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Abstract: To improve the positioning accuracy of an inertial/geomagnetic integrated navigation
algorithm, a combined navigation method based on matching strategy and hierarchical filtering is
proposed. First, the PDA-ICCP geomagnetic matching algorithm is improved. On basis of evaluating
the distribution of magnetic measurements, a number of controllable magnetic values are regenerated
to participate in the geomagnetic matching algorithm (GMA). As a result, accuracy of the matching
algorithm is ensured and its efficiency is improved. Secondly, the integrated navigation filter is
designed based on the hierarchical filtering strategy, in which the navigation information of the
geomagnetic matching module and inertial navigation module are respectively filtered and fused in
the main filter. In this way, the shortcoming that GMA is unable to provide continuous and real-time
navigation information is overcome. Meanwhile, precision of the inertial/geomagnetic integrated
navigation algorithm is improved. Finally, the feasibility and validity of the proposed algorithm are
verified by simulation and physical experiments. Compared with the integrated filtering algorithm
which directly uses the error equation of inertial navigation system (INS) as the state equation,
the proposed hierarchical filtering algorithm can achieve higher positioning precision.

Keywords: Geomagnetic navigation; geomagnetic matching algorithm (GMA); Iterated Closest
Contour Point (ICCP); Kalman filter (KF); Probability data association (PDA)

1. Introduction

An inertial navigation system (INS) can provide continuous and real-time navigation information
for the carrier, and it is characterized by strong autonomy and good concealment. However, the
navigation error of INS will accumulate over time, therefore it is hard to adapt to a long endurance
mission. On the other hand, geomagnetic navigation is based on Earth’s geophysical field, which is
passive, radiation-free and displays good stealth. Most importantly, the location error of geomagnetic
navigation does not accumulate over time [1–4]. Therefore, constructing an inertial/ geomagnetic
integrated navigation system can not only overcome the disadvantages of INS, such as accumulated
navigation errors and poor long-term stability, but also can realize all-weather and all-region navigation.

According to their different combinations, inertial/geomagnetic integrated navigation algorithms
can be divided into two categories, namely the loose and tight navigation algorithm. Generally speaking,
the loose navigation algorithm mainly consists of the geomagnetic matching algorithm (GMA) and
integrated navigation algorithm (INA), in which the locations evaluated by the GMA are used as
observations of the integrated filter to estimate INS’s error [5]. The structure of loose navigation is

Electronics 2019, 8, 460; doi:10.3390/electronics8040460 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://www.mdpi.com/2079-9292/8/4/460?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8040460
http://www.mdpi.com/journal/electronics


Electronics 2019, 8, 460 2 of 17

beneficial for fault diagnosis, and is convenient for adding other navigation subsystems, but its filtering
accuracy is largely affected by the location precision of GMA. As for the tight navigation algorithm,
the measured magnetic values are directly used as observations of the integrated navigation filter [6].
As the measurement equation of tight navigation system is always nonlinear [7,8], the Extended
Kalman Filter (EKF) [9], Unscented Kalman Filter (UKF) [10] and Particle Filter (PF) [11–13] are most
commonly used. A linear approximation of the geomagnetic map is needed in EKF and UKF, but not
for PF. Considering the non-linearity of the geomagnetic map, the EKF may easily diverge. Secondly,
when other navigation subsystems are added, the loose INA is easier to implement.

It should be noted that the GMA is the core of loose INA, which estimates the carrier’s position by
matching the geomagnetic characteristics measured in real time with the geomagnetic map previously
stored in the navigation computer. Once the accuracy of the magnetic map is fixed, GMA is mainly
affected by the magnetic measurements. Generally, the geomagnetic measurement error includes the
instrument error, which is caused by the structure and materials of the magnetometer [14] and the
interference field error, which is caused by the superposition of external interference field. Among
them, the external interference field is mainly led by the hard and soft magnetic material of the
carrier, and the random magnetic field which is difficult to describe using the magnetic model.
In general, the non-random interference field in geomagnetic measurement can be processed by model
compensation algorithms, but for the random interference field and other unknown interference factors
that may appear in practice, the compensation result is always unsatisfactory. Currently, there are
two ways to solve the problem: (1) In order to reduce the influence of interference field, process the
magnetic measurements, such as Hilbert-Huang transform (HHT) [15], wavelet transform [16] and so
on. (2) To study new GMA with good robustness.

