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Abstract: High-accuracy calibration of resolver signals is the key to improve its angular measurement
accuracy. However, inductive harmonics, residual excitation components, and random noise
in signals dramatically restrict the further improvement of calibration accuracy. Aiming to
reduce these unexpected noises, a filter based on discrete wavelet transform (DWT) and singular
value decomposition (SVD) is designed in this paper. Firstly, the signal was decomposed into a
time-frequency domain by DWT and several groups of coefficients were obtained. Next, the SVD
operation of a Hankel matrix created from the coefficients was made. Afterwards, the noises
were attenuated by reconstructing the signal with a few selected singular values. Compared with
a conventional low-pass filter, this method can almost only preserve the fundamental and DC
components of the signal because of the multi-resolution characteristic of DWT and the good
correspondence between the singular value and frequency. Therefore, the calibration accuracy of
the imperfect characteristics could be improved effectively. Simulation and experimental results
demonstrated the effectiveness of the proposed method.

Keywords: resolver; discrete wavelet transform; singular value decomposition; automatic calibration;
noise reduction

1. Introduction

The accurate information of the motor angular position is desired in high-performance servo
control systems. Due to the simple structure, strong robustness, and adaptability to various harsh
environments [1], resolvers have attracted great attention as shaft angle sensors in servo control
applications such as antennas, radars, steering engines, and industrial robots.

Generally, a complete angular measurement system consists of a resolver and a Resolver-Digital
Converter (RDC). In the software-based RDCs, the output signals of the resolver are transformed into
sinusoidal and cosinusoidal envelopes with respect to the shaft angle after detection. Next, the angular
position and velocity are obtained from the demodulation of envelopes [2]. However, there are usually
some mechanical and electrical errors in a resolver. The former are caused by the manufacturing
tolerance, assembled mismatch, and deformation. The latter result from winding nonlinearity, circuit
asymmetry, and excitation signal distortion. Because of these errors, the envelopes contain five nonideal
characteristics, such as amplitude imbalances, DC offsets, and imperfect quadrature [3], all of which
seriously affect the accuracy of demodulation. Therefore, it is necessary to calibrate and correct the
imperfect parameters in the resolver envelope signals.

As the calibration of the resolver signals is equivalent to the parameter estimation of non-orthogonal
sinusoidal pair signals, approaches have been widely reported in recent years including a look-up table,
optimization, observer, neural network, etc. An offline look-up table was constructed in Reference [4]
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to compensate the imperfectness in encoder signals. However, a trade-off has to be made between a
larger table and increased sensitivity to noise. Heydemann [5] firstly proposed optimization approach
by establishing a quadratic equation of five unknown parameters and obtained the optimal numerical
solution by employing the least square method. Based on this, many literatures have presented
improved methods [6,7]. However, the nonlinearity equation has multiple roots and lacks the ability
to escape from local optimization if the initial iteration values are selected as unreasonable. To solve
this issue, an adaptive estimator was given in Reference [8] that tracks the imperfect parameters of a
characteristic ellipse formed by resolver signals. An automatic calibration algorithm based on state
observer was introduced in Reference [9]. However, the strong coupling between parameters and the
angular velocity in the mathematical model was undesired because the improvement of the calibration
accuracy depended on the angular frequency. Therefore, an improved algorithm based on two-step
gradient estimators was presented to decouple them [10]. Owing to the more accurate information of
angular velocity, the calibration accuracy was further improved. Besides, signal flow network and
deep learning algorithm in Reference [11] were introduced to ensure the independence of the variables.

However, the above methods are based on simplified models. The direct influence of inductive
harmonics, residual excitation components, and random noise on the calibration accuracy was ignored.
Since resolver windings are unevenly distributed and not exactly sinusoidal or cosinusoidal functions
with respect to angular position, the output signals always contain harmonics [3]. Moreover, residual
excitation components and random noise appear because of the excitation signal distortion and
electrical errors from the conditioning circuit. These noises seriously limit the further improvement of
the calibration accuracy no matter which method above is used.

