
electronics

Article

A Novel Approach towards Resource
Auto-Registration and Discovery of Embedded
Systems Based on DNS

Azimbek Khudoyberdiev, Wenquan Jin and DoHyeun Kim *

Department of Computer Engineering, Jeju National University, Jeju 63243, Korea;
azimbekkhudoyberdiev@jejunu.ac.kr (A.K.); wenquan.jin@jejunu.ac.kr (W.J.)
* Correspondence: kimdh@jejunu.ac.kr; Tel.: +82-64-754-3658

Received: 23 March 2019; Accepted: 13 April 2019; Published: 17 April 2019
����������
�������

Abstract: The Internet of Things (IoT) is expected to deliver a whole range of new services to all parts
of our society, and improve the way we work and live. The challenges within the Internet of Things are
often related to interoperability, device resource constraints, a device to device connection and security.
One of the essential elements of identification for each Internet of Things devices is the naming system
and addresses. With this naming system, Internet of Things devices can be able to be discoverable by
users. In this paper, we propose the IoT resource auto-registration and accessing indoor services based
on Domain Name System (DNS) in the Open Connectivity Foundation (OCF) environment. We have
used the Internet of Things Platform and DNS server for IoT Resource auto-registration and discovery
in the Internet Protocol version 4 (IPv4). An existing system called Domain Name Auto-Registration
in Internet Protocol version 6 can be used for Internet of Things devices for auto-registration and
resource discovery. However, this system is not acceptable in the existing internet networks, because
the highest percentage of the networks on the Internet are configured in Internet Protocol version
4. Through the proposed auto-registration system, clients can be able to discover the resources and
access the services in the OCF network. Constrained Application Protocol (CoAP) is utilized for the
IoT device auto-registration and accessing the services in the OCF network.

Keywords: Domain Name System (DNS); Internet of Things (IoT); domain names; device auto
registration; Internet Protocol (IP); Open Connectivity Foundation (OCF); Constrained Application
Protocol (CoAP)

1. Introduction

The Internet of Things (IoT) is the hottest sphere which can impact our digital world. The tools in
our daily life will be furnished with raspberry pies, transceivers, microcontrollers, digital communicators
and internet protocols which are suitable for stacks that will help them to be able to interconnect with
each other, as well as, with their users [1]. Presently, more than 9 billion connected IoT devices are
being used, and it is predicted to reach more than 26 billion devices by 2020 [2]. With the IoT concept,
the Internet becomes more ubiquitous and immersive. The IoT will promote the development of a
number of application scenarios that make use of the potentially substantial quantity of data analyzed
by such devices to offer a new type of services for individuals, governments and companies. One of
the essential aspects of IoT devices is the development of lightweight communication and interaction
with a varied range of IoT devices. These devices include video surveillance cameras, lighting controls,
home automation, smart vehicles, smart healthcare devices, actuators and so on. With these devices,
users can be able to get the sensing data of the environment using sensors and control the actuators
for changing the environment through the Internet or a local network [3]. This model certainly finds

Electronics 2019, 8, 442; doi:10.3390/electronics8040442 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-8404-9447
http://dx.doi.org/10.3390/electronics8040442
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/8/4/442?type=check_update&version=2

Electronics 2019, 8, 442 2 of 21

applications in a variety of domains, such as industrial and home automation, mobile healthcare,
medical aids, greenhouse, energy management, automatization, traffic controlling and many other
types of services [4]. Therefore, the communication and management functionalities are required for
the development of interoperability of devices utilizing these services, such as auto-registration of
devices to the Internet, the environment and device monitoring, device information registration for
discovery and accessing indoor services in real-time [5].

Utilization of Application Programming Interfaces (APIs) can provide a user-friendly interface, and
request handling service which means users easily send requests to the sensors to get sensing data and
control the actuator according to their needs [6]. For IoT applications development, the service-oriented
architecture (SOA) is one of the widely used development architectures which can be implemented
by Representational State Transfer (REST) architecture. REST architecture-based APIs provide access
to the IoT device resources through communication protocols using a Uniform Resource Identifier
(URI) on the Internet [7]. Hypertext Transfer Protocol (HTTP) and Constrained Application Protocols
(CoAP) can be used for providing efficient and reliable communication between clients and IoT
devices [8,9]. One of the essentials among IoT deployments is IoT Platforms [10]. They can integrate
several features and capabilities into a solution, such as enabling to deploy IoT applications better,
faster, more cost-effective and integrated, as well as can serve as a middleware, bridge and solution.
As the number of connected devices increases, several trial versions have been created for providing
a common IoT Platform. Thread, IoTivity and AllJoyn are the most highlighted examples of this
platform. The IoT Platform provides a set of basic principles, common standards and protocols for the
general implementation of IoT applications. IoTivity is an open source project developed by the Open
Connectivity Foundation and controlled by Linux Foundation. A fundamental principle of the Open
Connectivity Foundation (OCF) is providing diverse vertical domains [11].

The Internet connection of IoT devices is based on different parameters such as default routers,
address prefixes, and DNS servers. They can be configurated automatically via Neighbor Discovery
in Internet Protocol (IP) Version 6 environment. Stateless Address Autoconfiguration and Router
Advertisement Options are used in IPv6 for Domain Name System Configuration [12]. However, this
type of configuration system is too complicated in current networks because most of the devices in the
current network are based on IP version 4, in this case, the existing configuration of Domain Name
System (DNS) names for IoT devices might be inefficient and time-wasting as the quantity of IoT
devices increases speedily in a network [13].