The Iterated Closest Contour Point (ICCP) algorithm is a common method in geomagnetic
matching, whose basic principle is shown in Figure 1. As is illustrated, suppose the matching length of
ICCP algorithm is 5; C1 to C5 are five geomagnetic contour lines of a navigation area; M1 to M5 denote
the real trajectory of the carrier; the carrier’s coordinates offered by the reference navigation system
(usually the INS) at the sampling points are denoted by I1 to I5.Electronics 2019, 8, x FOR PEER REVIEW 3 of 18 
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presented. Its basic idea is shown in Figure 2. 
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Figure 1. Basic principle of ICCP algorithm.

If there is no magnetic interference, point Mn (n = 1, 2, . . . , 5) must be located on a geomagnetic
contour line, but on which point of the contour is unknown. At the first step of geomagnetic
ICCP algorithm, it finds the points closest to INS’s trajectory on the contour lines. The closest
points are represented by N1 to N5 in Figure 1. Then ICCP algorithm will calculate the rigid
transformation T (including rotation and transformation) between In and Nn (n = 1, 2, . . . , 5).
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Afterwards, the transformation T is applied to INS’s trajectory, and the new trajectory is denoted by
N’1 to N’5. In next interaction, a new transformation will be used to minimize the distance between N’n
(n = 1, 2, . . . , 5) and their closest points. The criterion to measure the distance between the points is in
Formula (1). The above process will be iterated many times. Finally, In will continuously approximate
the real trajectory of the carrier.

D =
5∑

i=1

d2(Cn, TIn) (1)

where d measures the distance of In and its corresponding contour line Cn.
The ICCP algorithm assumes that the magnetic sensor has no measurement error, and the real

position of the carrier is located on or very close to the magnetic contour that corresponds to the
magnetic measurement [17]. If the hypothesis is not satisfied, the accuracy of GMA would be hard to
guarantee. Wu proposed a GMA based on the tree searching algorithm. It does not need to consider
the distribution of measurement errors and has a certain anti-interference ability [18]. Xiao combined
the probability data association (PDA) algorithm with the ICCP algorithm [19,20] and proposed a
PDA-ICCP algorithm. It regarded all measurements of the magnetometer within a certain confidence
range in interference environment as the effective measurements of a position, and finally evaluated
the carrier’s location with the PDA fusion algorithm. The algorithm comprehensively considered
the effects of measurement error and interference field and improved the GMA’s adaptability to a
practical environment.

To guarantee the accuracy of the integrated inertial/geomagnetic navigation under interference
environment, the PDA-ICCP algorithm is improved in our study and on basis of it, a new integrated
navigation filter is designed. Finally, the feasibility and effectiveness of the proposed algorithm are
verified through simulation physical and experiments.

2. Improvement of PDA-ICCP Algorithm

2.1. RM-PDA-ICCP Geomagnetic Matching Algorithm

In practice, due to the influences such as residuals of geomagnetic compensation, diurnal variation
of magnetic field and measurement error of magnetometer, the magnetic measurement may not be
equal to the corresponding value read from the geomagnetic map. If these magnetic measurements
with noise are directly applied in GMA, the matching precision will be reduced. Even worse, it may
lead to matching failure. To solve the problem, a PDA-ICCP algorithm is presented. Its basic idea is
shown in Figure 2.
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Figure 2. Basic idea of PDA-ICCP algorithm.
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As is illustrated in the figure, it is supposed that the matching length is 5. mk0, which is usually
read directly from the magnetic map, is the ideal magnetic value at the kth matching point. mk1, mk2, . . . ,
mkn are the data measured n times at the kth point when interference field exists. mk-1, mk-2, . . . , mk-L+1

