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Abstract: Classification of complex acoustic scenes under real time scenarios is an active domain
which has engaged several researchers lately form the machine learning community. A variety of
techniques have been proposed for acoustic patterns or scene classification including natural soundscapes
such as rain/thunder, and urban soundscapes such as restaurants/streets, etc. In this work, we
present a framework for automatic acoustic classification for behavioral robotics. Motivated by several
texture classification algorithms used in computer vision, a modified feature descriptor for sound is
proposed which incorporates a combination of 1-D local ternary patterns (1D-LTP) and baseline method
Mel-frequency cepstral coefficients (MFCC). The extracted feature vector is later classified using a
multi-class support vector machine (SVM), which is selected as a base classifier. The proposed method is
validated on two standard benchmark datasets i.e., DCASE and RWCP and achieves accuracies of 97.38%
and 94.10%, respectively. A comparative analysis demonstrates that the proposed scheme performs
exceptionally well compared to other feature descriptors.

Keywords: feature extraction; sound classification; support vector machine; sound processing;
robotics; MFCC

1. Introduction

Robotics is the branch of artificial intelligence which is concerned with designing robots that can
perform tasks and interact with the environment, without the aid of human intervention. Although the
mechanical control technology of robots has been remarkably well developed in recent years. The ability of
robots to perceive and analyse their surrounding environment, especially the auditory scenes still requires
a significant research effort. Acoustic-based classification complements the vision based classification in
a number of ways. First, considering the field of view, microphones are more nearly omni-directional
than even wide-angle camera lenses. Second, audio signals require a significantly smaller bandwidth and
low processing power. Third, acoustic classification is more reliable as the parameters of image/video
processing algorithms are affected by variations in light intensity, thus, increasing the probability of false
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alarms. Detection and classification of acoustic scenes can help to facilitate the human-robot interaction
and increase the application domain of behavioral and assistive robotics.

One of the key aspects of designing an acoustic classification system is the selection of proper signal
features that could achieve an effective discrimination between different sound signals. Sounds coming
from a general environment are considered neither music nor speech, but a collection of some audio
signals that resemble noise signals. While sufficient research has focused on music and speech analysis,
very little work has been done on concrete analysis of feature selection for classification of environmental
sounds. One of the main objectives of this research is to investigate the effect of multiple features on the
efficiency of an environmental scene classification system.

The state-of-the-art for acoustic scene classification features a number of approaches. Table 1 presents
a summary of some considerable works in this domain which are discussed as follows. In [1], an approach
based on local binary patterns (LBP) is adopted to construct the spectrogram image of environmental
sounds. The LBP features are enhanced by incorporating local statistics, normalized and finally classified
by a linear SVM. The accuracy is validated against RWCP dataset. In [2], the authors studied sound
classification in a non-stationary noise environment. At first, probabilistic latent component analysis
(PLCA) is performed for noise separation. Further, regularized kernel fisher discriminant analysis (KFDA)
is adopted for multi-class sound classification. The method is validated on RWCP dataset. In [3], acoustic
classification is performed using large-scale audio feature extraction. First, a large number of spectral,
cepstral, energy and voice related features are extracted from highly variable recordings. Then, a sliding
window approach is adopted with SVM to classify short recordings. Finally, a majority voting is employed
to classify large recordings. The work further proposes Mel spectra as the most relevant features.

Table 1. Summary of published works on acoustic scene classification.

Work  Features Classifier Dataset Accuracy
[1] ID-LBP Linear SVM  RWCP 98%
2] PLCA, temporal-spectral patterns of FDA RWCP 91.04%

sound spectrogram
[3] MFCC, Spectral and energy features SVM DCASE 73%
. 99.85%,
[4] Multichannel LBP SVM RWCP, NTU-SEC 96.29°
[5] Matching Pursuit and MFCC GMM BBC sound effects 98.4%