Several studies on noise reduction have concerned themselves with improving the calibration
accuracy. Common methods include mathematical modeling, filters, and phase-locked loop.
Lara et al. [12] utilized a higher order approximation to describe harmonics but had a slight
convergence deviate. The smaller the deviation was, the more complex model needed to be established.
Shang et al. [13] analyzed the harmonics by Fourier transform and weakened the 3rd harmonic through
adding a corresponding harmonic in the shape function of the rotor structure. Obviously, it required a
special rotor structure. Similarly, the error profile curve with respect to the angle was described by
Fourier series [14]. However, it was not an automatic calibration. Finite Impulse Response filter was
applied in a self-tuning circuit [15], which reduced noise but had an inherent time delay and phase
distortion. An adaptive phase-locked loop proposed in Reference [16] was able to filter noise online to
a certain extent. However, the continuous calibration increased the unnecessary delay with the errors
supposed constant in a short time. Another novel RDC algorithm performed in a frequency domain
was studied in Reference [17]. Since the detection was unrequired and only the carrier frequency
component was utilized to estimate parameters, it was preferable to suppress the disturbances outside
of the carrier frequency. However, the amplitude imbalances were out of consideration.

In order to achieve high-accuracy calibration of the imperfect parameters, it is important to
reduce the three types of noises. Some image noising methods are worth learning and using for
reference. The discrete wavelet transform (DWT) has been widely used to signal or image denoising.
Because of the characteristic of multi-resolution, DWT can distinguish noise and useful information
to different frequency bands [18–20]. But the conventional wavelet threshold denosing method [21]
is difficult to flexibly select a reasonable threshold and has little effectiveness in noise reduction
near the fundamental wave. Moreover, nonlocal self-similarity prior learning [22], convolutional
neural network [23], and singular value decomposition (SVD) [24] are also used in image denoising.
Guo et al. [24] used a few large singular values and corresponding singular vectors to estimate the
image and reduce noise. Recently, because of the multi-resolution characteristic of DWT and the
good correspondence between the singular value and frequency, the cooperation between DWT and
SVD [25,26] in the time-frequency domain has attracted the attention of researchers. At present,
several different combinations have been adopted in image watermarking [27], image contrast
enhancement [28], image compression and denoising [29], and the feature extraction of signals [30].
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Aiming to reduce the noises and obtain the high calibration accuracy of resolver signals,
a DWT-SVD based filter in time-frequency domain is designed in this paper. Since this method
is able to reduce inductive harmonics, residual excitation components, and random noise in resolver
signals with only the fundamental and DC components being retained, the calibration accuracy
can be improved effectively. Simulation and experimental results verify the effectiveness of the
proposed method.

This paper is organized as follows: The calibration principle of resolver signals is introduced
and the problem of noises is formulated in Section 2. Section 3 presents the designed DWT-SVD
based filter and describes the filtering processing in detail. To verify the effectiveness of the method,
simulation and experimental results are analyzed in Section 4. Finally, the concluding remarks are
given in Section 5.

2. Calibration Principle and Problem Formulation of Resolver

As shown in Figure 1, in a software-based RDC, when the rotor winding of resolver is excited
with a high frequency voltage, the two spatially orthogonal windings on the stator will produce
amplitude modulation signals which have sinusoidal and cosinusoidal envelopes with respect to shaft
angle. Then the envelopes are obtained from detection. Finally, owing to the mathematical properties
of trigonometric function, the angular position θ and velocity ω are calculated from envelopes by
phase-locked loop, arctangent or other demodulation algorithms.
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Figure 1. Schematic block diagrams of a resolver and RDC. 
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In practice, the resolver signals after detection are always disturbed by imperfect characteristics.
The amplitude imbalances and DC offsets result from the eccentric rotor, unequal winding, and
asymmetric circuit. The imperfect quadrature arises when the space angle of two coils on stator are not
exactly equal to π/2. Therefore, the envelopes should be described as{

ys = as1 sinθ+ as0

yc = ac1 cos(θ+ β) + ac0
(1)

where as1 and ac1 are the amplitudes, as0 and ac0 are the offsets, β represents the imperfect quadrature.
Obviously, it is necessary to calibrate the envelopes and correct (1) to the standard form of sine and
cosine functions before demodulation.