are the magnetic values of the other points of the geomagnetic matching sequence (GMS). Assuming
the interference field follows the Gaussian distribution with mean 0, variance σ2, then according to
the 3σ criteria, the magnetic measurements will fall within the circle of radius 3σ centered at mk0 with
the probability of 99.74%. If the n measurements at the kth matching point are all within this circle
(the upper circle in Figure 2), and each of them constitutes a GMS with mk-1, mk-2, . . . , mk-4, then there
will be n matching results at kth point (denote as Pk, i, i = 1, 2, . . . , n) when the ICCP algorithm is
executed. Considering the constraints of carrier’s kinematic performance, such as the heading and
velocity constraints, its position should be within a reasonable scope. We denote the matching results
in the scope as the valid estimations of the carrier’s location. Otherwise, the matching results are
invalid. Finally, by fusing all valid estimations with PDA algorithm, the carrier’s final position can
be estimated.

The essence of the method above is to select the positions where the carrier is most likely to
appear and fuse them by PDA algorithm. In a statistical sense, if the magnetic field is measured
enough times, there will always be a measurement close to the ideal magnetic value, thus the fusion
effect of PDA algorithm is guaranteed. But, the more the ICCP algorithm is conducted, the worse
the real-time performance it shows. In fact, if the magnetometer’s measurements are far away
from the corresponding values read from the magnetic map, mismatches will appear in the GMA.
These mismatched results are very likely to be eliminated due to the constraint of carrier’s motion in
the fusion process of PDA. In other words, if number of the effective measurements is controllable and
they are very close to the ideal geomagnetic value of the corresponding position, both the algorithm’s
precision and real-time performance can be guaranteed. Based on this, an improved fusion algorithm
based on regenerated measurements is put forward, which modified the first process of the PDA-ICCP
algorithm to generate magnetic measurements. Its principle is shown in Figure 3:Electronics 2019, 8, x FOR PEER REVIEW 5 of 18 
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In Figure 3, the definition of mk-1, mk-2, . . . , mk-L+1 are the same with that in Figure 2, m̂k0 is the
estimation of the ideal magnetic value at the kth matching point, σ̂ is the estimated standard deviation
of the magnetic measurements. Three circles, which are centered at m̂k0 with the radius of σ̂, 2σ̂ and 3σ̂,
divide the confidence region of the magnetic measurements into three areas. RM-PDA-ICCP algorithm
respectively regenerates several possible measurements in each area, which are denoted as m’k1, m’k2, . . . ,
m’km. They reconstitute the GMSs with the former L-1 matching points and participate the subsequent
geomagnetic matching and fusion. To distinguish from the magnetic measurements in PDA-ICCP
algorithm, these regenerated magnetic values are recorded as the regeneration measurements (RMs).
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Rather than directly using the measured magnetic values for matching, the RM-PDA-ICCP
algorithm regenerates a number of controllable RMs based on the statistical characteristics of the
magnetometer’s measurements, which limits the number to execute the algorithm and enhances its
real-time performance to a large extent. In addition, the RMs in r1, r2 and r3 can be adjusted to ensure
the algorithm’s accuracy and the stability of the algorithm.

It can be concluded that the RM-PDA-ICCP algorithm contains the following steps:

Firstly, estimate m̂k0 and σ̂2, and regenerate the RMs.
Secondly, conduct the ICCP algorithm with all the RMs.
Thirdly, select effective matching results with the constraints of the kinematic performance of the carrier.
Finally, calculate the associated probability and fuse all effective matching results.

Obviously, evaluating m̂k0 and σ̂2
, determining the constraints of carrier’s kinematic performance

and calculating the associated probability of PDA algorithm are the key points in the RM-PDA-ICCP
algorithm, which are explained respectively in the following parts.

2.2. Calculation of m̂k0 and σ̂2

mk0 is the ideal magnetic value at a position in the PDA-ICCP algorithm, which is hard to achieve
when the position error is very large. It is also challenging to measure the magnetic field of a position
for many times while the carrier is moving. Nevertheless, measurement of the magnetometer is a
random variable that follows a certain probability distribution. In addition, the carrier cannot move for
a long distance within a short period, so the corresponding changes of the magnetic field are relatively
small. In this sense, the magnetometer’s measurements within a short period can be considered as the
random quantity of the measurements at a position, and the parameter estimation method can be used
to evaluate the statistical characteristics of the magnetic measurements.