Self collected 250 recordings of dropping

[6] Thresholds based pre-processing, FFT SVM and hitting sounds 87%
7] LECC GMM self collected de.ltaset using a microphone 90%
set up on cleaning robot platform
[8] HOG pooling DCASE-challenge, Litis Rauin, EA 70%
MP decomposition using Gabor Random Combination of self collected sounds,
[9] . O . Sound Idea database [10], Free sound
function with time frequency histogram Forest .
project [11]
[12] Deep. neural network based transfer Softmax DCASE 85.6%
learning
[13] MFCC CNN UrbanSoundK 77%
[14] Multiple Hierarchical  Self collected 92.6%
[15] MFCC, ZC, LAR etc. KNN Self Collected 99%
[16] average peak, height & width, no. of Regression self collected 779%

half-wavelengths of music wave analysis
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In [4], features based on LBP from the logarithm of the Gammatone-like spectrogram are proposed.
However, LBP is sensitive to noise and discards important information. Therefore, a two-projection-based
LBP feature descriptor is also proposed that captures the texture information of the spectrogram of sound
events. In [5], a matching pursuit (MP) algorithm is used to extract effective time-frequency features
from sounds. The MP technique uses a dictionary of atoms for feature selection, resulting in a set of
features that are flexible and physically interpretable. In [6], Fast Fourier Transform (FFT) is used to extract
spectral power and duration of event based sounds. A number of features are extracted which include
time-domain zero crossings, spectral centroid, roll off, flux and MFCC. Further, sound classification is done
using SVM and multi-layer perceptron (MLP). In [7], a combination of log frequency cepstral coefficient
(LFCC), Gaussian mixture models (GMMs) and a maximum likelihood criterion is employed to recognize
various sound events for a cleaning robot. Experimental results demonstrate that LFCC based approach
performs better than MFCC under low signal to noise ratio (SNR) environment. Human classification
accuracy in performing similar classification tasks is also evaluated by experiments.

In [8], a feature extraction pipeline is proposed for analyzing audio scene signals. Features are
computed from a histogram of gradients (HOG) of constant Q-transform followed by an appropriate
pooling scheme. The performance of the proposed scheme is tested on several datasets including Toy,
East Anglia (EA) and another dataset named Litis Rouen collected by the authors. In [9], MP algorithm is
used to extract useful Gabor atoms from input audio stream. MP is applied over the whole duration of
acoustic event. The time-frequency features are constructed from atoms in order to capture temporal and
spectral information of a sound event. Further, the classification is done using a random forest classifier.
Deep neural network (DNN) based transfer learning is proposed in [12] for acoustic classification. First,
the DNN is trained on source domain task that performs mid-level feature extraction. Then, the pre-trained
model is re-used on the DCASE target task. In [13], the authors proposed that dilated CNN architecture
performs better environmental sound classification as compared to CNN with max pooling. The effect
of dilation rate and number of layers on performance is also investigated. The work in [14] proposes a
hierarchical approach to classify different sound events such as silence, non-silence, speech, non-speech,
music and noise. In contrast to a classical one-step classification scheme, a different set of effective features
is selected at each level. In [15], a hearing aid system is proposed for real time recognition of various sounds.
The system is based on generating audio finger print i.e., a brief summary of audio file which collects
a number of features including spectrogram zero crossings (ZC), MFCCs, linear prediction coefficients
(LPCs) and log area ratio (LAR). The recognition is done on self collected sound samples using a K nearest
neighbors (KNN) classifier. The system achieves a maximum accuracy of 99%. In [16], the authors propose
automatic emotion classification system for music sounds. The work utilizes several features of sound
wave, i.e., peak value, average height, the number of half wavelengths, average width and beats per
minutes. Finally, regression analysis is perform to recognize various emotions from the sound. The system
achieves an average accuracy of 77%. In [17], sound identification method for a mobile robot in home
and office environment is proposed. A simple sound database called Pitch-Cluster-Maps (PCMs) based
on vector quantization technique is constructed and its codebook is generated using binarized frequency
spectrum. The works in [18,19] demonstrate that acoustic local ternary patterns (LTPs) show better
performance as compared to MFCCs for fall detection problem. In the literature, various convolutional
neural network (CNN) architectures are used to classify soundtracks from a dataset of 70 million training
videos (5.24 million hours) with 30,871 video-level labels [20]. Experiments are performed using fully
connected DNNs, VGG [21], AlexNet [22], Inception [23] and ResNet [24] etc.

The acoustic scene classification approach proposed in this work has the following contributions.
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e An extended feature descriptor is proposed which takes advantage of modified 1-D LTP in
combination with MFCC.

e A feature fusion methodology is opted, which exploits the complementary strengths of both MFCC
and modified 1-D features to generate a serial vector.

o To provide a better insight, a set of classifiers are tested on two standard benchmark datasets.
This action supports researchers in selecting the best classifiers for this application.

The rest of the paper is organized as follows. In Section 2, the proposed method of acoustic scene
classification is discussed. Section 3 discusses the experimental setup and datasets. The performance
results and discussions are presented and discussed in Section 4 and finally, Section 5 concludes the paper.

