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Abstract: This study presents a new two-stage hybrid optimization algorithm for scheduling the
power consumption of households that have distributed energy generation and storage. In the
first stage, non-identical home energy management systems (HEMSs) are modeled. HEMS may
contain distributed generation systems (DGS) such as PV and wind turbines, distributed storage
systems (DSS) such as electric vehicle (EV), and batteries. HEMS organizes the controllable appliances
considering user preferences, amount of energy generated/stored and electricity price. A group
of optimum consumption schedules for each HEMS is calculated by a Genetic Algorithm (GA).
In the second stage, a neighborhood energy management system (NEMS) is established based on
Bayesian Game (BG). In this game, HEMSs are players and their pre-determined optimal schedules
are their actions. NEMS regulates the total power fluctuations by allowing the energy transfer among
households. In the proposed algorithm, HEMS decreases the electricity cost of the users, while NEMS
flats the load curve of the neighborhood to prevent overloading of the distribution transformer.
The proposed HEMS and NEMS models are implemented from scratch. A survey of 250 participants
was conducted to determine user habits. The results of the survey and the proposed system were
compared. In conclusion, the proposed hybrid energy management system saves power by up to
25% and decreases cost by 8.7% on average.

Keywords: HEMS; NEMS; genetic algorithm; Bayesian game; electric vehicle (EV); distributed
generation system (DGS); distributed storage System (DSS); demand response

1. Introduction

1.1. Motivation and Background

With the advancement of technology, increase in consumer comfort level and widespread
use of electric vehicles cause more electricity consuming products to be introduced into our
daily lives. As electrical loads in the existing power grid increase, the demand and supply gaps
widen. Increasing the electrical generation capacity alone does not reduce this gap due to power
loss in inadequate transmission and distribution infrastructures. Smart grids which integrated
with distributed production and storage systems, information technologies and advanced control
algorithms, can overcome this problem [1]. Energy efficiency in smart grids is achieved by managing
demand side, distributed generation and storage systems [2–4]. In this context, Demand Response (DR)
programs have been encouraged to enable customers to utilize the existing energy more efficiently and
reduce the cost. DR strategy provides adjusting the electricity usage pattern of users by interacting
between the power supply company and customers [5]. To flatten demand fluctuations, the price-based
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DR is preferred and the incentive-based DR is opted to reduce peak demand and encourage consumers
to lower their electricity bills [6–8].

Today, a noteworthy amount of the total energy generated is consumed in household appliances.
It is possible to supply these demands by utilizing existing energy efficiently. In this context, HEMS has
been developed to control household appliances, manage distributed production and storage systems,
monitor energy usage, and reduce electricity costs [9]. In Figure 1, energy management system
coordinates power and data transfer among smart homes in the neighborhood. HEMS receives
information by communicating with devices and utilities and tries to mitigate electric consumption
by scheduling the devices [10]. The scheduling problem of HEMS is solved by effective and
intelligent algorithms [11,12]. EVs inject power to the grid during discharge, while drawing energy
from the grid during charging. Thanks to their large capacity, they improve flexibility of power
system [13–15]. The bidirectional feature of EV charger offers flexibility to HEMS to make more
functional choices [16,17].

Figure 1. Energy management system architecture.

Surplus energy generated from renewable sources in smart homes is stored in batteries or sold to
the power grid [5]. The dynamic pricing structure regulates exchanging energy between users and
the power grid. Thus, the consumers may get profit by selling their surplus energy or by purchasing
energy when needed. Other than the renewable energy sources, both heat and power needs can be met
by using m-CHP in consumption places. M-CHP can be utilized alone or with hybrid enery storage
systems [18]. However, in this study, m-CHP was not preferred because fossil-fueled resources were
not expensive and environmentally friendly. Furthermore, when energy was supplied within the
neighborhood, transmission and distribution losses reduce in the power grid. Observing the demands
and supplies of each smart home, NEMS coordinates all assets in the distribution system from a
center [19,20].

1.2. Related Works

Although HEMS studies started in the 1990s, it has been a popular topic since 2010. A large
number of HEMS models has been proposed. Tsui and Chan [21] improved a versatile convex
programmatic DR strategy for the optimal operation of appliances with a variable price signal.
Pradhan et al. [22] developed an effective DR strategy for end user energy management considering
user comfort level and dynamic pricing signals. Lee et al. [23] and Yang et al. [24] suggested a
comprehensive price-based DR strategy to optimally regulate supply and demand via centralized or
decentralized models. This DR focuses to determine the ideal schedule of generation, storage and