Suppose mk1, mk2, . . . , mkn are the values measured n times at the kth matching point, and they
follow the Gaussian distribution, then according to the moment estimation method, the estimated
value of mk0 and σ2 can be expressed as:

m̂k0 = 1
n

n∑
i=1

mki

σ̂2 = 1
n

n∑
i=1

(mki − m̂k0)
(2)

2.3. Constraints of Carrier’s Kinematic Performance

The position of the carrier at the kth matching point can be estimated by its kinematic performance
at the (k-1)th matching point. As is shown in Figure 4, (xk-1, yk-1) and (xk, yk) respectively denote the
carrier’s position at the (k-1)th and kth matching point. Considering the influence of velocity error and
course error, and supposing the carrier’s velocity and course interval at (k-1)th point is [Vmin

k−1 ,Vmax
k−1 ]

and [θmin
k−1 ,θmax

k−1 ], then at the kth point the carrier is restricted within the concentric circles with the
radius of TVmin

k−1 and TVmax
k−1 by the velocity error, and in a fan-shaped area by the course error. Here,

variable T measures the time between (k-1)th and kth point. Finally, the shadow part in Figure 4 shows
the possible position of the carrier, which can be described by Formula (3). arc tan yk−yk−1

xk−xk−1
∈ [θmin

k−1 ,θmax
k−1 ]√

(yk − yk−1)
2 + (xk − xk−1)

2
∈ T[Vmin

k−1 , Vmax
k−1 ]

(3)
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2.4. Calculation of the Associated Probability

Associated probability determines the fusion coefficient of every effective position restricted by
Formula (3). Suppose the n measurements (mk1, mk2, . . . , mkn) at the kth matching point follow the
normal distribution with the mean of mk0 and variance of σ0

2, then the probability Prki that the ith
measurement derives from its ideal magnetic value can be expressed as:

Prki = 1− er f (
mki −mk0
√

2σ0
), i = 1, 2, . . . , n. (4)

where erf (x) is the error function and is defined as:

er f (x) =
√

2
π

∫ x

0
e−γ

2
dγ (5)

Define a matrix (A)1×n, where n is the measurement number at the kth matching point. Once the
matching result of the ith measurement satisfies Formula (3), the ith element in A is set to 1. Otherwise,
the corresponding element is 0. As a result, the associated probability of each effective matching result,
denoted by Pr′ki (i = 1, 2, . . . , n) can be represented as:

[Pr′k1, Pr′k2, · · · , Pr′kn] = [Prk1, Prk2, · · · , Prkn]
T
×A (6)

Normalize Pr′ki, then the associated probabilities are:

Pr′′ki =
Pr′ki

n∑
i=1

Pr′ki

, i = 1, 2, · · · , n. (7)

Finally, the position of the carrier is estimated as:

P̂k =
n∑

i=1

Pk,iPr′′ki (8)

where P̂k is the final position estimated by the RM-PDA-ICCP algorithm, Pk,i is the matching result of
ICCP algorithm corresponding to the ith magnetic measurement mki.
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3. Design of the Integrated Navigation System

According to different state variables, the loose integrated navigation algorithm can be divided
into two types: the one based on position error [2] and the one based on location (and speed) [5].
The former usually takes the error equation of INS as the state equation of the integrated navigation
filter, and the position error of GMA as the observations to estimate the attitude error, velocity error and
position error of the carrier. While the latter directly takes the motion equation of the carrier as state
equation, and updates the position and speed immediately. The above two integrated algorithms have
been applied in integrated navigation system that based on geophysical fields such as geomagnetism,
gravity and terrain. In our study, a hierarchical filter is put forward. The inertial/geomagnetic
integrated navigation system is designed in Figure 5, which adopts the carrier’s location as the state
variable. As is shown, the hierarchical filter is divided into two layers, the first layer consists of two
subfilters, and the second one includes a main filter.
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The above system consists of two sub-filters and one main filter. First, the geomagnetic and inertial
navigation subsystems independently execute the Kalman filtering algorithm and give an estimate
of the carrier’s position. Then the main filter integrates the position information of two subsystems
to evaluate the position error and velocity error of the carrier. Ultimately, the INS can be corrected.
In the following, the state equation, measurement equation and filtering algorithm of the integrated
navigation system are described in detail.

