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Abstract: Multiplication is a widely used arithmetic operation in microprocessing and digital signal
processing applications, and multiplication is realized using a multiplier. This article presents the
quasi-delay-insensitive (QDI) early output versions of recently reported indicating asynchronous
array multipliers. Delay-insensitive dual-rail encoding is used for data representation and processing,
and 4-phase return-to-zero (RTZ) and return-to-one (RTO) handshake protocols are used for data
communication. Many QDI array multipliers were realized using a 32/28 nm complementary metal
oxide semiconductor (CMOS) technology. Compared to the optimum indicating array multiplier,
the proposed optimum early output array multiplier achieves a 6.2% reduction in cycle time and a
7.4% reduction in power-cycle time product (PCTP) with respect to RTZ handshaking, and a 7.6%
reduction in cycle time and an 8.8% reduction in PCTP with respect to RTO handshaking without an
increase in the area. The simulation results also convey that the RTO handshaking is preferable to the
RTZ handshaking for the optimum implementation of QDI array multipliers.

Keywords: arithmetic circuits; multiplier; asynchronous circuits; quasi-delay-insensitive; CMOS

1. Introduction

Multiplication is an important arithmetic operation widely used in microprocessing and digital
signal processing [1,2]. Multiplication is realized using a multiplier. This article discusses many
quasi-delay-insensitive (QDI) implementations of the array multiplier and contributes by presenting
the QDI early output versions of recently reported indicating array multipliers [3], which leads to
simultaneous decreases in cycle time, power-cycle time product (PCTP), and silicon area. The array
multiplier has a regular layout and is convenient to pipeline to achieve an increase in the throughput.
In fact, the Booth recoded array multiplier is commonly used in floating point multipliers [4,5].

Asynchronous multiplier designs have been discussed in the literature [6–11]. Some of these are
full-custom i.e., transistor-level designs which do not utilize a standard digital cell library and/or the
rest utilize the bundled-data handshake protocol for data communication between the current stage and
next stage registers of an asynchronous circuit stage by combining single-rail input data with dedicated
request and handshake wires. Bundled-data asynchronous multipliers can achieve average-case speed
performance which is preferable to the worst-case speed performance of conventional synchronous
multipliers. However, bundled-data asynchronous multipliers are not delay-insensitive, and they are
susceptible to variations in process, temperature, supply and threshold voltages, and device parameters.
This is because the bundled-data handshake protocol is not delay-insensitive and features a fixed delay
element whose delay is matched to the maximum delay of the corresponding combinational logic
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which processes the data. In fact, the delay of the matching delay element is kept slightly greater
than the worst-case delay of the combinational logic to accommodate the signal rise and fall times
and also the interconnect delay. If the matched delay of the delay element in a bundled-data pipeline
stage is exceeded due to any parameter variation, it might result in erroneous data processing and
consequently the correct operation of the bundled-data asynchronous circuit cannot be guaranteed.

In the nanoelectronics era, the issue of variability has become prominent due to the relentless
shrinkage of transistor dimensions and the associated effects of scaling [12]. The issue of variability
does not bode well for bundled-data asynchronous design. To cope with the issue of variability, the
QDI design style is considered to be a robust alternative to the conventional synchronous design [13].
In this article, we consider many early output QDI designs of the array multiplier and compare them
with recently proposed weak-indication array multipliers [3]. In particular, we propose a novel early
output 2-input AND function realization for generating the partial products, which in turn enables
a robust, high-speed and low energy realization of QDI array multipliers. Compared to [3], which
presents indicating QDI array multipliers, the proposed early output QDI array multipliers achieve
reductions in cycle time and power-cycle time product (PCTP) without increasing the area and without
compromising on the robustness.

The rest of the article is organized as follows. Section 2 gives a background about QDI asynchronous
circuit design. Section 3 discusses the proposed (QDI) early output designs of the array multipliers and
distinguishes them from the indicating array multipliers. Henceforth, by ‘early output’ we implicitly
mean ‘QDI early output’ unless stated otherwise. Hence, the early output array multipliers are robust
like the weak-indication array multipliers. Section 4 presents the simulation results for the proposed
early output and the recently reported indicating array multipliers based on physical realization
using a 32/28 nm complementary metal oxide semiconductor (CMOS) process. The simulation results
correspond to both return-to-zero (RTZ) and return-to-one (RTO) handshaking. Finally, Section 5
draws the conclusions.