Electronics 2019, 8, 512 3 of 17

consumption appliances. Hemmati and Saboori [25] proposed a HEMS model that includes the most
appropriate solar, wind and battery systems to address energy fluctuations. Patel and Khosla [26]
presented a model that reduces the electricity bills of users in DR programs by mitigating electricity
energy usage in peak periods and shifting the peak load time to an off-peak time. Kuzlu et al. [27]
explained a HEMS strategy that limits the peak power DR for smart homes including both electrical
devices and EVs. Wu et al. [14] proposed a price-based DR strategy that reduces energy costs and
shaves the peak demands by incorporating the EV charger in G2V, V2G and V2H modes. A real-time
game algorithm was proposed to minimize customer’s electricity cost by alleviating peak demand [28].
Researchers also benefited from distributed generation and storage to transfer energy from one time
span to another period, to schedule appliances. This allows to mitigate the peak-demand and to flatten
the load curve as well. Hilshey et al. [29] presented a smart charging algorithm to reduce overloading
of a transformer by analyzing distribution transformers during EV charging. Guo et al. [30] proposed
a decentralized Lyapunov-based cost minimization method to coordinate the activities of smart
homes in a neighborhood, to minimize electricity cost and to satisfy the transformer capacity limits.
Erdinc et al. [31] tried to prevent the overloading of the distribution transformer by evaluating both the
pricing and the peak power limiting DR. Gong et al. [32] studied innovative solutions for the practical
utilization of the distribution system and the charging effects of EV on the distribution transformer.

Cabras et al. [33] presented a smart HEMS that allows automatic control the devices in smart
homes whitin the same neighborhood. In order to save energy in the proposed model, not only
the distribution systems but also renewable resources have been evaluated in the device’s task plan.
Celik et al. [34] proposed an energy management algorithm based on incentive and price. In this
algorithm, RES and ESS for households in a small-scale neighborhoods are considered. The aim of
the proposed coordination method is to reduce the electricity costs of households by increasing the
usage of renewable energy in the neighborhood and enabling electricity trade among smart homes.
Nizami et al. [35] introduced an integrated approach to the HEMS for a residential area that reduces
the demand peaks in the neighborhood and electricity bill of participating users. Joo and Choi [36]
proposed a two-level-distributed HEMS algorithm. In the first stage, appliances are planned by taking
into account the comfort level of consumers. In the second, for optimizing the electricity cost of a
neighborhood, the energy trade between ESS and neighboring households is regulated.

There are many optimization approaches in order to manage HEMS and NEMS. One of them is
Mixed-integer nonlinear programming. It schedules variable residential loads and renewable energy
sources, optimizes energy consumption and minimizes the cost in buildings Erdinc et al. [31]. The game
theory method was introduced by Mohsenian-Rad et al. [37] to specify an appropriate consumption
schedule for users in a neighborhood. The PSO technique is utilized to extract optimum runtime for
devices, taking into account user preferences, weather conditions and device priorities Wang et al. [38].
Ahmed et al. [39], introduced a new binary backtracking search algorithm based on real-time appliance
scheduling. It helps to limit the user’s peak demand and to achieve energy savings according to the
end user’s comfort constraints and priority.

1.3. Contributions

This paper presents innovative solutions for a single household as well as all homes in a
neighborhood. In this study, both the energy cost of a household and the total power consumption in a
neighborhood are equally important. With a decentralized energy consumption scheduling algorithm
for each household, a certain number of optimizations is applied so that the household’s total cost
becomes minimal. NEMS apply these optimization results in each household to a Bayesian game
and which optimization result should be used for each household. In summary, our paper makes the
following contributions:

1. The proposed model has two-stage hybrid energy management system.
2. The proposed approach aims to reduce the cost of energy in terms of households. Also, it supports

the distribution system by shaving the total demand peak in all periods in the neighborhood.
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3. A new indicator index has been suggested to reduce total demand peaks in the neighborhood by
coordinating all assets.

4. While HEMS uses the GA optimization method to schedule apliances optimally, NEMS coordinates
smart houses in the neighborhood by establishing a Bayesian Game.

1.4. Organization

The rest of the paper is organized as follows: the system model is presented in Section 2.
The developed algorithms are expressed in Section 3. Section 4 presents tests and simulation results.
Finally, the conclusions are discussed in Section 5.

2. System Model

2.1. Distributed Generation Systems (DGS)

Most of the energy generated from central power plants is generated from fossil fuels such as
oil, coal and natural gas. Conventional energy resources are limited, expensive and when they are
consumed, carbon emissions occur. In addition, transmission and distribution losses occur when the
energy generated in these plants is transferred to consumers. To increase the use of renewable resources
for the reasons mentioned above, governments offer incentives to energy producers and consumers.
In this context, producers set up solar and wind farms to sell energy, while consumers build solar
panels and wind turbines on the roofs of their homes to supply some or all of their energy needs.

The total energy generated from household resources is given in (1).