The calibration of resolver signals is a process of estimating the five imperfect parameters of
non-orthogonal sinusoidal pair signals. These estimation methods have been widely reported in recent
years. By using a look-up table, optimization, observer, neural network or other estimation algorithm,
the imperfect parameters can be estimated to correct and reduce demodulation error. Thereafter,
the signals can be calibrated by substituting the estimated value into the following equation:{

ŷs = (ys − âs0)/âs = sinθ
ŷc = (yc − âc0)/âc cos β+(ys − âs0)tanβ/âs = cosθ

. (2)
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Unfortunately, most calibration algorithms are based on simplified models and ignore the
noises like harmonics, residual excitation components, and random noise in envelopes, all of which
seriously affect the calibration of the resolver. The harmonic distortion arises when the unevenly
distributed windings are not exactly sinusoidal or cosinusoidal shaped with respect to the angular
position. The residual excitation components and random noise exist due to the electrical errors from
conditioning circuit. Hence, the Equation (1) can be rewritten in the following manner:

ys = as0 + as1 sinθ+
∞∑

n=2
asn sin nθ+ ds

yc = ac0 + ac1 cos(θ+ β) +
∞∑

n=2
acn cos nθ+ dc

(3)

where n is the harmonic order, asn and acn represent the amplitudes of the nth harmonic, ds and dc are
random noise.

As shown in Figure 1, aiming at suppressing noises and improving calibration accuracy, several
methods including mathematical modeling and low-pass filter have been used recently. However,
the mathematical modeling method makes an inevitable deviation and is pretty complex. The low-pass
filter has an inherent phase distortion and cannot attenuate the noises in the passband. Therefore, it is
still a serious problem to filter the noises without phase distortion and preserve the fundamental and
DC component only.

3. Design of DWT-SVD Based Filter

In order to reduce the three types of noises in resolver signals without phase distortion and
preserve the fundamental and DC component only, a DWT-SVD based filter is designed in this paper.
As shown in Figure 2, this method is divided into 3 steps: (1) Decompose the resolver envelopes into
several groups of coefficients corresponding to different frequency bands through DWT; (2) Process
the coefficients by SVD to filter noise; (3) The filtered envelopes are reconstructed with the processed
coefficients. Since the procedure of the sinusoidal pair signals are identical, the following only considers
the sinusoidal envelope ys in Equation (3).
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3.1. Signal Decomposition

The first step is to decompose the signal into approximation coefficients and detail coefficients
through J-layer DWT. Actually, the essence of DWT can be regarded as a process of utilizing a set of
high-pass and low-pass filters on the signal. Furthermore, the high-pass and low-pass filters depend
on the selected wavelet base function. Thus, the approximation coefficients ca which represented low
frequency information and detail coefficients cd which represented high frequency information are
obtained. In this method, the Mallat algorithm is employed to achieve J-layer DWT. The coefficients ca
and cd of each layer are calculated as follows:

ca j(k) =
∑
n

h(n− 2k)ca j−1(n)

cd j(k) =
∑
n

g(n− 2k)ca j−1(n)
, j = 1, 2, 3, · · · , J (4)

where h and g represent the impulse responses of low-pass filter and high-pass filter, respectively,
when j = 1, ca j−1 represents the envelope signal of resolver.
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The procedure of multi-layer decomposition is shown in Figure 3. Assuming the sampling
frequency fs satisfies the Nyquist Sampling Theorem and the total layer is J, the spectrum of the signal
is limited in (0 ∼ fs/2) according to the normalized frequency band. Due to the multi-resolution
characteristic of DWT, the frequency band of cd1, cd2 and cd3, respectively, are ( fs/4 ∼ fs/2),
( fs/8 ∼ fs/4), ( fs/16 ∼ fs/8). And, more remarkably, ca3 is in the low frequency band (0 ∼ fs/16)
which contains the fundamental and DC components of resolver envelope. If the layer J is too small,
the data length of caJ would be overmuch and then increase the computational complexity of SVD.
Otherwise, the useful information would leak into the detail coefficients. Therefore, selecting the layer
reasonably would directly determine whether the caJ includes a fundamental wave. Moreover, it is
important to make the detail coefficients possess harmonics and residual excitation components as far
as possible.
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3.2. Coefficient Processing

The second step is to analyze the approximation coefficient caJ and detail coefficients from cd1

to cdJ. Since the detail coefficients contain residual excitation components and some harmonics with
so little useful information, they can be addressed by forced noise reduction. The coefficient caJ,
which involves the fundamental wave, is still affected by noises, such as random noise and harmonics.
Therefore, SVD is employed to reduce these noises.

The SVD of a matrix H ∈ Rm×n is defined as the following equation:

H = USVT (5)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices. The diagonal matrix S ∈ Rm×n can be given by

S = (diag(σ1, σ2, · · · , σp), O) (6)

where p = min(m, n) is the number of singular values, and σi(i = 1, 2, · · · p) represent the singular
values of matrix H which satisfy σ1 ≥ σ2 ≥ · · · ≥ σp > 0.