2. QDI Circuits—Background

QDI circuits are the practically realizable delay-insensitive circuits which incorporate the weakest
compromise of isochronic forks [14]. An isochronic fork assumption implies that all the wire branches
arising from a node or junction experience concurrent rising and falling signal transitions. However,
for the isochronic fork assumption, a QDI circuit cannot be practically implemented. Generally,
the isochronic fork assumption is confined to small circuit areas and thus their physical realization
may not be difficult. It was shown in [15] that isochronic forks are realizable in the nanoelectronics
regime, which implies that QDI circuits are feasible in small design geometries.

2.1. QDI Circuit Configuration

A typical QDI circuit (pipeline) stage is portrayed by Figure 1, which is correlated with the
transmitter–receiver analogy for explanation. In Figure 1, the current stage and the next stage registers
are analogous to the transmitter and the receiver. The QDI circuit is sandwiched between the current
stage and the next stage register banks. The register bank comprises a series of registers with one
register allotted for each of the rails of a dual-rail encoded primary input. The register is basically a
2-input C-element. An N-input C-element will output 1 or 0 if all the N inputs are 1 or 0, respectively.
Even if one input is not identical to the (N-1) inputs of a C-element, the C-element would not change
its output but retain its existing steady-state. The circles with the marking ‘C’ represent the 2-input
C-elements in the figures.

In Figure 1, (J1, J0), (K1, K0) and (L1, L0) represent the dual-rail encoded inputs of the single-rail
inputs J, K and L respectively. According to dual-rail data encoding [16] and the 4-phase RTZ
handshaking [17], an input J is encoded as (J1, J0) with J = 1 being represented by J1 = 1 and J0 = 0,
and J = 0 is represented by J0 = 1 and J1 = 0. Both these assignments are called ‘data’. The assignment
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J1 = J0 = 0 is called the ‘spacer’, and the assignment J1 = J0 = 1 is deemed to be illegal since the coding
scheme should remain unordered [18] to maintain the delay-insensitivity.

The application of input data to a QDI circuit that conforms to the 4-phase RTZ handshaking
follows this sequence: data-spacer-data-spacer, and so forth. It may be noted that the application of data
is followed by the application of the spacer which implies that there is an interim RTZ phase between
successive applications of input data. The interim RTZ phase facilitates a robust data communication
i.e., handshaking between the transmitter and the receiver. The RTZ handshaking process is governed
by the following four steps.
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• The dual-rail data bus specified by (J1, J0), (K1, K0) and (L1, L0) assumes the spacer, and the 
acknowledgment input (Ackin) is equal to binary 1. After the transmitter transmits a data, 
this would result in rising signal transitions (i.e., binary 0 to 1) on one of the dual rails of the 
entire dual-rail data bus; 
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• The transmitter waits for Ackin to become 0 and after this happens, the dual-rail data bus is 
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Figure 1. A quasi-delay-insensitive (QDI) circuit stage is correlated with the transmitter–receiver analogy.
An example dual-rail data bus, represented by (J1, J0), (K1, K0) and (L1, L0) is used. The completion
detectors corresponding to return-to-zero (RTZ) and return-to-one (RTO) handshake protocols are
portrayed within the dotted green boxes. The datapath is highlighted by the red dashed line, traversing
the current stage register and the QDI circuit. Ackin is the Boolean complement of Ackout and vice versa.

• The dual-rail data bus specified by (J1, J0), (K1, K0) and (L1, L0) assumes the spacer, and the
acknowledgment input (Ackin) is equal to binary 1. After the transmitter transmits a data,
this would result in rising signal transitions (i.e., binary 0 to 1) on one of the dual rails of the entire
dual-rail data bus;

• The receiver would receive the data sent and drive the acknowledgment output (Ackout) to 1;
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• The transmitter waits for Ackin to become 0 and after this happens, the dual-rail data bus is reset,
i.e., the dual-rail data bus assumes the spacer again;

• After an unbounded but a finite and positive time duration, the receiver drives Ackout to 0 and
subsequently Ackin would assume 1. With this, a data transaction is said to have been completed
and the QDI circuit is allowed to start the next data transaction.