Ppro
h,t = PPV

h,t + Pwind
h,t , ∀h, t (1)

The energy generated from household resources is consumed momentarily or the surplus energy
is stored to use when it is needed in standalone systems. The usage, storage and sales equality of the
energy produced in the household are given in (2). On the other hand, in grid-connected systems, it is
given in (3) that excessive energy is sold to the power grid or to other housesholds.

Ppro
h,t = Ppro,uti

h,t + Ppro,s
h,t , ∀h, bat, t (2)

Ps
h,t = Ps,grid

h,t + Ps,nei
h,t , ∀h, t (3)

2.2. Distributed Storage Systems (DSS)

ESS and EVs are used for energy storage in households. In periods of low electricity prices,
energy generated from DGS or purchased from the grid is stored in the ESS. Then, stored energy is
utilized instead of buying electricity when it is expensive. EVs are generally charged at times when
the electricity price is cheap and demand is low. If the electricity price is expensive and the demand is
high during the periods when EVs are at smart homes, the energy stored in their battery is transferred to
households. The operational constraints of the DSS components are described in detail in (4)–(6) below.

Pbat,uti
h,t + Pbat,s

h,t = Pbat,d
h,t · ηdbat

h , ∀h, f or bat = 1 : ∀t, bat = 2 : t 6∈
[

Td
h , Ta

h

]
(4)

Pbat,c
h,t ≤ rcbat

h · v
bat
h,t , ∀h, f or bat = 1 : ∀t, bat = 2 : t ∈

[
Ta

h , Td
h

]
(5)

Pbat,d
h,t ≤ rdbat

h .(1− vbat
h,t ), ∀h, bat = 2 : t ∈

[
Ta

h , Td
h

]
(6)

Although the battery groups are charged from the grid or the DGS, it is particularly desirable that
ESS be charged from DGS. Since no energy will be generated from PV during periods when an EV is at
home, it is inevitable that an EV is charged from the wind turbine or the grid.
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The energy stored by the battery groups before charging and discharging must be known. Because
the maximum and minimum capacity values that show the safe working area of each battery are
defined, they are allowed to work between these values. The stored energy in the battery is expressed
by Equations (7)–(10).

SOCbat
h,t = SOCbat,ini

h , ∀h, bat = 1 : ∀t, bat = 2 : t = Ta
h (7)

SOCbat,min
h ≤ SOCbat

h,t ≤ SOCbat,max
h , ∀h, bat = 2 : t ∈

[
Ta

h , Td
h

]
(8)

SOCbat
h,t = SOCbat,ini

h + ηcbat
h · P

bat,c
h,t · dt− ηdbat

h · P
bat,d
h,t · dt ∀h, bat = 2 : t ∈

[
Ta

h , Td
h

]
(9)

SOCbat
h,t = SOCbat,max

h , ∀h, bat = 2 : t = Td
h (10)

Energy storage is expensive. For this reason, the battery capacity should be chosen in the best
way in HEMS. Instead of buying a high-capacity battery, HEMS can provide optimum performance
with a battery of normal capacity.

2.3. Electrical Appliances

Electric appliances used at the household for daily needs of the consumers are called residential
loads. These loads are: non-deferred and non-interruptible loads, deferrable and non-interruptible
loads, deferrable and interruptible loads, and temperature-controlled loads. The operation of
non-deferrable and non-interruptible loads cannot be shifted to another time and their operations
cannot be interrupted until they have completed their task. The operation of deferrable and
non-interruptible loads can be shifted over time, but after it has started operation, they have to
complete their tasks with non-interruption. Deferred and interruptible loads can be started or stopped
to operation when requested according to the consumer preference. Temperature controlled loads
such as water heaters and air conditioners operate depending on ambient temperature and consumer
comfort level. When, how long, and in which mode the devices are used depend on consumer
preferences. The operating constraints of the device are expressed in (11)–(13).

Pm
h,t = ∑

p
Pm,p

h · am,p
h,t (11)

Tm,p
h = ∑

t
am,p

h,t (12)

Tm
h = ∑

t
∑
p

am,p
h,t (13)

The operation times of appliancec are defined in advance by the user. The power consumption of
devices which have different operation phases or are controlled thermostatically vary throughout the
run time. An appliance can operate in only one of its phases.

2.4. Objective Function

The purpose of this study is to develop an energy management strategy that diminish the total
cost of electricity, flatten the load curve in a smart home and prevent overloading of the distribution
transformer in the neighborhood of smart homes. To solve such a problem, a two-stage method is
proposed. In the first stage, the operation times of the appliances in each smart home are scheduled
by considering the electricity price, produced and stored energy, and consumer preferences. In the
next stage, power consumption in all periods has been minimized, taking into account the possible
electricity consumption schedules of smart homes. Both objective functions cover a period of one
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day, not an invoice period. The cost of electricity and power consumption are calculated according
to the duration of use. Objective functions for smart homes and neighborhoods have been examined
in detail.