2. Proposed Method

2.1. System Overview

Figure 1 shows the overall architecture of the proposed acoustic scene classification system. The sound
signal is captured from environment through a microphone. It is digitized using an ADC in the
preprocessing step and fed into the feature extraction stage. The MFCC and 1D-LTP features are extracted
from the digital sound signal, they are fused together in a joint feature vector and finally classified using
an SVM classifier. The main processing steps of the proposed system are discussed as follows.

1D-LTP H Joint
Multiclass Classify
Sound Signal > Feature SUM % Acoustic Scene
MECC Vector
Feature Feature Classification
Extraction Fusion

Figure 1. System Architecture for Acoustic Scene Classification.

2.2. Feature Extraction

2.2.1. 1-D Local Ternary Patterns

The local binary patterns (LBPs) have been investigated as among the most prominent feature
descriptors in the field of computer vision and image analysis [25]. The basic idea behind LBP is to
compare each pixel of an image with its neighborhood. Each compar ison of an image pixel with its
neighbors results in binary values ‘0’ or '1’. This helps to summarize a local structure in an image and
obtains powerful feature descriptors for a number of promising applications such as face recognition [26]
and texture analysis [27]. LBPs are invariant to monotonic grey scale changes and have low computational
cost [28]. Applying the LBP method for 1-D signals such as sound, helps to obtain useful information
about local temporal dynamics of sound. The LBPs achieve discriminative features of several sounds,
as exhibited by the works on music genre recognition [29] as well as environmental sound classification [1].
However, LBPs are highly affected by noise and fluctuations in acoustic samples [1]. In order to further
improve the discriminative power of LBP, LTPs were proposed for face recognition in 2010 [30], and later
on applied in a number of works [31-33]. In contrast to the LBPs which encode the relationships of ‘greater
than’ or 'less than’ between the pixel and its neighbor, the LTPs reflect the ‘greater than’, ‘equal to” or ‘less
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than’ relationships. Under the same sampling conditions, LTPs help to achieve more discriminative and
sophisticated sound features as compared to 1D-LBPs.

Analog audio signal is first digitized with sampling frequency F; to form a discrete signal X[i]
having N number of samples. The 1D-LTPs of sampled signal X[i] are computed using a sliding window
approach. Consider a signal sample x[i] with amplitude « is placed at the center of window with size
P + 1. Defining the upper and lower values of amplitude threshold as (« + t) and (« — ) respectively,
where t is arbitrary constant. From the amplitudes of signal samples that lie in the window, a ternary code
vector F of size P is obtained whose individual values are computed as;

Fljl = Qxli+3 —1), Y € {0+, P-1}, 0
)i i<z
_{Hl J>I§’}’ ?
where Q(x[i]) is defined as;
1, x[i] > (a+t)
Qx[i)) =9 0, (a—t)<x[i]<(a+t) ;. (3)
-1, x[i] < (a—t)

From the ternary code vector, the upper and lower local ternary patterns are computed as;

P-1

LTPupperli] = Y su(F[K]) - 2%, 4)
k=0,k#i
—1

LT Pyoyer M = Z SZ(F[k]) : Zk/ 5)
k=0 ki

where,

0 otherwise

sl<F[k1>>={é ! } 7)

su(E[K])) = { 1 Flk =1 } ©)

otherwise

Figure 2 illustrates the extraction of 1D-LTP features for one sample of a discrete audio signal.
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Figure 2. Extraction of 1D-LTP features.
2.2.2. Mel-Frequency Cepstral Coefficients (MFCC)

MEFCCs are a baseline method that has been widely used in the analysis of audio signals.
Although primarily designed for speech recognition [34,35], they have been a popular feature of choice in
the automatic scene classification [36,37]. The MFCCs are the coefficients that collectively make up the
Mel Frequency Cepstrum (MFC), a representation of short term power spectrum of sound based on linear
cosine transform of a log power spectrum on a non linear Mel scale of frequency. The MFCCs are linearly
spaced on the Mel frequency scale which closely approximates the human auditory system’s response.
Such a representation of sound signal extracts discriminant features which help to achieve environmental
sound classification with good accuracy.