According to dual-rail data encoding and the 4-phase RTO handshaking [19], an input K is
encoded as (K1, K0) with K = 1 being represented by K1 = 0 and K0 = 1, and K = 0 is represented by
K0 = 0 and K1 = 1. Both these assignments are called ‘data’. The assignment K1 = K0 = 1 is called the
‘spacer’, and the assignment K1 = K0 = 0 is deemed to be illegal to maintain the delay-insensitivity.

The application of input data to a QDI circuit conforming to the 4-phase RTO handshake protocol
follows this sequence: spacer-data-spacer-data, and so forth. It may be noted that there is an interim
RTO phase between successive applications of input data. The interim RTO phase facilitates a robust
data communication between the transmitter and the receiver. The RTO handshake process is also
governed by four steps, which are mentioned below.

• Ackin assumes binary 1. After the transmitter transmits the spacer, this would result in rising
signal transitions on all the rails of the dual-rail data bus;

• The receiver would receive the spacer sent and drive Ackout to 1;
• The transmitter waits for Ackin to become 0 and after this happens, it would transmit the data

through the dual-rail data bus;
• After an unbounded but a finite and positive time duration, the receiver drives Ackout to 0 and

subsequently Ackin would assume 1. With this, a data transaction is said to have been completed,
and the QDI circuit is allowed to start the next data transaction.

In a QDI circuit, the time taken to process the data (through the datapath highlighted by the red
dashed line in Figure 1) is called ‘forward latency’, and the time taken to process the spacer is called
‘reverse latency’. Because there is an intermediate RTZ or RTO phase between the applications of two
input data sequences, the cycle time is expressed as the sum of forward and reverse latencies. The cycle
time of a QDI circuit is the equivalent of the clock period of a synchronous digital circuit.

The gate-level details of example completion detectors corresponding to RTZ and RTO handshake
protocols are shown in Figure 1 within the dotted green boxes. A completion detector indicates i.e.,
acknowledges the receipt of all the primary inputs given to a QDI circuit stage. In the case of RTZ
handshaking, Ackout is generated by employing a 2-input OR gate to combine the respective dual rails
of each encoded input and then synchronizing the outputs of 2-input OR gates using a C-element or a
tree of C-elements. In the case of RTO handshaking, Ackout is generated by employing a 2-input AND
gate to combine the respective dual rails of each encoded input and then synchronizing the outputs of
2-input AND gates using a C-element or a tree of C-elements. Ackin is the Boolean complement of
Ackout and vice-versa.

2.2. Classes of QDI Circuits

QDI circuits are classified as strong-indication, weak-indication and early output circuits [20,21].
The input–output timing correlation of strong-indication, weak-indication and early output circuits
are depicted through representative timing diagrams in Figure 2. Figure 2a corresponds to RTZ
handshaking and Figure 2b corresponds to RTO handshaking.

Strong-indication circuits would wait to receive all the primary inputs (data or spacer) and after
receiving them would process to produce all the primary outputs (data or spacer).

Weak-indication circuits could produce all but one of the primary outputs (data or spacer) after
receiving a subset of the primary inputs (data or spacer respectively). However, only after receiving
the last primary input would they produce the last primary output.
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circuits corresponding to: (a) RTZ handshaking, and (b) RTO handshaking.

Early output circuits [22] are more relaxed in terms of the timing compared to strong-indication
and weak-indication circuits. After receiving a subset of the primary inputs (data or spacer), an early
output circuit can produce all the primary outputs (data or spacer, respectively), and the late arriving
primary inputs would be acknowledged by the completion detector preceding the QDI circuit. If the
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data is produced early in an early output circuit, it is said to be of early set type, and, if the spacer is
produced early in an early output circuit, it is said to be of early reset type. The early set and reset
behaviors of an early output circuit are portrayed within the dotted ovals in Figure 2a,b.

Strong-indication, weak-indication and early output circuits incorporate the isochronic fork(s)
assumption. By default, strong-indication and weak-indication circuits are synthesized using safe QDI
logic decomposition principles [23,24]. Early output circuits, if synthesized by adopting safe QDI logic
decomposition principles, are generally QDI.