As caJ = (x1, x2, · · · , xN) is a one-dimension data, a Hankel matrix H needs to be construct when
processing caJ by SVD. The matrix can be expressed as

H =


x1 x2 · · · xN−n+2

x2 x3 · · · xN−n+2
...

...
. . .

...
xN−n+1 xN−n+2 · · · xN


m×n

(7)

where n satisfies 1 < n < N and m = N − n + 1. From Equation (7) each row vector in the Hankel
matrix lags only one data behind the previous row vector, which means the adjacent row vectors are
highly correlated with useful information and independent of noises. Therefore, the fundamental
and DC components of the signal which contain the main energy will be concentrated in a few
large singular values. Due to the good correspondence between the singular value and frequency,
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the first two maximum values represent the fundamental wave, and the value which represents the
DC component can be selected from test. According to the principle, the modified ca′J can be calculated
from Equation (5) by using only three singular values.

3.3. Signal Reconstruction

The last step is reconstruction. The procedure of multi-layer wavelet reconstruction is shown in
Figure 4. The formula of reconstruction is given by

ca′j−1(n) =
∑

k

h∗(n− 2k)ca′j(k) +
∑

k

g∗(n− 2k)cd′j(k). (8)

Since the detail coefficients are forced to be zero, the envelope signal of resolver is reconstructed
with the modified approximation coefficient caJ. Finally, the signals of resolver after noise reduction
are obtained.

From the above description, it can be seen that the filter can reduce the harmonics, residual
excitation components, and random noise and extract the fundamental and DC components of resolver
envelopes without phase distortion.
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4. Simulation and Experimental Results

Aiming to evaluate the performance of the proposed method, the spectrums of signals are
compared among the following four groups both in simulation and experiment.

Group 1: The original signals;
Group 2: The signals denoised by the low-pass Butterworth filter;
Group 3: The signals denoised by the DWT based filter;
Group 4: The signals denoised by the DWT-SVD based filter.
Next, in order to verify the influence of the filter on the calibration accuracy, the imperfect

parameters of the above signals are estimated by an automatic calibration algorithm based on two-step
gradient estimators in Reference [10]. The simulation and experimental results are analyzed as follows.

4.1. Simulation Results

In the simulation, sinusoidal pair signals are generated to simulate the envelopes of resolver.
The angular frequencyω is 2π rad/s. The imperfect parameters are set as as1 = 1.8370 V, as0 = 0.1365 V,
ac1 = 1.9520 V, ac0 = 0.1452 V and β = 1.2◦. The harmonics are shown in Table 1. In addition,
the residual excitation components are 0.0010 V and 0.0011 V, respectively, with the frequency being
10 kHz. The SNR of signals is 35 dB by adding Gaussian white noise. The simulation is proceeded by
using MATLAB.
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Table 1. Harmonics in signals.

Order 2 3 4 5

ys (V) 0.0255 0.0130 0.0078 0.0032
yc (V) 0.0243 0.0128 0.0082 0.0025

In the DWT-SVD based filter (Group 4), a biorthogonal wavelet basis function “bior 5.5” is chosen.
Since the biorthogonal wavelet has a linear phase, the signals can be completely reconstructed without
phase distortion. Whereby, the layer of wavelet decomposition is 4. As comparisons, the low-pass
Butterworth filter in Group 2 is designed with no more than 0.1 dB of ripple in a passband from 0 to
3 Hz, and at least 30 dB of attenuation in the stopband. The DWT based filter in Group 3 is designed
by using 6-layer wavelet decomposition and reconstruction to reduce the high-frequency noise.

The calibration method in Reference [10] is constructed as

.
x = ξ+ ys.
ξ = −λ0x− λ1(ξ+ ys)
.
η = k[x2(λ0 − ω̂2) + (λ1x + ys)(ξ+ ys)]

ω̂2 = η− kxys.
â0 = γ(ys − ŷs).
â1 = γ sin ω̂t(ys − ŷs).
â2 = γ cos ω̂t(ys − ŷs)

ŷs = â0 + â1 sin ω̂t + â2 cos ω̂t

(9)

where the estimator gains are chosen as k = 100,λ0 = 15,λ1 = 15,γ = 0.8. The angular velocity ω̂

is estimated by the first four equations. Then, the amplitude âs1 =
√

â2
1 + â2

2, DC offset âs0 = â0 and

phase φ̂s = tan−1(â2/â1) of ys can be estimated by the rest of equations. Since the procedure of yc is
same as ys, phase shift is calculated by β̂ = φ̂s − φ̂c.