3.1. State Equation and Observation Equation of the Subsystem

Assume the carrier is in the uniform rectilinear motion, the matching results of GMA are taken
as observations of the filter, and the position and velocity in longitude and latitude are taken as the
state, namely X(k) = [λ(k) VE(k) L(k) VN(k)]

T, then the state equation and observation equation of
the geomagnetic filter subsystem can be expressed as:

Xk+1 = ΦXk + ΓUk (9)

Zk = HXk + Vk (10)

where Φ =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

, Γ =


T2

2 0
T 0
0 T2

2
0 T

, H =

[
1 0 0 0
0 0 1 0

]
, T is the time between two sampling

points, Uk is the random disturbance during the movement of the carrier, Vk is the location estimation
noise of GMA.
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The RM-PDA-ICCP algorithm executes once a magnetic measurement is obtained. In the regions
where the geomagnetic fluctuation is not very obvious, the RM-PDA-ICCP algorithm is prone to
mismatching. If the mismatched results are sent to the main filter, the precision of integrated navigation
system will greatly reduced. In this sense, the geomagnetic filter subsystem will evaluate a proper
result for the main filter. Finally, the accuracy and real-time performance of the integrated navigation
algorithm are ensured.

The state and observation equation of the inertial subsystem are the same as the geomagnetic
filter subsystem, which are not discussed to keep our study concise.

3.2. State Equation and Observation Equation of the Main Filter

In the main filter, the position difference between two subsystems is taken as the observation.
Its state equation and observation equation are:

δXk+1 = ΦδXk + wk (11)[
λGMNS − λINS

LGMNS − LINS

]
= HδXk + nk (12)

where δX = [δλ δVE δL δVN]
T, wk is the system noise; λGMNS and λINS are the matching position of the

geomagnetic filter subsystem and inertial subsystem in longitude respectively, LGMNS and LINS are the

positions in latitude. nk is the location estimation noise, H =

[
1 0 0 0
0 0 1 0

]
, Φ =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

.
3.3. Integrated Filtering Algorithm

As the state and observation equations of the integrated navigation system are all linear, a standard
KF algorithm can be adopted. The difference between the subfilters and main filter is that a threshold
is set in the geomagnetic filter subsystem to restrict the matching results whose error is very large.
The filtering and updating process of the geomagnetic filter subsystem is shown in Figure 6, in which
Q and R stand for the variance of the process noise Uk and measurement noise Vk; Zk is the observation,
which is corresponding to the matching results of RM-PDA-ICCP algorithm. P0 and X̂0 are the initial
states of filtering; P is the covariance matrix, K is the filtering gain matrix, and X̂ is the state estimation
of the subsystem. Other variables are the same with that in Formula (9)–(12).
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In Figure 6, the covariance matrix, gain matrix and filtering state are updated during the filtering
process. If the observation Zk exceeds the presupposed threshold, the estimated state X̂k,k−1 should be
taken as current state X̂k, otherwise X̂k should be updated with the KF algorithm. The filtering process
of the main filter is a standard KF.

In essence, the algorithm above belongs to the loose integrated navigation algorithm. Furthermore,
only minor changes are needed when other auxiliary navigation methods are added to the integrated
navigation system. In addition, introducing filtering algorithm to the geomagnetic matching module is
beneficial to improve the adaptability to the geomagnetic environment.