Figure 3 shows a standard pipeline for the extraction of MFCC features. In the first step, the digitized
sound signal is segmented in to short frames each having N samples. Next, the periodogram-based power
spectrum is estimated for each frame. Let s;(1) denote the time domain signal (of N samples) that belongs to
frame i, its Discrete Fourier Transform (DFT) is calculated as;

Si(k) = ﬁ si(n)h(n)e 2Hn/N 1 <k <K 8)

n=1
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where K denotes the length of DFT and k(1) denotes the N sample long analysis window. In this work,
Hamming window is used to realize a high-pass FIR filter to emphasize the high frequency part of the
signal and remove DC content. In the next step, the output of complex Fourier transform is magnitude
squared and power spectral estimate of frame i is computed as;

Pi(k) = %|s,.(k)|2, 1<k<K ©)

Sound Signal

v

Signal Framing &
Windowing

v

Discrete Fourier transform

¥

Energy Spectrum

¥

Mel-scale bandpass filters

v

Logrithm

v

Discrete cosine transform

MFCC

Figure 3. MFCC Feature Extraction Pipeline.
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Then, a set of Mel-scaled filter banks is computed and applied to power spectrum of each frame.
The Mel-scale is linear for frequencies lower than 1000 Hz and a logarithm above it. To compute the filter
bank energy spectrum, each filter is multiplied by the power spectrum computed above and coefficients
are added up. The Mel-filtered spectrum of frame i is computed as;

Ei(l) = Nil Pi(k)H;(k), vI=1,---,L (10)
k=0

where L denotes the total number of filters and H; denotes the transfer function of Ith filter. Next,
the logarithm of Mel-filtered energy spectrum is computed and Discrete Cosine Transform (DCT) is applied
to it. Mathematically,

E,(I) = log(Ei()), VI =1,---,L (11)

E,(I)cos(n(1 —0.5)/7/L) (12)

gl

ci(n) =

1

wheren =1, -, L is the cepstral coefficient number. In the proposed frame work, initial 13 MFCCs are
used for scene classification.

2.3. Feature Fusion

The 1D-LTP and MFCC features extracted above are fused together to form a joint feature vector
for classification. The fusion of 1D-LTP and MFCC features helps to obtain a more sophisticated feature
representation which has better discriminative properties as well as an accurate representation in frequency
domain. The fusion process is a simple serial concatenation of 1D-LTP and MFCC feature vectors.

F() = ¢ |sx (13)

2.4. Classification

The classification stage employs a multiclass SVM. The basic idea of SVM is to find a hyperplane that
separates D-dimensional data into its two classes [38]. SVM is a discriminative model for classification
that principally depends on two basic assumptions. First, complex classification problems can be classified
through simple linear discriminative functions by transforming data into a high-dimension space. Second,
the training samples for SVMs consist only of those data points that lie close to the decision surface,
with the supposition that they provide the most relevant information for classification [39]. SVMs were
originally proposed as binary classifiers. However, in real scenarios, data is to be classified into multiple
classes. This is done by using multiclass SVM. Either a one-against-one (OAO) or one-against-all (OAA)
approach can be used [40]. For acoustic scene classification setup proposed in this work, the joint feature
vector extracted from previous stage is used to train the multiclass SVM OAO classifier.

3. Experiments

3.1. Setup

Experiments were performed using MATLAB 2016a software on 2.2 GHz Intel i7 processor with 8 GB
RAM. The extracted features are MFCC (13 coefficients) and 1D-LTPs (13 bins) with threshold ¢ = 0.0002.
The classification is being done by applying various SVM kernels, and by finalizing quadratic and cubic
kernels because of their best performance [41]. Training/testing percentage is fixed to be 80/20 (80%
for training, and 20% for testing) for both datasets. The performance of classifier is measured through
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classification accuracy averaged over k-fold cross validation. The value of k = 10 has been selected based
on experimentation to generally result in best accuracy with low bias, modest variance and low correlation.
The classifier accuracy is measured as,

TP+ TN o
TP+ TN+ FP+FN

Accuracy = 100 (14)
where TP stands for true positive, TN for true negative, FP for false positive and FN for false negative.
The performance of the proposed approach is also compared with several state-of-the-art audio feature
representation techniques i.e., MFCC, ID-LBP and linear prediction cepstral coefficients (LPCC).

3.2. Datasets

An important challenge in acoustic scene classification for robotics is the collection of proper
environmental sound database. Since there is an infinite number of sounds, no single database can
cover all of them. Therefore, no robotic system is capable of recognizing all the sounds. Instead, the scene
recognition capability is limited by the application domain and set of tasks performed by the particular
robot. In order to have an initial reference for comparison, two standard benchmark datasets are selected,
i.e., (a) real world computing partnership (RWCP) sound scene dataset [42] and (b) DCASE challenge
dataset [43].