The results are analyzed as follows:
(1) As shown in Figure 5, the detail coefficients cd1 ∼ cd4 of ys reflect noises with no useful

information. In contrast, the approximation coefficient ca4 contains the information of fundamental
and DC components with a few harmonics and noises. Thus the decomposition can be understood as
a pre-filter. Then SVD operation of a Hankel matrix created from ca4 is made. The singular values are
given in Table 2. It is obvious that the 1st and 2nd singular values represent the fundamental wave and
the 3rd reflects the DC components. Therefore, ys can be finally reconstructed from the new ca′4 which
is calculated by the three singular values.

Electronics 2019, 8, x FOR PEER REVIEW 7 of 15 

 

pass Butterworth filter in Group 2 is designed with no more than 0.1 dB of ripple in a passband from 
0 to 3 Hz, and at least 30 dB of attenuation in the stopband. The DWT based filter in Group 3 is 
designed by using 6-layer wavelet decomposition and reconstruction to reduce the high-frequency 
noise. 

The calibration method in Reference [10] is constructed as 

0 1
2 2

0 1
2

0

1

2

0 1 2

( )
ˆ[ ( ) ( )( )]

ˆ
ˆ ˆ( )
ˆ ˆ ˆsin ( )
ˆ ˆ ˆcos ( )
ˆ ˆ ˆ ˆ ˆ ˆsin cos

s

s

s s

s

s s

s s

s s

s

x y
x y

k x x y y
kxy

a y y
a t y y
a t y y
y a a t a t

ξ
ξ λ λ ξ
η λ ω λ ξ
ω η

γ
γ ω
γ ω

ω ω

 = +
 = − − +
 = − + + +


= −
 = −
 = −

 = −
 = + +










 (9)

where the estimator gains are chosen as 0 1100, 15, 15, 0.8k λ λ γ= = = = . The angular velocity ω̂  is 

estimated by the first four equations. Then, the amplitude 2 2
1 1 2ˆ ˆ ˆsa a a= + , DC offset 0 0ˆ ˆsa a=  and 

phase 1
2 1

ˆ ˆ ˆtan ( )s a aφ −=  of sy  can be estimated by the rest of equations. Since the procedure of cy  

is same as sy , phase shift is calculated by ˆ ˆ ˆ
s cβ φ φ= − . 

Table 1. Harmonics in signals. 

Order 2 3 4 5 

sy  (V) 0.0255 0.0130 0.0078 0.0032 

cy  (V) 0.0243 0.0128 0.0082 0.0025 

The results are analyzed as follows: 
(1) As shown in Figure 5, the detail coefficients 1 4~cd cd  of sy  reflect noises with no useful 

information. In contrast, the approximation coefficient 4ca  contains the information of fundamental 
and DC components with a few harmonics and noises. Thus the decomposition can be understood 
as a pre-filter. Then SVD operation of a Hankel matrix created from 4ca  is made. The singular values 
are given in Table 2. It is obvious that the 1st and 2nd singular values represent the fundamental 
wave and the 3rd reflects the DC components. Therefore, sy  can be finally reconstructed from the 
new 4ca′  which is calculated by the three singular values. 

 
Figure 5. The first 3500 data of approximation coefficient and detail coefficients of sy  in simulation. 

cd
1

cd
2

cd
3

cd
4

ca
4

Figure 5. The first 3500 data of approximation coefficient and detail coefficients of ys in simulation.



Electronics 2019, 8, 516 8 of 16

Table 2. Partial singular values of approximation coefficient ca4.

Number 1 2 3 4 5

Value 6896.7 6893.6 1026.7 95.2 95.1

(2) The performance of the filter can be verified from spectral analysis. As shown in Figure 6,
the spectrum of the original signal includes harmonics and noises. However, the low-pass filter is
unable to reduce noises in the passband and results in a slight amplitude attenuation of fundamental
wave. The DWT based filter has no effect on fundamental wave but is unable to suppress low-order
harmonics. Unlike these filters, it is showed obviously in Figure 6d that the DWT-SVD filter retains
almost only the fundamental and DC components.
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DWT based filter and (d) after the designed filter.