Safe QDI logic decomposition would ensure that no gate orphans occur in a QDI circuit. By gate
orphan, we mean a rising and/or falling signal transition on an intermediate gate output that is not
acknowledged by a similar signal transition in the next logic level. Gate orphans are problematic
as they could affect the robustness of QDI circuits and they are better avoided by resorting to
safe QDI logic decomposition. For an illustration of circuit orphans (i.e., gate orphans and wire
orphans) in input–output mode asynchronous circuits, the interested reader is kindly referred to [21,25].
Relative-timed circuits [26] are also early output circuits but they are not QDI because they tend to
incorporate extra timing assumptions in addition to the assumption of isochronic forks, which might
be sophisticated to realize. In this work, we propose early output array multipliers which are QDI.

QDI circuits are characterized by some generic attributes: (i) a connection of strong-indication
sub-circuits could result in a weak-indication circuit, (ii) a connection of weak-indication sub-circuits
would result in a weak-indication circuit, (iii) a connection of strong-indication and weak-indication
sub-circuits would result in a weak-indication circuit, (iv) a connection of strong-indication or
weak-indication sub-circuits and early output sub-circuits could result in an early output circuit,
and (v) a connection of early output sub-circuits could result in an early output circuit [27] or a
relative-timed circuit may result [28].

Among the classes of QDI circuits, an early output circuit is preferable for achieving enhanced
optimizations of the design metrics compared to strong-indication and weak-indication circuits.
An important reason for this is that early output circuits tend to use more input-incomplete gates contrary
to the predominant use of input-complete gates in strong-indication and weak-indication circuits.
Input-complete gates are those which require all the inputs to produce the outputs. The well-known
input-complete gates are the non-inverting buffer, the inverter (i.e., NOT gate) and the (symmetric)
C-element. Input-complete gates are said to be strongly indicating. On the other hand, input-incomplete
gates are those which are able to produce the outputs after receiving a subset of the inputs. For example,
if one of the inputs to an OR gate is 1, the OR gate could produce the output of 1 regardless of the
values of the remaining inputs. It was noted in [29] that the possible use of input-incomplete gates to
replace the input-complete gates would help to better optimize the design metrics of QDI circuits.

3. QDI Array Multipliers

Many QDI array multipliers were implemented based on the 4 × 4 array multiplier structure
portrayed by Figure 3. Here, (X3, X2, X1, X0) and (Y3, Y2, Y1, Y0) represent the single-rail inputs of the
multiplier which are dual-rail encoded. (X3, Y3) and (X0, Y0) represent the most significant and the
least significant input bit-pairs. P7 to P0 represent the output product bits, with P7 being the most
significant product bit and P0 being the least significant product bit. The product bits are also dual-rail
encoded. In addition, the partial products and intermediate outputs are dual-rail encoded.

The array multiplier corresponds to the shift-and-add multiplication approach and carry-save
addition is performed internally. With respect to Figure 3, twelve full adders and sixteen 2-input AND
functions are used to realize the 4 × 4 array multiplier. Of the twelve full adders, the carry inputs
of four full adders are reset, i.e., the carry inputs are set to 0 for RTZ handshaking and they are set
to 1 for RTO handshaking. Full adders corresponding to [30–35] have been used to realize the array
multipliers. To realize the partial products, a QDI implementation of the 2-input AND function is
necessary. In [3], a strongly indicating implementation of the 2-input AND function, as portrayed
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by Figure 4 was used, which corresponds to the delay-insensitive minterm synthesis method [31].
Figure 4a corresponds to RTZ handshaking and Figure 4b corresponds to RTO handshaking.

The transformation of an asynchronous circuit that corresponds to RTZ handshaking into one
that corresponds to RTO handshaking is subject to certain logic rules, which are discussed along with
the proofs in [36], and the interested reader is suggested to refer to the same for details. To give a
quick idea about the transformation rules, if the gates in an asynchronous circuit which correspond to
RTZ/RTO handshaking are replaced by their respective duals, an equivalent asynchronous circuit that
corresponds to RTO/RTZ handshaking will result. Nevertheless, it is important to note that C-elements
are an exception in this regard and they are retained as such along with their respective inputs. In this
work, we propose a new early output implementation of the 2-input AND function, as shown in
Figure 5. Figure 5a corresponds to RTZ handshaking and Figure 5b corresponds to RTO handshaking.
In Figures 4 and 5, (A1, A0) and (B1, B0) represent the dual-rail encoded inputs of the 2-input AND
function, and (Z1, Z0) represents the dual-rail encoded primary output.
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(a) RTZ handshaking, and (b) RTO handshaking.