2.4.1. Smart HEMS Strategy for Each Household

Smart homes consist of equipment such as a roof type solar panel, a roof type wind turbine, an EV
and electrical appliances. The nominal power parameters of these equipments in each smart home can
change according to consumer preferences. The day-ahead price signal is used for cost planning in the
presented model. Of course, this is not the actual price of the next day, but it provides an indication
about the expected prices. The day-ahead hourly-price signal for 24 h is received by smart homes with
the smart-meter and is used by the optimization algotithm.

Puti
h,t = Pm

h,t + Pbat,c
h,t (14)

Pb
h,t + Ppro

h,t + Pbat,d
h,t = Puti

h,t + Ps
h,t (15)

Pmean
h =

1
T

T

∑
t

Puti
h,t (16)

Flat = ∑
t
| Puti

h,t − Pmean
h |2 (17)

Cost = ∑
t
(Pb

h,t · dt · prb
t )− (Ps

h,t · dt · prs
t ) (18)

In order to construct objective functions, the expression of the utilized and total power for a smart
home h in unit period t are given in (14) and (15), respectively. The Formula (16) depicts the average
power consumption for a smart home h. These constaints are auxiliary equations to simplify the flat
objective Function (17). The Equation (18) is formed for cost optimization.

2.4.2. Smart NEMS Strategy for a Neighborhood

HEMS is responsible for making optimal control to minimize the energy cost of each smart
home. Each HEMS presents a certain number of operation scheduling to consumer for this purpose.
NEMS communicates with each HEMS to get their schedules and tries to minimize the power
consumption of all smart homes at all t periods.

Time-varying day-ahead prices are sorted in descending order and the average of power
consumptions is calculated at the same price periods. By starting from the average consumption
of the greatest price period, the average of each price period is proportioned to the average of the
next price period, and the sum of these ratios is defined as a new indicator. The power consumption
difference between the price periods is reduced by minimizing defined indicator. In other words,
the price transitions has softened to flatten the load curve of the smart home. NEMS are expressed
in (19)–(21).

prn ≥ prn−1 · · · ≥ pr1 (19)

Pmean
prn ,θi

=

T
∑

t=1
Rt=prn

Puti
prn ,θi ,t

T
∑

t=1
x=0

Rt=prn

x
(20)

indi(θi) =
Pmean

prn ,θi

Pmean
prn−1,θi

+
Pmean

prn−1,θi

Pmean
prn−2,θi

+ · · ·+
Pmean

pr2,θi

Pmean
pr1,θi

(21)
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3. The Proposed Algorithms

3.1. Genetic Algorithm for HEMS

GA searches an optimal solution in the solution space for the objective function according to the
defined constraints. In our project, we divided a day into 5 min intervals. Thus, each appliance is
represented by 288 (24× 12) bases. One individual is encoded m× 288 bases where m is the number of
appliances in the home. The length of the chromosome is directly related to the number of appliances
in the home. Once the population is created, the objective function is evaluated in terms of fitness.
The fitness includes two objective functions that minimize the cost of the smart home and flatten the
load curve. To derive a single objective function, balance coefficients are determined for cost and
flatten functions. In (23), the fitness value is calculated by using the coefficients (k1 = 0.1, k2 = 2.7)
keeping the cost function dominant.

Fitness =
288

∑
t=1

(Costh,t · k1 + Flath,t · k2) (22)

We set the size of the population to 1000. For each generation, 10% of the indiviuals are selected
based on the fitness function. In order to populate the next generation, we applied 0.5% mutation and
5% crossover operations. Crossover refers to exchange controllable devices among the individuals.
On the other hand, mutation helps to move the operation time of a single appliance in the selected
cromosome. The GA method requires approximately 1 min to calculate a feasible solution. For each
smart home, GA module computed five possible solutions. HEMS manages the devices in a smart
home in a 24-hour period. The implemented genetic algorithm for the recommended HEMS models is
given in Algorithm 1.

Algorithm 1 Genetic Algorithm for HEMS

1: procedure GA_HEMS()
2: generate(Population0) // initial population
3: ebest ← COMPUTE(22, Population0) // Fitness function
4: for i← 1..g do
5: while op < Operation do
6: for randomness in Populationi−1 do
7: select x,y ∈ Populationi−1
8: Populationi ← Populationi + crossover(x, y)
9: select z ∈ Populationi−1

10: Populationi ← Populationi + mutation(z)
11: enew ← COMPUTE(22, Populationi)
12: if enew < ebest then
13: ebest ← enew
14: return ebest

3.2. Bayesian Game Theory for NEMS

All smart homes in the neighborhood that participated in NEMS are players in the established
Bayesian game.