In a word, the proposed algorithm can be summarized as follows:

Step 1: To execute the RM-PDA-ICCP algorithm and obtain the estimated position of the carrier;
Step 2: The result in Step 1 is taken as the observation of the geomagnetic filter subsystem;
Step 3: The information offered by the inertial system is used in the INS filter subsystem;
Step 4: The results of Step 2 and Step 3 are fused by the main filter. Finally, the positions of the carrier
are continuously calculated.

4. Simulation Experiments

A local area of the magnetic anomaly field is randomly selected from the Y component of the
NGDC-720 model to verify the proposed algorithm, its latitude and longitude respectively ranging
from [49.8◦, 50.8◦] N and [36.5◦, 37.5◦] E. Then the Kriging interpolation method is used to establish the
detailed magnetic map, as is shown in Figure 7. After interpolation, the resolution of the geomagnetic
map is about 100 m.
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4.1. Effectiveness of the Proposed Algorithm

It is assumed the carrier is in uniform rectilinear motion, and the angle between its movement
direction and X-axis is 135◦. It’s velocity along the East and north are both 15 m/s. Suppose the
proposed integrated navigation algorithm is conducted from the point [37.4◦ E, 49.86◦ N]. INS’s
accumulated error is simulated by adding different rigid transformations to the real trajectory [21].
The measurement error is Gaussian white noise. Its original position errors in longitude and latitude
are both 300 m, and the bias of gyroscope is 1 ◦/h. Suppose the magnetic interference follows the
normal distribution, whose average is 0 nT and variance is 1 nT2.

Evaluate mk0 and σ2 by the method in Section 2.2, and then ten RMs at m̂k0 ± 1/4σ̂, m̂k0 ± 1/2σ̂, m̂k0
± σ̂, m̂k0 ± 2σ̂ and m̂k0 ± 3σ̂ could be generated respectively. Assume the matching length of GMS is
5, and the allowable velocity error and course error of the carrier are respectively ±5 m/s and ±20◦,
then the RM-PDA-ICCP algorithm is conducted. If all matching results corresponding to the RMs do
not meet the constraint of carrier’s kinematic performance, the algorithm does not output.
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Afterwards, Formula (9) and (10) are used in the geomagnetic filter subsystem, where the matching
results of RM-PDA-ICCP algorithm are taken as the observations, and the position and velocity are
the filter’s state. The sampling interval is T = 2 s, and the location estimation noise covariance R and
process noise covariance Q are set as follows:

R =

[
10 0
0 10

]
, Q =


10 0 0 0
0 0.5 0 0
0 0 10 0
0 0 0 0.5

.
where the unit of R is (m)2. In matrix Q, units of the elements representing the position are (m)2, units
of the elements representing velocity is (m/s)2.

Since the matching length is 5, namely the matching result of RM-PDA-ICCP algorithm is output
from the 5th sampling point, therefore the filtering initial value of the geomagnetic subsystem is set to
X(4), and the initial covariance is:

P0 =


0.5 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5


where the unit of P0 is defined the same as that in matrix Q.

In order to quantitatively describe the effect of GAM and filtering algorithm, the total position
error is defined as:

ek =

√
(λ̂k − λk)

2
+ (L̂k − Lk)

2 (13)

where (λ̂k, L̂k) is the estimated location at sampling point k, and (λk, Lk) is the real position of the carrier.
Figure 8. shows the filtering results of the geomagnetic navigation subsystem. It can be seen

that although the matching results of RM-PDA-ICCP algorithm are effective at most sampling points,
the matching errors are relatively large. When the filtering algorithm is conducted, the positioning
accuracy of the geomagnetic filter subsystem is significantly improved. As is shown in Figure 8c,
all positioning error is within 250 m, whereas the accuracy still needs to be improved.

In addition, it is obvious that the outputs of RM-PDA-ICCP algorithm in Figure 8a are not
continuous, and the position errors at some sampling points in Figure 8c are not displayed (such as the
45th sampling point). This is because the matching results corresponding to all RMs are too large to
meet the constraint of carrier’s kinematic performance.

