Low High High 50.44% 9
Gossip Very Low High High 50.44% 9

MPI Low Medium High 50% 15
FTM Medium Medium High 66.67% 24

FTM-2 Low Medium High 50% 15
LLFT Very Low High Medium 33.83% 8
FTWS Low Medium High 50% 15
Candy Very Low Medium High 34.3% 6

FT-Cloud Very Low Medium High 34.3% 6
Magi Cube Low Medium High 50% 15

Vega Warden Low Medium Medium 33.33% 14
AFTRC Medium Medium High 66.67% 24

PLR Medium Low High 50.5% 21
VFT Medium Low Low 33.33% 19

PRP-FRC (Proposed) Very High Medium High 82.39% 42

FIS (2) and FIS (3) are able to evaluate hybrid architectures, but separating the proactive and
reactive policies that have been applied in the architectures represents their weakness. FIS (4) has been
presented in order to remove the weaknesses of FIS (2) and FIS (3). On FIS (4), the input related to the
situation of the policies used in the architectures, has been divided into two separate inputs.

Four inputs have been used for designing FIS (4). The first input is related to the proactive policies
and the second one is related to the reactive policies. Additionally, the third and fourth inputs are
related to the situation of fault detection and fault recovery on each architecture. Similar to FIS (1) and
FIS (2), the trapezoid membership functions have also been used to design FIS (4). The FIS (4) output,
like FIS (3), is a linguistic variable with seven different levels to achieve more accurate measurement of
the FT ability of the architectures. The significant difference of FIS (4) with three previous FIS, is that,
in the previous engines, each of the architectures on one of the engine database rules was fire, but,
on FIS (4), each of the architectures on three of the engine database rules of FIS (4) was simultaneously
fire. The assessment reports of each of the architectures have been presented as a separately fired rule
of each of them in Table 12.

Table 12. Evaluation report of the FT capabilities of various architectures, compared to the proposed
architecture of PrP_FRC by using the FIS (4) engine.

Fault Tolerance
Architectures

Pro Policy
Level

Re Policy
Level

Fault Detection
Level

Fault Recovery
Level

Fault Tolerance
Present

Fired Rule
No.

Map—Reduce High - Medium High 66.66% 33,69,78
Haproxy - Medium Medium High 58.33% 15,60,87

BFT-Cloud - Low High High 58.33% 9,63,81
Gossip - Low High High 58.33% 9,63,81

MPI - Medium Medium High 58.33% 15,60,87
FTM - Low Medium High 66.66% 24,60,96

FTM-2 - Medium Medium High 58.33% 15,60,87
LLFT - Low High Medium 41.67% 8,62,80
FTWS - Medium Medium High 58.33% 15,60,87
Candy - Low Medium High 41.67% 6,60,78

FT-Cloud Low - Medium High 41.67% 6,60,78
Magi Cube - Medium Medium High 58.33% 15,60,87

Vega Warden - Medium Medium Medium 50% 14,59,86
AFTRC - High Medium High 66.66% 24,60,96

PLR - High Low High 50% 21,57,93
VFT High Low Low Low 25% 28,64,73

PRP-FRC (Proposed) High High Medium High 83.33% 51,69,96
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7. Discussion

Inside the DMTF, whose focus is on the FCAPS capabilities in management, there is another
group, which is known as the Cloud commands. The main task of this group is the development
of service measurement index technologies, which is briefly called SMI. The goal of the SMI is to
evaluate and measure the aspects of cloud performance in the standard form, and some methods
were established in this field. The purpose of this article was to present a new hybrid architecture
of fault tolerance. The simulation results in CloudSim, Pegasus-WMS, as well as fuzzy modeling
and evaluation, confirmed the increasing fault tolerance and reliability in the implementation of the
proposed architecture.