RWCP is one of the first datasets which are collected for scene understanding. It contains sounds of
various audio sources which were moved using a mechanical device. Recordings were done using a linear
array of 14 microphones and a semi-spherical array of 54 microphones with a DAT recorder at 48 KHz
frequency and 16 bit resolution. The average length of sound sample is about 1 s. A proposed feature
descriptor was tested on experimental dataset consisting of 17 different environmental sounds shown in
Table 2 (a) along with the number of samples for each class.

The DCASE challenge dataset consists of a set of recorded sounds in fifteen different urban
environments. The duration of each sound clip is 30 s and recording is performed in London. The DCASE
dataset consists of 15 different classes of urban sounds; each class contains 78 sound samples as given in
Table 2 (b). The RWCP and DCASE databases contain a variety of sound classes that accurately model
the general indoor or outdoor environment. We believe that verifying the performance of our proposed
solution on these databases can help to realize intelligent systems for advanced applications such as sound
localization [44] and human-robot interaction [45,46].

As discussed earlier, 1D-LTP features are discriminative. The scatter plots of Figures 4 and 5 show the
distribution of 1D-LTPs for several classes of RWCP and DCASE datasets. These plots demonstrate that the
1D-LTP feature values that belong to the same class are spaced close to each other, whereas the features
belonging to different classes are spaced relatively far on the scatter plot. Features having these strong
discriminative properties result in a good classification accuracy.

Table 2. Details of Individual Classes of RWCP and DCASE Datasets.

(a) RWCP Dataset

Class  No. of Samples

Aircap 100
Bells 400
Bottle 200
Buzzer 100
Case 300

Clap 400
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1D LTP feature 10

1400

1200

1000

800

Table 2. Cont.

Cup 200
Drum 100
Phone 200
Pump 100

Saw 200
Spray 100
Stapler 100

Tear 100

Toy 200

Whistle 300
Wood 300
Total 3400

(b) DCASE Dataset

Class No. of Samples
Beach 78
Bus 78
Cafe 78
Car 78
City Center 78
Forest 78
Grocery Store 78
Home 78
Library 78
Metro Station 78
Office 78
Park 78
Residential area 78
Train 78
Tram 78

Total 1170

Scatter plot of 1D LTP features

se 00

Bottle
Clap
Drum
Saw
Spray
Tear
Toy

1D-LTP feature 3

Figure 4. Scatter plot of ID-LTPs of RWCP dataset.
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Figure 5. Scatter plot of ID-LTPs of DCASE dataset.

4. Results and Discussion

City_enter
o Gracery,tore

Home
®  Pak
®  Train

11 of 17

The accuracy trend for both datasets is demonstrated in Figure 6. Table 3 presents the overall
classification accuracy of the proposed and existing methods along with their computational time in
seconds. It can be comfortably observed from the stats that the proposed method (i.e., ID-LTP + MFCC)
outperforms shows a better accuracy with computational time smaller or comparable to other approaches.

100

Accuracy
3

DCASE DATASET RWCP SOUNDS DATASET

Figure 6. Classification performance of the proposed ID-LTP and several other features over DCASE and

RWCP dataset.

To get a better insight, few other performance metrics are also investigated including sensitivity,
specificity, and error rate. Moreover, for a fair comparison, two classifier families, i.e., SVM and KNN are
contemplated due to their greater number of variants. Table 4 provides a comparison of seven classifiers
on the DCASE dataset. The SVM with quadratic kernel (SVM-Q) shows better results in terms of accuracy,
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specificity and error rate while SVM with cubic kernel (SVM-C) and KNN weighted (KNN-W) show better
sensitivity. In Table 5, the performance results are demonstrated for RWCP dataset. The SVM-Q classifier

achieves a high accuracy and error rate while better sensitivity and specificity values are achieved by the
KNN medium (KNN-M) and SVM-C, respectively.

Table 3. Performance results for DCASE and RWCP datasets.

Accuracy
Feature Descriptor Time (s)
DCASE Dataset RWCP Sound Dataset
MEFCC 92.9% 90% 1.2
ID-LBP 89.5% 85% 0.75
LPCC 87.3% 86% 0.92
ID-LTP + MFCC 97.38% 94.10% 0.81

Table 4. Performance of various classifiers for proposed feature extraction approach for DCASE dataset.