(3) By the calibration algorithm in Reference [10], the estimations of the angular frequency and
five imperfect parameters in Groups 1–4 are given in Figures 7–10, respectively. And Table 3 shows
the estimated results calculated by means of the data and the standard deviations (STD) in the range
of 40–50 s. From Figures 7–10, the steady-state error of Group 4 is smaller than that of the other
groups. Compared with the preset values in Table 3, the accuracy of ω after the designed filter
reaches 10−5 rad/s, while the accuracies of the other groups are 10−3 rad/s, 10−4 rad/s and 10−4 rad/s,
respectively. The accuracy of amplitudes after the designed filter reaches to 10−4 rad/s, while the
others are 10−3 rad/s and Group 2 has a slight attenuation. Moreover, the STD is reduced at least two
orders of magnitude more than the other groups. It is worth noting that the designed filter leads to a
high-accuracy phase due to the phase undistorted characteristic, while the low-pass filter causes a
phase shift. Therefore, the DWT-SVD filter apparently improves the calibration accuracy and is more
stable than other ways.
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Table 3. Results of calibration in simulation.

Parameters ω(rad/s) as(V) ac(V) as0(V) ac0(V) β(
◦

)

Preset values 6.283185 1.83700 1.95200 0.13650 0.14520 1.2000

Calibrated directly Estimates 6.285769 1.83893 1.95372 0.13643 0.14632 1.2019
STD 1.20 × 10−2 1.25 × 10−3 1.26 × 10−3 1.63 × 10−3 1.63 × 10−3 3.02 × 10−2

After the Butterworth filter
Estimates 6.283505 1.83577 1.95035 0.13644 0.14631 1.2017

STD 5.20 × 10−3 7.32 × 10−4 7.00 × 10−4 7.54 × 10−4 6.95 × 10−4 1.48 × 10−2

After the DWT
Estimates 6.283640 1.83741 1.95210 0.13644 0.14632 1.2019

STD 1.01 × 10−2 1.22 × 10−3 1.23 × 10−3 1.25 × 10−3 1.18 × 10−3 2.55 × 10−2

After the designed filter Estimates 6.283179 1.83691 1.95187 0.13648 0.14623 1.2002
STD 2.49 × 10−6 1.11 × 10−5 2.28 × 10−5 4.59 × 10−6 3.44 × 10−6 4.23 × 10−4
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Figure 7. Estimations of angular velocity and imperfect parameters in simulation before filter (Group 1).
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Figure 8. Estimations of angular velocity and imperfect parameters in simulation after the Butterworth
filter (Group 2).
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4.2. Experimental Results

The experimental platform is shown in Figure 11. A control board drives a permanent magnet
synchronous motor (PMSM) and a resolver (Infranor, Zurich, Switzerland). The parameters of PMSM
and resolver are given in Table 4. In this experiment, PMSM is driven to rotate at ω = 2π rad/s and
the resolver measures its angular position. After envelope detection circuits, the envelops of resolver
output signals are uploaded to the upper computer through USB. Then the envelops are denoised and
calibrated in the upper computer.Electronics 2019, 8, x FOR PEER REVIEW 10 of 15 
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Table 4. PMSM and resolver parameters.

PMSM Resolver

Pole pairs 2 Pole pairs 1

Rated voltage 110 V(AC) Input voltage 5 V ± 0.2 V (AC)
Rated speed 3000 r/min Input frequency 10 kHz
Torque constant 0.15 Nm/A Output voltage >2 V
Phase resistance 8 Ω Transformer ratio 0.5 ± 5%
Phase inductance 10 mH Electrical error ≤ 10′

In this experiment, the parameters of four groups are set the same as in the simulation. The results
are analyzed as follows:

(1) The coefficients and singular values of ys calculated from the DWT-SVD based filter are given
in Figure 12 and Table 5. From Figure 12, the approximation coefficient ca4 has already pre-filtered
the residual excitation components and most of the random noise. Next, according to a rigorous test,
the 1st and 2nd singular values in Table 5 reflect the fundamental wave and the 5th value reflects the DC
components. Finally, the signal can be reconstructed by the three singular values and corresponding
singular vectors.
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Table 5. Partial singular values of approximation coefficient ca4 in experiment.