In Figure 4, C1, C2, C3 and C4 represent 2-input C-elements. The 2-input C-element was
custom-realized by modifying the AO222 gate by introducing feedback as in [37], which required 12
transistors. Four 2-input C-elements and a 3-input OR/AND gate were used to realize the strong-indication
2-input AND function, which required a total of 56 transistors for a static CMOS implementation. On the
other hand, in Figure 5, one 2-input AND/OR gate and an AO222/OA222 complex gate is used to realize
the early output 2-input AND function, requiring a total of only 18 transistors. Hence, the proposed early
output 2-input AND function, which is used for generating the partial products, requires 68% fewer
transistors than the strongly indicating 2-input AND function. In terms of area, the former requires 57%
less silicon than the latter with respect to RTZ handshaking and 56% less silicon than the latter with
respect to RTO handshaking based on implementation using a 32/28 nm CMOS technology [38]. From the
critical path delay perspective, based on theoretical calculations involving the typical propagation delays
of gates, the early output 2-input AND function exhibits 41 and 48% less delay than the strong-indication
2-input AND function with respect to RTZ handshaking and RTO handshaking, respectively. These
observations suggest that the use of the (proposed) early output 2-input AND function could pave the
way for reductions in area (and power and energy) and cycle time of the QDI array multiplier.

Besides the reductions in design metrics that are achievable using the early output 2-input AND
function, there is another observation to note. In [3], weak-indication array multipliers were realized
using strong-indication/weak-indication full adders of [30–35] and the strong-indication 2-input AND
function as shown in Figure 4. Here, because the early output 2-input AND function is used to generate
the partial products, the resulting QDI array multipliers are said to correspond to the early output type.
To explain this briefly, let us refer to Figure 5a. Supposing A1 and B1 are set to 1 during a data phase,
Z1 will assume 1. In the subsequent RTZ phase, even if A1 assumes 0 before B1, Z1 will become 0.
The late reset of B1 (to 0), which may not be acknowledged by the array multiplier, will nevertheless be
acknowledged by the completion detector preceding the array multiplier. This is because the isochronic
fork assumption is imposed on all the primary inputs and thus no wire orphan would occur. A wire
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orphan refers to an unacknowledged signal transition on a wire which is eliminated by incorporating
the isochronic fork assumption [21].

It may be noticed from Figure 3 that the partial products are processed in the array multiplier
by a carry-save adder (CSA) which is comprised of strong-indication or weak-indication full adders.
The receipt of all the partial products would be acknowledged by the sum outputs of the full adders
although the carry outputs of the full adders may or may not fully acknowledge, especially when a
weak-indication full adder is used. In addition, the intermediate sum and carry outputs produced by the
full adders at a particular logic level would be acknowledged by the sum outputs of the full adders present
in the next logic level and hence there does not arise a possibility for the occurrence of gate orphan(s).

4. Implementation Results and Discussion

In total, twenty-eight 4 × 4 QDI array multipliers corresponding to weak-indication and early
output timing models were implemented, with fourteen corresponding to RTZ handshaking and the
same fourteen corresponding to RTO handshaking using a 32/28 nm CMOS technology [38].

To conveniently refer to the array multipliers, we use certain legends as given in the second
column of Table 1. In the legends, ‘M’ refers to the multiplier. The prefix ‘Z’ before M1 to M7 implies
that the array multipliers correspond to RTZ handshaking, and the prefix ‘O’ before M1 to M7 implies
that the array multipliers correspond to RTO handshaking. ‘WI’ refers to weak-indication and ‘EO’
refers to early output in Table 1—these are mentioned within brackets in the second column.