There are h players (smart homes) and each player has five actions (optimal solutions) in the
Bayesian game. Ti encodes the set of actions of the ith player 5 = |Ti|. In (23), the belief functions of
the players vary according to their actions.

p(Θi) =
1
5

(23)

In order to calculate the gain function ui(Θi, Θ−i) for player i, the indicator values of each player
and the average indicator values of all the players must be computed separately. In Equation (24);
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indave(θi, θ−i) =

5
∑

j=1
Pmean

prn ,θj

5
∑

j=1
Pmean

prn−1,θj

+

5
∑

j=1
Pmean

prn−1,θj

5
∑

j=1
Pmean

prn−2,θj

+ . . . +

5
∑

j=1
Pmean

pr2,θj

5
∑

j=1
Pmean

pr1,θj

(24)

Since the submodel solutions aim to minimize the gain, the general (24) and special (20) target
functions are added with a negative coefficient, as shown in Equation (25).

ui(Θi, Θ−i) = −(indi(Θi) + indave(Θi, Θ−i)) (25)

In order to reach the solution of a Bayesian game model, the Bayesian Nash equilibrium needs
to be extracted. This equilibrium is provided by determining an optimal strategy s∗(s∗1 , s∗2 , . . . , s∗h) by
incorporating the gain function expressed in (26). The belief function p is the core of the bayesian game
theory. After computing the belief functions, the equilibrium equations are reevaluated.

s∗i ∈ argmax ∑
Θ−i

p(Θi|Θ−i) · ui(Θi, Θ−i))

∈ argmax ∑
Θ−i

[
p(Θi|Θ−i) · p(Θ−i)

p(Θi)
] · ui(Θi, Θ−i))

(26)

The players do not communicate with each other and they prefer any strategy independently.
The NEMS knows the actions of each smart home and its gains. Thus, NEMS updates the beliefs of
the other players according to the possible actions of each player. The Bayesian game Algorithm 2 is
developed and implemented for our NEMS model.

Algorithm 2 Bayesian Game for NEMS

1: procedure BG_NEMS()
2: for i← 1..h do
3: for j← 1..n do
4: Pmean(prj, Θi)← COMPUTE (20)
5: indi(Θi)← COMPUTE (21)
6: for i← 1..h do
7: indave(Θi, Θ−i)← COMPUTE (24)
8: u(Θi, Θ−i)← −(indave(Θi, Θ−i) + indi(Θi))
9: for i← 1..h do

10: s∗i ← argmax ∑Θ−i
[p(Θi|p(Θ−i)× p(Θ−i))/p(Θi)× u(Θi, Θ−i)]

4. Tests and Results

4.1. Input Data

In our Bayesian game, there are five players, h = 5 and the time interval is 5 min as mentioned
earlier. According to the preferences of consumers, nominal power and operation period for appliances
in all smart homes are given in Table 1. Since the operation periods of HVACs vary depending on
the ambient temperature, their operation periods are not indicated. Every home may not contain all
appliances and each device may not be utilized daily.

Washing machine and dishwasher characterized as controllable loads, and they have different
stages. As expressed in Table 2 there are eight and four stages for the a washing machine and the
dishwasher, respectively.
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Table 1. Appliances operation parameters.

Appliance Home-1 Home-2 Home-3 Home-4 Home-5

Power Period Power Period Power Period Power Period Power Period

C.Dryer - - 3.60 16 3.60 14 3.00 12 3.30 16
HVAC 1.20 - 1.60 - 1.50 - 1.50 - 1.60 -
Refrigerator 0.10 288 0.08 288 0.09 288 0.10 288 0.09 288
D.Freezer 0.06 288 0.06 288 0.05 288 0.06 288 0.04 288
Oven 2.00 14 1.60 12 1.50 10 1.50 10 1.60 23
Microwave 1.50 4 0.70 5 0.72 2 0.60 5 0.70 5
Toaster 2.20 2 2.20 3 2.00 3 2.40 - 2.00 4
Vacuum.C 2.00 12 2.00 16 2.00 14 1.50 16 2.40 19
Hair.Dryer 2.20 5 1.80 9 2.30 8 1.80 6 2.30 7
Straightener 0.20 3 0.05 6 0.04 7 - - 0.04 5
W.Heater 2.00 16 1.80 17 2.70 16 2.40 19 3.30 19
TV 0.16 83 0.12 85 0.16 88 0.12 117 0.16 124
PC.Phone 0.12 74 0.16 62 0.21 62 0.15 58 0.15 89
Lighting 0.16 89 0.18 94 0.15 96 0.15 76 0.20 90
Iron 2.40 13 2.70 12 2.80 10 2.30 13 2.80 11
Other 0.12 288 0.15 288 0.18 288 0.18 288 0.16 288

Table 2. Washing machine and Diswasher operation parameters.