Number 1 2 3 4 5 6 7

value 9418.9 9410.4 19.8 19.7 11.7 9.3 9.2

(2) The spectrums in Figure 13 also verify the performance of the designed filter. As shown
in Figure 13a, the spectrum of the original signal contains harmonics and random noise. However,
the spectrum in Figure 13b shows that the low-pass filter attenuates the DC component seriously
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and cannot reduce noise in the passband. The spectrum in Figure 13c shows that the DWT-based
filter is unable to suppress low-order harmonics although it can reduce the high-frequency noise.
Compared with Groups 1–3, the DWT-SVD filter in Group 4 preserves almost only the fundamental
and DC components.Electronics 2019, 8, x FOR PEER REVIEW 12 of 15 
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Figure 13. Spectrums of ys in experiment (a) before filter, (b) after the Butterworth filter; (c) after the
DWT based filter and (d) after the designed filter.

(3) As show in Figures 14–17 and Table 6, the estimations of the angular frequency ω and five
imperfect parameters as1, ac1, as0, ac0 and β in Groups 1–4 are carried out by the calibration algorithm
in [10], respectively. From Figures 14–17, the steady-state errors in Groups 1 and 3 are in the same order
of magnitude while in Group 2 is smaller, since the harmonics in Group 2 is weaker than Groups 1 and
3. Compared with them, Group 4 has the smallest steady-state error among the four groups because
the proposed method can suppress harmonics effectively. In order to further verify the effectiveness of
the proposed method, Table 6 gives the STDs of estimated parameters, which are calculated from the
data in the range of 40–50 s. The STD is an important index to compare the four groups while the true
values are unknown. From Table 6, it is obvious that Group 4 has the smallest STDs which are reduced
at least two orders of magnitude than others.
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Figure 14. Estimations of angular velocity and imperfect parameters before filter (Group 1).
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Figure 15. Estimations of angular velocity and imperfect parameters after the Butterworth filter
(Group 2).
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Figure 16. Estimations of angular velocity and imperfect parameters after the DWT (Group 3).

Table 6. Results of calibration in experiment.

Parameters ω(rad/s) as(V) ac(V) as0(V) ac0(V) β(
◦

)

Calibrated directly Estimates 6.28288 2.3551 2.3550 1.446 × 10−3 4.548 × 10−3 −0.03450
STD 2.88 × 10−3 2.54 × 10−4 2.56 × 10−4 2.85 × 10−4 2.86 × 10−4 3.99 × 10−3

After the Butterworth filter
Estimates 6.28304 2.3532 2.3532 1.445 × 10−3 4.545 × 10−3 −0.03462

STD 1.80 × 10−3 1.54 × 10−4 1.57 × 10−4 1.70 × 10−4 1.66 × 10−4 2.44 × 10−3

After the DWT
Estimates 6.28299 2.3552 2.3541 1.447 × 10−3 4.547 × 10−3 −0.03448

STD 2.19 × 10−3 2.48 × 10−4 2.53 × 10−4 2.56 × 10−4 2.57 × 10−4 3.83 × 10−3

After the designed filter Estimates 6.28318 2.3553 2.3532 1.416 × 10−3 4.544 × 10−3 −0.03436
STD 3.30 × 10−6 7.99 × 10−6 1.07 × 10−7 2.48 × 10−6 2.54 × 10−6 4.16 × 10−5
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Figure 17. Estimations of angular velocity and imperfect parameters after the DWT-SVD based filter
(Group 4).

5. Conclusions

In order to improve the calibration accuracy of the resolver signals, a DWT-SVD based filter was
designed in this paper to reduce the noises. Most of the noises in the resolver, such as the inductive
harmonics, residual excitation components, and random noise were taken into account. Firstly, the
resolver signals were decomposed to the approximation coefficient and detail coefficients by DWT. The
decomposition pre-filtered the residual excitation components and part of the noises. Next, the singular
values of approximation coefficient were calculated. Finally, the signals were reconstructed by a few
selected singular values to suppress harmonics and preserve almost only the fundamental and DC
components. Because of the multi-resolution characteristic of DWT and the good correspondence
between the singular value and frequency, this method is favorable to dramatically reduce the noises.
Therefore, the proposed filter improved the calibration accuracy of the nonideal parameters, such as
amplitude deviations, DC offsets, and imperfect quadrature in resolvers. The effectiveness of the
designed filter was verified by simulation and experimental results.
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