For the inertial subsystem, R =

[
100 0

0 100

]
m. Other simulation parameters are the same as the

geomagnetic filter subsystem. Figure 9 shows its filtering results.
As is shown in the illustration, filtering results of the inertial subsystem change with the outputs

of INS. However, considering the influence of INS’s accumulated error, the filtering result will diverge
over time. Therefore, even if the filtering algorithm is applied, the geomagnetic filter subsystem still
calls for correction.

Based on the filtering results of the geomagnetic and inertial subsystem, the main filter is
established according to Formula (11) and (12). Other simulation parameters are the same as the
geomagnetic filter subsystem. Figure 10 gives the filtering results of the integrated navigation system:
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Figure 10. Filtering results of the integrated navigation system: (a) Filtering trajectory of the integrated
system; (b) Total error of the integrated system.

In Figure 10a, the filtering results of two subsystems are further integrated in the main filter.
Obviously, the position accuracy is greatly improved. In Figure 10b, it shows the total error at each
sampling point is less than 120 m, which is much better than the subsystem.

Table 1 lists some statistical characteristics of the location error of each system. The results are
consistent with the above analysis.

Table 1. Results of simulation experiment (Unit: m).

Location Error Maximum Error Minimum Error Mean

Geomagnetic filter
subsystem 241.7 10/8 113.6

INS filter subsystem 467.8 347.2 394.6
Integrated filter system 108.7 49.3 87.9

4.2. Algorithm Comparison

To further validate the proposed integrated navigation algorithm, comparison experiments are
conducted in this section. First, set the original error of INS in latitude and longitude to 200 m, its total
error is 282.8 m (about 2.82 magnetic grids). R and Q are set according to the actual equipment: the
magnetic measurement error is based on the performance of the magnetometer; the error of INS is
referenced to the parameters of a certain type of unmanned aerial vehicle (UAV). For the sake of
privacy, the values are not exactly the same with actual equipment, but by experiment comparison,
the conclusion still holds. Other simulation parameters are the same as that in Section 4.1. Then,
the proposed algorithm is compared with the other loose integrated navigation algorithm, which takes
the error equation of INS as state equation and the matching error as observation [2]. Its state and
observation equation are shown below:

δXk+1 = FδXk + mk (14)

δrk = HδXk + Vk (15)

where δX = [φN φU φE δVN δVE δL δλ]T, φN, φU and φE stand for the attitude angle error in north,
up and east, δVN, δVE corresponds to the velocity error in north and east, δL and δλ are the position
error in longitude and latitude; F is the state transfer matrix of INS’s error equation; mk is the system
noise. F is the state transition matrix when the error is taken as the state variable, and a traditional



Electronics 2019, 8, 460 13 of 17

Kalman filtering method is adopted. The detailed principle can refer to reference [22]; δrk represents

for the location error of RM-PDA-ICCP algorithm, H =

[
0 0 0 0 0 0 1
0 0 0 0 0 1 0

]
.

Figure 11 shows the comparative results:
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Figure 11. Filtering results of integrated navigation system: (a) Filtering trajectories of different
algorithms; (b) Total location error of different algorithms.

As is illustrated in the figure, the filtering results of different algorithms are located near the
real position of the carrier, indicating that both algorithms are effective. But comparatively speaking,
the total error of the proposed integrated navigation algorithm is less than 200 m (2 magnetic grids)
when the filter is stable, and its positioning result is much closer to the real position of the carrier.

5. Flight Experiment

Considering the magnetic field in the air is relatively pure, a quadrotor is used in our study to test
the proposed integrated navigation algorithm. The experiment system is shown in Figure 12.
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Figure 12. Experiment system of INS/integrated navigation system.

As is shown, the inertial/geomagnetic integrated navigation system mainly includes the following
parts: the measurement and storage module, the quadrotor and the ground control station. Among
them, the measurement module is a 10-axis high precision attitude-angle sensor made by Wit Smart
Company, which contains the RM3100 geomagnetic sensor, inertial element and GPS module. Its main
parameters are listed in Table 2. The storage module uses a serial port to SD card to storage data.
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To avoid the influence of carrier’s material on the magnetic measurement, the frame of the quadrotor is
made of carbon.