Homes Parameter Washing Machine Status Dishwasher Status

Wat Was Rin Squ Wat Was Rin Squ Wat Was Rin Dry

Home-1 Period (m) 1.0 3.0 3.0 2.0 1.0 3.0 3.0 2.0 2.0 8.0 8.0 6.0
Power (kW) 0.6 2.0 0.4 1.2 0.6 2.0 0.4 1.2 2.0 8.0 8.0 6.0

Home-2 Period (m) 1.0 4.0 3.0 2.0 1.0 4.0 3.0 2.0 2.0 8.0 6.0 6.0
Power (kW) 0.8 1.8 3.0 2.0 0.8 1.8 3.0 2.0 0.6 1.6 0.8 1.8

Home-3 Period (m) 1.0 5.0 2.0 2.0 1.0 5.0 2.0 2.0 2.0 9.0 5.0 5.0
Power (kW) 0.5 1.2 0.3 1.8 0.5 1.2 0.3 1.8 0.5 1.2 0.8 1.5

Home-4 Period (m) 1.0 5.0 2.0 2.0 1.0 5.0 2.0 2.0 2.0 9.0 4.0 4.0
Power (kW) 0.8 2.0 0.4 2.4 0.8 2.0 0.4 2.4 0.5 1.2 0.8 1.5

Home-5 Period (m) 1.0 4.0 3.0 2.0 1.0 4.0 3.0 2.0 2.0 8.0 6.0 6.0
Power (kW) 0.8 2.0 0.6 1.8 0.8 2.0 0.6 1.8 1.0 2.2 0.8 2.4

The installed powers of the roof type PV and wind turbine in smart homes are given in Table 3.
Home-1,2,4 and 5 include PVs, Home-3 and 4 include wind turbine and only Home-3 includes both of
these production systems.

Table 3. Distributed genenation system parameters.

Home-1 Home-2 Home-3 Home-4 Home-5

PV (kW) 1.00 1.20 - 0.50 1.50
Wind (kW) - - 0.60 0.20 -

The EV and ESS parameters of the houses are given in Table 4. Since residents have different
EV types, the battery capacity and the charger characteristics vary. For a real scenario, the arrival
and departure times of EVs were set arbitrarily. On the other hand, the ESS parameters are selected
according to the installed power of the distributed generation.
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Table 4. Distributed storage system parameters.

Bat. Parameter Home-1 Home-2 Home-3 Home-4 Home-5

ESS

SoC.max 1.00 0.80 1.00 1.00 1.00
SoC.ini (kWh) 0.20 0.20 0.20 0.20 0.20
SoC.min (kWh) 0.20 0.20 0.20 0.20 0.20
CE 0.95 0.90 0.90 0.95 0.95
DE 0.95 0.90 0.90 0.95 0.95
CR (kW) 0.20 0.20 0.20 0.20 0.20
DR (kW) 0.20 0.20 0.20 0.20 0.20

EV

SoC.max 16.00 15.00 20.00 - 18.00
SoC.ini (kWh) 11.50 10.20 14.20 - 9.20
SoC.min (kWh) 4.00 3.75 5.00 - 4.50
CE 0.90 0.90 0.88 - 0.90
DE 0.90 0.95 0.85 - 0.87
CR (kW) 3.00 2.75 3.50 - 3.20
DR (kW) 3.00 2.75 3.50 - 3.20
Ta (h) 7:00 7:30 7:50 - 7:20
Td (h) 17:30 18:00 18:20 - 18:30

Due to the utilization of the electricity price in the objective function directly, the price is one
of the most important parameters for the optimization model. The day-ahead price has a dynamic
structure determined daily by the energy market. We incorporated this parameter in both HEMS and
NEMS optimization phases. In this study, buying and selling prices in all periods are considered equal.
The price signal is shown in Figure 2.

Figure 2. Day ahead electricity price signal.

4.2. Simulation Results

In this study, a two-stage simulation was performed. The HEMSs are designed in the first phase.
For each household, five possible outcomes were produced by GA. The possible solutions calculated
separately for both the load curve (see Equation (16)) and the cost (see Equation (17)). These solutions
are given in Table 5 clearly. When cost-based objective functions are examined, 1st program for home-1,
5th program for home-2, 2nd program for home-3, 3rd program for home-4, and 1st program for
home-5 yields optimal energy consumption. On the other hand, when load curve flattening objective
is considered, the programs 5, 4, 1, 4 and 4 provide optimal power consumption for homes-1,2,3,4 and
5 respectively.

In Table 5, two different objective functions for each optimization were merged to a single function
by the Formula (21). According to the final objective function, GA has produced five schedules for
each household and these plans are shown in Figure 3b–f.
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Figure 3. Possible energy optimizations in smart homes.