VFT architecture has been a hybrid architecture, but the biggest weakness of this architecture has
happened when all of the nodes failed. In this case, on the VFT architecture, there was a feedback
toward the fault handler that an appropriate decision should be taken. In this condition, the architecture
should be designed and implemented, such that the job is migrated toward another host; but, since
there is no policy of job migration in this architecture, the internal feedback of the same host occurred,
which reduced the recovery ability and, finally, the architecture fault tolerance. Additionally, when the
policy of checkpoint/restart has not been implemented in this architecture, in the case of any task being
encountered to the lowest fault, again, the task was entirely implemented so that the general effect
was significantly affected. If this policy was used, then, implementing that task began from the last
checkpoint and, consequently, the architecture efficiency remarkably increased.

In the proposed architecture of PrP-FRC, simultaneously implementing all of the proactive and
reactive policies has been sought. It is clear that in this case, the significant weaknesses of the VFT
architecture, due to the lack of policies of job migration and checkpoint/restart, would not be in the
proposed architecture of PrP-FRC. The phase of fault detection has been carried out due to the decision
marker module by the other detection method.

In the proposed architecture, each of the three fault detection methods has been implemented.
The AT module that investigated the output of each of the VMs has provided a self-detection method.
The TC module that had straight supervision on the time validity of the output generated by each
of the VMs caused the use of other detection methods in this architecture. Finally, due to the roles
played by the RA and DM modules in the PrP-FRC architecture, this architecture had not used the
group detection method in the fault detection phase.

In the fault recovery phase, the VFT architecture has implemented system recovery, due to the
feedback that was in its final output. In the PrP-FRC architecture, both the final architecture output and
the output of each VM has been separately implemented. They designed feedback to the management
system to trigger the recovery, which was simultaneously carried out on two levels, which included
the node and the system.

The evaluations by FIS (1) to FIS (4) fuzzy engines also showed that the fault tolerance in the
PrP-FRC proposed architecture has increased from 16 to 25 percent in comparison with the AFTRC
architecture. The PrP-FRC architecture also showed a 25 to 58 percent increase in the VFT hybrid
architecture among the fuzzy evaluators engines.

The fault mask, which is one of the fault recovery methods, has been implemented in the AFTRC
simple architecture because the outputs of all the VMs were collected and the fault effects were
disappeared. However, in the proposed PrP-FRC, due to the feedback considered in the output of each
VM, the node recovery method has been implemented and the fault effects that were made on the VMs
were not masked. In addition, in the AFTRC architecture, the node recovery method has not been
implemented and it was just used for masking fault effects. As a new idea in the following of leading
research studies, reference may be made to a method for using the strategy of masking the fault effects
in the PrP-FRC architecture.
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8. Conclusions

Presenting a new architecture of fault tolerance, which simultaneously uses proactive and reactive
policies, was the goal of this research. The proposed PrP-FRC architecture has covered fault tolerance
on the quintuple phases, which consisted of fault forecasting, fault prevention, fault detection, fault
isolation, and fault recovery. The main reason was to fully cover each of the five phases of fault
tolerance by the aforementioned architecture, while simultaneously using all of the proactive and
reactive policies in this architecture. Given the full implementation of all the policies in the PrP-FRC
proposed architecture, it was expected that the proposed architecture would provide higher fault
tolerance than previous architectures. The results of the simulations that were performed in the
CloudSim and the comparison and simulation of proposed architectural workflow confirmed the
increasing of the aforementioned capability. The time execution of PrP-FRC proposed architecture had
no significant difference with previous architectures and it had only slightly increased. This feature
highlighted the prominence of the proposed architecture.

The proposed architecture in this paper had simultaneously used methods of self-detection and
other detection in the fault detection phase. Additionally, this architecture had simultaneously used the
triple methods of fault mask, node recovery, and system recovery in the fault recovery phase. If a group
detection method has been used in fault detection phase in the PRP-FRC, then it could be considered
as a complete architecture for implementing all fault detection methods. Using and implementing this
method on fault detection in the aforementioned architecture can be followed as a future work.
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