Table 2. Main parameters of the sensor module.

Main Parameters Acceleration Angular Velocity Geomagnetic Field Angle

Measurement dimension 3 3 3 3
Measurement range ±16 g ±2000 ◦/s ±4800 µT ±180◦

Measurement error and
precision

(1) Measurement error in X and Y axis is 0.05◦. In Z axis, it is 1◦.
(2) Measurement precision of geomagnetic sensor is 0.1 µT.

In the system, the real position of the carrier is given by GPS; the ground control station is
used to communicate with the quadrotor, to load the planed trajectory and to conduct the integrated
navigation algorithm.

The total magnetic values of the sensor are applied in navigation. Finally, a measured geomagnetic
field with the size of 1400 m × 600 m is taken as the background, whose grid resolution is 25 m.
The quadrotor is in the uniform rectilinear motion at the speed of 5 m/s with the starting point being
(199.3 m, 201.5 m) and altitude 40 m. Suppose the baud rate of sensor module is 9600, its output
frequency is 10 Hz. Limited by the endurance time of the quadrotor, the INS element has worked for a
while before the flight experiment, so its accumulated error is obtained. Assume the original position
errors of INS in longitude and latitude are both 40 m, namely the total error of INS is 56.57 m (about
2.26 magnetic grids), bias of the gyro is 1 ◦/h.

Then the proposed integrated navigation algorithm is executed. In the geomagnetic filter
subsystem, the state and observation equation follow Formula (9) and (10), where T = 5 s. The variance

matrix of the observation noise R =

[
10 0
0 10

]
, and the process noise Q = 10−2

×


10 0 0 0
0 0.5 0 0
0 0 10 0
0 0 0 0.5

.

In the main filter, the process noise Q =


10 0 0 0
0 0.5 0 0
0 0 10 0
0 0 0 0.5

. Other parameters are unchanged.

Figures 13–16 respectively show the filtering results of the geomagnetic filter subsystem and the
integrated navigation system, and Table 3 lists some statistical characteristics of the location error of
each system.
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Table 3. Results of flight experiment (Unit: m).

Location Error Maximum Error Minimum Error Mean Standard Deviation

Geomagnetic filter
subsystem 45.24 6.61 28.20 11.44

Integrated filter system 38.73 4.28 13.58 8.11

In Figure 14, as all matching results corresponding to the RMs are beyond the threshold of effective
matching, the RM-PDA-ICCP algorithm has no output at some sampling points. Besides, the matching
errors at some points are too large, for example the 5th and the 28th sampling points. However,
the total location error of the subsystem after filtering is within 50 m (about 2 magnetic grids). As a
result, the locations of the carrier could be output continuously by the geomagnetic filter subsystem.
Comparing the final filtered trajectory with the carrier’s real trajectory in Figure 13a, it is shown that
the observations have a great influence on the filtering algorithm.

In Figures 15 and 16, the filtering trajectory of integrated navigation system is very close to carrier’s
real trajectory, and all the total filtering errors are less than 40 m (about 1.6 magnetic grids). Compared
with the geomagnetic filter subsystem, the filtering results are obviously improved. This result proves
the effectiveness of proposed combined navigation algorithm.

6. Conclusions

Filtering accuracy of the integrated navigation system is greatly impacted by the results of
GMA. Due to the precision limitation of geomagnetic measurements and mapping, and the magnetic
information in some areas being insufficient, the GMA is easy to mismatch. The RM-PDA-ICCP
algorithm fuses each possible matching within a certain confidence region and improves the reliability
of the location result. In addition, the hierarchical filtering and refusion strategy is able to fuse the
results of each navigation subsystem, which guarantees the advantages of loose integrated navigation
system and improve its accuracy at the same time.

In order to reduce the influence of the magnetic field of the carrier on magnetic measurements,
the frame of the quadrotor is carbon. However, there are a lot of ferromagnetic materials and
electromagnetic equipment in the actual system and as a result, the proposed integrated navigation
algorithm will be further verified based on magnetic measurement compensation.
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