A typical case process-voltage-temperature (PVT) specification corresponding to a high Vt bulk
CMOS process with a supply voltage of 1.05 V and an operating temperature of 25 ◦C was considered
to perform the simulations. About 2000 random input vectors, half of which represents data and the
remaining representing the spacer, were supplied to the array multipliers assuming a cycle time of
8 ns with a 50% duty cycle to simulate the multiplier function. A logical equivalence was maintained
between the input vectors corresponding to 4-phase RTZ and RTO handshaking. Based on the functional
simulations, the switching activity data were captured which were subsequently used to estimate the
average (total) power dissipation. Synopsys tools were used to estimate the design metrics viz. cycle
time, area, and average (total) power dissipation, and these are given in Table 1. As mentioned in the
previous section, the QDI array multiplier is realized using QDI full adders and 2-input AND functions.
Hence, references to the corresponding literature with respect to the full adders used which pertain to
different asynchronous logic design methods, are mentioned in the third column of Table 1. To realize the
(weakly) indicating array multipliers corresponding to RTZ and RTO handshaking, the strong-indication
2-input AND function realizations shown in Figure 4a,b were used. On the other hand, to realize the
early output array multipliers corresponding to RTZ and RTO handshaking, the proposed early output
2-input AND function realizations shown in Figure 5a,b were used.

The cycle time is given by the sum of forward and reverse latencies. The forward latency of a QDI
circuit is like the critical path delay of a synchronous circuit which can be directly estimated through
static timing analysis. However, estimating the reverse latency of QDI circuits is rather non-trivial since
it reflects the time taken to process the spacer. The reverse latency can, however, be estimated based
on the timing information corresponding to the gate-level simulations. For the QDI array multipliers
mentioned in Table 1, their forward and reverse latencies are equal since indicating full adders are
used, and the critical datapath traversed within the array multiplier to process the data or the spacer is
the same, which is highlighted by the red dashed line in Figure 3.

Since power dissipation and cycle time are desirable to be less, PCTP is also desired to be less.
The PCTP serves as a qualitative low energy parameter for a QDI circuit and is analogous to the
power-delay product of a synchronous circuit. The PCTPs of QDI array multipliers were manually
calculated using the power and cycle time values given in Table 1. To normalize the PCTPs, the highest
value among the calculated PCTP values corresponding to a particular handshake protocol was
considered as the reference, and this value was used to divide the PCTPs of all the array multipliers
corresponding to that handshake protocol. This procedure was followed to normalize the PCTPs of the
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array multipliers corresponding to RTZ and RTO handshaking, separately. Hence, the minimum value
of PCTP is representative of the best QDI array multiplier with respect to RTZ or RTO handshaking.
The normalized PCTPs of the QDI array multipliers corresponding to RTZ and RTO handshaking are
plotted in Figure 6a,b, respectively, and the data labels are also shown. In Figure 6a,b, the red data
labels specify the optimum PCTPs.

Table 1. Design metrics of QDI array multipliers corresponding to RTZ and RTO handshaking, realized
using a 32/28 nm CMOS process.

Handshake
Protocol

Legend for
Referencing

Full Adder
Reference

Cycle Time
(ns)

Silicon
Area (µm2)

Average Power
(µW)

RTZ

ZM1 (WI) [30] 7.26 1015.30 1245
ZM2 (WI) [31] § 5.42 1006.16 1228
ZM3 (WI) [32] 5.32 926.86 1207
ZM4 (WI) [31] ξ 5.20 975.66 1222
ZM5 (WI) [33] 5.18 823.17 1216
ZM6 (WI) [34] 4.48 835.37 1217
ZM7 (WI) [35] 3.90 853.67 1222
ZM1 (EO) [30] 7.00 852.65 1227
ZM2 (EO) [31] § 5.16 843.50 1210
ZM3 (EO) [32] 5.60 764.21 1199
ZM4 (EO) [31] ξ 4.96 813.01 1204
ZM5 (EO) [33] 4.92 660.52 1199
ZM6 (EO) [34] 4.22 672.72 1199
ZM7 (EO) [35] 3.66 691.02 1204

RTO

OM1 (WI) [30] 7.08 1015.31 1240
OM2 (WI) [31] § 5.16 957.36 1211
OM3 (WI) [32] 5.24 926.86 1206
OM4 (WI) [31] ξ 5.02 951.26 1211
OM5 (WI) [33] 5.12 823.17 1212
OM6 (WI) [34] 4.38 835.37 1213
OM7 (WI) [35] 3.70 853.67 1217
OM1 (EO) [30] 6.78 852.65 1224
OM2 (EO) [31] § 4.86 794.71 1195
OM3 (EO) [32] 5.50 764.21 1199
OM4 (EO) [31] ξ 4.72 788.61 1195
OM5 (EO) [33] 4.82 660.52 1196
OM6 (EO) [34] 4.10 672.72 1198
OM7 (EO) [35] 3.42 691.02 1202

§ Uses strong-indication full adder; ξ Uses weak-indication full adder; WI: Weak-Indication; EO: Early Output.