DCASE Dataset
Performance
Classifier
Accuracy (%) Sensitivity (%) Specificity (%) Error Rate
SVM-L 89.49 83.33 99.54 0.1051
SVM-Q 94.10 91.03 99.91 0.0590
SVM-C 93.85 93.59 99.91 0.0615
SVM-G 93.16 92.31 99.82 0.0684
KNN-M 85.04 92.31 98.81 0.1496
KNN-W 90.26 93.59 99.36 0.0974
KNN-C 82.56 84.62 98.35 0.1744

Table 5. Performance of various classifiers for proposed feature extraction approach for RWCP dataset.

RWCP Dataset
Performance
Classifier
Accuracy (%) Sensitivity (%) Specificity (%) Error Rate
SVM-L 93.97 98.50 99.93 0.0603
SVM-Q 97.38 99.0 99.83 0.0262
SVM-C 97.26 99.25 99.97 0.0274
SVM-G 94.44 98.75 99.57 0.0556
KNN-M 97.26 99.50 99.83 0.0274
KNN-W 96.85 99.00 99.80 0.0315
KNN-C 96.35 99.25 99.80 0.0365

Classification results of individual classes for the DCASE dataset are shown by a confusion matrix of
Figure 7. The figure shows that all classes except the city center class have an accuracy of more than 90%.
The confusion matrix of the proposed approach for RWCP dataset is shown in Figure 8. Here, the phone
class has an accuracy of 89% whereas, all the remaining classes have accuracy above 90%. The classification
results of Figure 7 and 8 confirm the accuracy and validity of the proposed feature classification technique.
To reveal the authenticity and robustness of our proposed method, confidence intervals against both
datasets are also provided for two state-of-the-art classifiers. Figure 9 demonstrates the confidence interval
showing min, max and average classification values of both classifiers. From the stats, its quite obvious
that SVM-Q can be formally selected as a standard classifier for this application.
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Figure 7. Confusion matrix of the proposed approach for DCASE dataset.

Aircap 1% 1% . .
Bells 1% - N
Bottle 354, prwn v “
Buzzer
cese i - &
Clap <19 3%.... “
Cup <1% @ <1% N -
ol 1
g Phone [<1%/|<1% 6% >, - "
|’—:', Pump
. | " o E
Spray 3% a =
i E
Tear S0 "
Toy <1% 1% N =
Whistle =1% 1% o
- . -

“F”E‘?f S eq?y@@(?es?ﬁ‘@@% Q’;g Of(, ‘°¢ O,;;% % ?q/ 5 o_# 51;%;11%

Predicted class

Figure 8. Confusion matrix of the proposed approach for RWCP dataset.
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Figure 9. Confidence interval against two selected classifiers on benchmark datasets.

5. Conclusions

Scene classification is an important task in behavioral robotics. Using acoustic signals for
environmental scene classification complements the visual-based classification in many ways. This study
aimed to select the image texture classification features and investigate their effect on the classification
of sound signals. In particular, the work proposes a modified feature descriptor as a combination of
1D-LTPs and MFCCs. Our analysis and simulation results for the two reference datasets i.e., DCASE
and RWCP show that 1D-LTPs exhibit good discriminative properties for sound signals. On the other
hand, the MFCCs as the baseline method, approximates the behavior of the human auditory system.
Fusing 1D-LTPs with MFCCs achieves a more sophisticated and discriminative feature representation of
environmental sounds. The proposed fused feature vector is classified with various kernels of multi-class
SVM. Results demonstrate that SVM with quadratic kernel achieves high accuracy as compared to other
feature representations. The proposed system can be applied to a number of practical indoor and outdoor
robotic scenarios.

6. Materials

Two publicly available datasets are utilized in this research are RWCP and DCASE. The RWCP
dataset is available at [42] and DCASE is available at: http:/ /dcase.community /challenge2018 /index.
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Abbreviations

The following abbreviations are used in this manuscript:

LBP
LTP
MEFCC
SVM
PCLA
KFDA
HOG
DNN
DFT
FFT
FIR
GMM
KNN
SVM-C
SVM-Q
SVM-G
KNN-M
KNN-W
KNN-C
OAO
OAA

Local Binary Patterns
Local Ternary Patterns

Mel Frequency Cepstral Coefficients

Support Vector Machine

Probabilistic Component Latent Analysis
Kernel Fisher Discriminant Analysis

Histogram of Gradients

Deep Neural Networks
Discrete Fourier Transform
Fast Fourier Transform

Finite Impulse Response
Gaussian Mixture Model
K-Nearest Neighbour

SVM with Cubic kernel

SVM with Quadratic kernel
SVM with mean Gaussian kernel
K Nearest Neighbors-Medium
K Nearest Neighbors-Weighted
K Nearest Neighbors-Cubic
One Against One

One Against All
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