Table 5. Possible optimization results.

Smart
Homes

Optimization-1 Optimization-2 Optimization-3 Optimization-4 Optimization-5

Cost Flat Cost Flat Cost Flat Cost Flat Cost Flat

Home-1 85.590 1.894 86.490 1.894 86.757 1.818 86.257 1.840 86.599 1.815
Home-2 109.691 1.830 109.366 1.801 109.482 1.785 111.616 1.762 109.334 1.817
Home-3 125.364 2.011 125.176 2.025 125.939 2.058 125.693 2.049 125.476 2.052
Home-4 111.498 1.703 111.440 1.738 111.423 1.717 111.798 1.697 111.948 1.704
Home-5 250.488 2.496 252.655 2.416 253.488 2.350 253.488 2.346 251.776 2.430

The GA optimization results based on the combined objective function are seen in Figure 4.
Optimal solutions according to these results have computed as 5th option for home-1, 3rd for home-2,
1st for home-3 and home-4, and 4th for home-5.

Figure 4. GA optimization results.
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In order to compare the success of the developed model, a survey has been conducted by
250 participants. Each participant was asked to describe their habits regarding usage for devices.
Appliances were scheculed in each houseshold based on the survey results. Then, our objective
functions were applied to these outcomes. Table 6 depicts the average of objective function results for
each smart home.

Table 6. Consumer survey results.

Homes Cost Flat Objective

Home-1 94.561 2.127 15.200
Home-2 125.007 2.336 18.808
Home-3 138.451 2.590 20.839
Home-4 124.646 2.230 18.487
Home-5 268.333 3.167 35.385

In the second stage of the proposed model, the Bayesian game was established to construct the
NEMS where HEMSs are players in this game. Neighborhood indicators are target functions for
NEMS. Indicator values have been calculated with Formula (20). As expressed in Table 7, the first
column shows the indicator values based on the data in consumer survey. The other columns depict
the indicators considering possible results generated by the GA.

Table 7. Survey and indicator results for the smart homes.

Homes Survey ind-1 ind-2 ind-3 ind-4 ind-5

Home-1 8.523 8.178 8.070 7.814 7.885 7.922
Home-2 7.949 5.999 5.844 5.831 6.075 5.893
Home-3 8.054 6.354 6.340 6.395 6.311 6.501
Home-4 10.864 7.130 7.196 7.021 7.153 7.162
Home-5 7.173 6.266 6.107 6.141 6.095 6.193

When HEMSs are considered individually, optimal strategies become 5-3-1-1-4, respectively (see
Figure 4). In the Bayesian game, the NEMS coordinates players (HEMSs) to minimize the fluctuation in
total power. To do so, the NEMS allows power transfer among HEMSs as mentioned earlier. The NEMS
performs a selection process using the gain function given by (25). The optimum selection results in
the neighborhood are given in Table 8. Considering the overall gain, the strategies of the five players
should be in the order of 1-3-2-3-4, respectively.

Table 8. The Bayesian game results in the neighborhood.

Home-1 Home-1 Home-1 Home-1 Home-1

S1 III II III IV
I S2 II III IV
I III S3 III IV
I III II S4 IV
I III II III S5

In Table 9, indicator values and costs calculated in the survey and Bayesian game were compared.
Considering the average of indicators, it was found that the Bayesian game provided 25% efficiency
on power. In terms of cost, it is proved that our model presents 8.7% more economical benefit.
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Table 9. Comparison of survey and Bayesian Game results.

Home-1 Home-2 Home-3 Home-4 Home-5 Average

Survey indicator 8.523 7.949 8.054 10.864 7.173 8.513
BG indicator 8.178 5.831 6.340 7.021 6.095 6.377
Efficiency (%) 4.046 26.647 21.246 35.372 15.037 25.092

Total

Survey Cost (Cent) 94.561 124.568 138.467 124.646 268.333 750.536
BG Cost (Cent) 85.590 85.590 125.176 111.424 253.488 685.161
Efficiency (%) 9.487 12.111 9.599 10.608 5.532 8.711

The net power state of the neighborhood after optimum selection was shown in Figure 5. Due to
the maximum energy generated from the PV from 10:00 a.m. to 1:00 p.m., many demands during
these hours were supplied and ESSs were charged. The energy generated from PVs in home-1 and
home-2 was sold to the grid. In addition, net power has been reduced by transferring excess energy
from EVs to homes during peak demands. Although home-4 has not got any EV, it was saturated
with transferring energy from EVs in the other homes. The power was sold to the grid at peak hours
(7:20–7:50 p.m.). Besides, EVs are charged between 01:00 and 06:00 a.m. when the price is low.

Figure 5. The net power state of the neighborhood.