It is seen from Table 1 that the average power dissipation of the QDI array multipliers does not
vary significantly. This is because all the QDI array multipliers incorporate the monotonic cover
constraint (MCC) [17] in their logic realization. The MCC signifies the activation of one signal path
from a primary input to a primary output after the supply of input data. The MCC, when satisfied,
ensures the proper indication of rising or falling signal transitions throughout an entire QDI circuit
over the entire circuit depth. Generally, in QDI circuits, the signal transitions, whether they are rising
or falling, should occur monotonically throughout the entire circuit [39] from the first logic level up
to the last logic level to ensure unambiguous indication. This would be guaranteed if the MCC is
incorporated into the logic description and a safe QDI logic decomposition is performed.
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The MCC is satisfied by adopting a logic format which is composed of disjoint terms [40] governing
the primary outputs. For example, in a disjoint sum-of-products expression, the logical conjunction of
any two products would yield 0 since the product terms are mutually orthogonal. Hence, only one
term would be activated in a disjoint logic expression for the application of input data.

A couple of general inferences can be derived from Table 1: (i) the proposed early output array
multipliers achieve considerable reductions in cycle time, area and power dissipation (and also PCTP)
compared to the indicating array multipliers [3], and (ii) the RTO handshaking enables a consistent
reduction in all the design metrics (and also PCTP) compared to the RTZ handshaking for the QDI
array multipliers.

Referring to Table 1, it is found that, overall, the proposed early output array multipliers when
compared with the indicating array multipliers enable average reductions in cycle time, area, power
dissipation and PCTP by 3.4%, 17.7%, 1.3% and 4.7%, respectively, with respect to RTZ handshaking,
and average reductions in cycle time, area, power dissipation and PCTP by 4.2%, 17.9%, 1.2% and 5.3%,
respectively, with respect to RTO handshaking. Considering only the early output array multipliers,
the RTO handshaking enables a 3.7% reduction in cycle time and a 4.1% reduction in PCTP compared
to the RTZ handshaking, on average, with no increase in the area.

Referring to Figure 6, among the various QDI array multipliers, it is noted that ZM7 (EO) and
OM7 (EO) report the least PCTP with respect to RTZ and RTO handshaking, respectively. Among the
various QDI array multipliers in Table 1, the proposed early output array multiplier corresponding to
RTO handshaking i.e., OM7 (EO) reports the least cycle time and the optimum PCTP compared to
the rest. In comparison with its RTZ handshake counterpart, i.e., ZM7 (EO), OM7 (EO) reports a 6.6%
reduction in cycle time and a 6.7% reduction in PCTP with no increase in the area.

5. Conclusions

This article has presented QDI early output array multipliers, which use the proposed QDI early
output 2-input AND function realization for generating the partial products. The proposed early
output 2-input AND function realization requires 68% fewer transistors than the strongly indicating
realization. Although the early output 2-input AND function is used in the first logic level of the array
multiplier, indicating full adders are used in the subsequent logic levels, and hence there does not
arise the issue of gate orphans thus implying that the proposed early output array multipliers are
robust. The reductions in the design metrics achieved for the early output array multipliers compared
to the indicating array multipliers of [3] are entirely attributed to the use of the proposed early output
2-input AND function for realizing the partial products, with no compromise on the robustness. This is
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because the same completion detectors corresponding to RTZ or RTO handshaking have been used
alongside the various QDI array multipliers.

Compared to the optimum indicating array multiplier of [3] viz. ZM7 (WI), the proposed optimum
early output array multiplier ZM7 (EO) achieves a 6.2% reduction in cycle time and a 7.4% reduction in
PCTP with respect to RTZ handshaking, and OM7 (EO) achieves a 7.6% reduction in cycle time and an
8.8% reduction in PCTP compared to OM7 (WI) with respect to RTO handshaking without an increase
in the area.
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