5. Conclusions

In this study, a new two-stage hybrid energy management system was proposed and designed
from scratch. In the first stage, a HEMS structure consisting of DGS, DSS, uncontrollable and
controllable devices, was modeled using a GA. The goal of the HEMS was to minimize the total
cost according to a dynamic pricing signal. In the second stage, a Bayesian game was established and
a NEMS model was constructed that includes all HEMSs. The aim of the NEMS was to minimize total
load fluctuation in the neighborhood by allowing power transfer among HEMSs. Then, these models
were tested individually using realistic scenarios. The simulation results were thoroughly discussed.
In conclusion, the proposed hybrid energy management system proved to be 25% efficient in terms of
power and 8.7% efficient in terms of cost.
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Nomenclature

Parameters
ηcbat

h Charging efficiency of battery n of smart home h
ηdbat

h Discharging efficiency of battery n of smart home h
Pm,ph

h,t Power rate of appliance m of smart home h in period t (kW)
Pm

h,t Power of appliance m at smart home h in period t (kW)

Pm,ph
h Power rate at phase ph of appliance m of smart home h (kW)

rcbat
h Charging rate of battery n of smart home h (kW)

rdbat
h Discharging rate of battery n of smart home h (kW)

s∗ Optimal strategy vector in Bayesian Game
s∗i Optimal strategy of player i in Bayesian Game
SOCbat,ini

h Initial state-of-energy of battery bat at smart home h (kWh)
SOCbat,max

h Maximum allowed state-of-energy of battery bat at smart home h (kWh)
SOCbat,min

h Minimum allowed state-of-energy of battery bat at smart home h (kWh)
Ta

h Arrival time of EV to smart home h
Td

h Departure time of EV from smart home h
Tm,ph

h Duraion of phase ph of controllable appliance m of smart home h (5 min)
Tm

h Duraion of controllable appliance m of smart home h (5 min)
k1 Cost function coefficient
k2 Flat function coefficient
prb

t Buy price in period t
prs

t Sale price in period t
Sets
(Θi) Action in Bayesian Game
i Player index in Bayesian Game
m Index (set) of controllable appliances
vbat

h,t Charge status of battery bat of smart home h in period t
ph Phase of controllable appliance index
p Belief function in Bayesian Game
t Time period index
Variables
am,ph

h,t Operation stage ph of appliance m of smart home h in period t. a = 1 :
applianceON; a = 0 : applianceOFF;

bat Energy storage index, n = 1 DSS, n = 2 EV
indave(Θi, Θ−i) Average indicator if the player i selects an action (Θi) and other players choose any of

their actions (Θ−i) in Bayesian Game
indi(Θi) Indicator index if the player i selects an action (Θi)in Bayesian Game
Pbat,buy

h,t Power drawn from grid from battery bat at smart home h in period t (kW)
Pbat,d

h,t Discharging power of battery bat of smart home h in period t (kW)
Pbat,sale

h,t Power injected to grid from battery bat at smart home h in period t (kW)
Pbat,uti

h,t Power utilized from battery bat at smart home h in period t (kW)
Pb

h,t Power bought to neighborhooh in smart home h in period t (kW)
Ppro,s

h,t Sold power which produced from DGS n at smart home h in period t (kW)

Ppro,uti
h,t Utilized partion of produced power from DGS n at smart home h in period t (kW)

Ppro
h,t Total power produced from DGS n at smart home h in period t (kW)

PPV
h,t Power genereted from PV in smart home h in period t (kW)

Ps,grid
h,t Power sold to grid in smart home h in period t (kW)

Ps,nei
h,t Power sold to neighborhooh in smart home h in period t (kW)

Ps
h,t Power sold in smart home h in period t (kW)

Puti
h,t Power utilized in smart home h in period t (kW)

Pwind
h,t Power genereted from Wind in smart home h in period t (kW)
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Pbat,c
h Charging power of battery bat of smart home h in period t (kW)

Pmean
h Power average in smart home h (kW)

Pmean
prn ,Θi

Power average at price prn in action Θi of player i (kW)
Pmean

prn ,Θi
Power average at price prn in action Θi of player i in Bayesian Game (kW)

Pmean
prn ,Θj

Power average at price prn if player i select action Θi and other players select any
action Θ−i in Bayesian Game (kW)

SOCbat
h,t State-of-energy of battery bat at smart home h in period t (kWh)

Tm Operation period of appliance m
ui(Θi, Θ−i) Gain function for player i in Bayesian Game
dt Tme interval

Abbreviations

HEMS Home Energy Management System
NEMS Neighborhood Energy Management System
BG Bayesian Game
GA Genetic Algorithm
RES Renewable energy sources
DGS Distributed Generationd System
DSS Distributed Storage System
ESS Energy Storage System
EV Electric Vehicle
DR Demand Response
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