With this paper, we have proposed an IoT device auto-registration method for the local DNS server
through the OCF network. The IoT Platform can be a bridge for providing the communication between
the indoor devices and the clients through the Local Area Network (LAN) such as Wi-Fi network.
The proposed system includes IoT DNS, IoT Client, IoT Platform and IoT devices. For experimental
environment we have developed an android application based on Java programming language.
This application provides an interface for sending a request to the IoT DNS server and describes the
response of the IoT DNS, as well as, after getting the IP address successfully from IoT DNS, clients
can be able to connect to the IoT device for checking the indoor service. Due to the system simplicity
and clear explanation, we consider the Raspberry Pi 3 Model B with a BME 280 sensor in every step.
However, the design of the proposed system is flexible and adaptable for working with other home
appliances, e.g., humidity, smart lighting, smart fan, smart locks to name a few. When an IoT device is
connected to the Internet for the first time, it sends a registration request to the IoT Platform. The OCF
based IoT Platform plays a vital role in collecting all the information, including the host, ID, resource,
interface, resource type, and policy, about IoT devices [14]. In addition, it makes address registration
to the DNS server. When IoT clients want to connect to the IoT devices, clients send discovery request
with GET method /oic/res requests to all OCF Nodes through 5683 address port. “rt” query parameter
has to be included in the request, in order to access specific indoor resource type (jnu.rt.temperature).
When the IoT clients send the request with URL name (device001.jnu) to the DNS server, the DNS server
checks its cache and finds out the equivalent IP address (192.168.0.2) according to the URL name, and

Electronics 2019, 8, 442 3 of 21

sends the response with the IP address. After getting the IP address successfully, IoT clients will be
able to access home services through this IP address (coap://192.168.0.2:5683/temperature) and discover
resources through IoT devices.

The rest of the paper includes the following sections; Section 2 includes the related works which
consist of DNS server working principles and different types of device to device connection ways,
as well as, OCF IoTivity functionalities. Section 3 illustrates the design of our proposed IoT DNS
approach and detailed explanation of working principles. Section 4 includes the structure of the
device registration, device discovery, and device accessing processes. Section 5 describes the detailed
implementation and testing results. Finally, there is a conclusion given in Section 6.

2. Related Works

Domain Name System (DNS) is a central part of Internet connection which allows users to
discover resources from the Internet through domain names and IP addresses [15]. Domain names
are human-friendly names because they are alphabetic, easy to remember and guess, whereas IP
addresses are based on dot-decimal notation, so they are difficult to remember [16]. DNS is used for
translating a domain name (for example, www.jnu.ac.kr) or hostname into an IP address (168.131.31.206).
DNS originated with the implementation of ARPAnet (a project of the Defense Advanced Research
Projects Agency) [17]. It enables individual computers to be identified uniquely to transmit and receive
data over an extensive area network. The DNS contains information that allows each computer to be
uniquely identified. Each computer on the network was assigned an address, which today is known as
an Internet Protocol Address (IP Address). Today, each computer’s IP Address consists of a unique
string of digits. A domain name consists of a unique string of characters. The DNS maps each unique
domain name to its unique IP Address [18]. Nowadays, two types of IP addresses are widely used;
IPv4 and IPv6 [19]. The naming system is also different in these IP versions. Internet Protocol version 6
is a new internet addressing system standard which is intended to eventually replace the current IPv4,
because IPv4 is available over four billion IP addresses. This means the number of IPv4s is limited [20].

First of all, we need to discuss the IPv6 DNS autoconfiguration system, Neighbor Discovery [21],
which is a protocol for using in IPv6 environment, and is used to observe default gateway and operates
at the Link Layer addresses of neighbors in the same subnet. NDP includes five Internet Control
Message Protocol [22] packet types such as, router advertisement (RA) and solicitation (RS), neighbor
solicitation and advertisement, and redirecting network. Once an IPv6 device joins a subnet for the
first time, it forwards router solicitation, to a router to ask for a router advertisement. Each router
occasionally sends a multicast router advertisement with router information in the same subnet.
There is a DNS Search List in the options of the RA [23], which provides the domain suffixes list for
domain name construction. This IPv6 system is predicted to achieve a simpler method for controlling a
variety of IoT devices [24]. As we have already mentioned above, Neighbor Discovery protocol can be
used for DNS autoconfiguration system in an IPv6 environment. However, most of the current Internet
networks are configured in an IPv4 environment. Furthermore, the auto-configuration of the DNS
naming system for every IoT device in the IPv4 environment may remarkably expand productivity in
the DNS configuration in existing networks. With this DNS naming system, users efficiently manage
and categorize IoT devices.

The one Machine to Machine(M2M) [25] group creates technical statements for device identifying.
An object identifier (OID) is used for the identification method in an M2M device. It was designed
by working with globally unique IDs for every device. The Object Identifier (OID) is an identification
system created jointly by International Organization for Standardization/International electrotechnical
Commission and International Telecommunication Union (ISO/IEC and ITU-T) corporations. OID utilizes
a hierarchical tree structure, includes a manufacturer ID, product model ID, serial number ID, and
expanded ID, respectively. The ID of the manufacturer describes the node manufacturer. The product
model ID describes the node model. The node serial number is described with the serial number ID.
The expanded ID means that an optional arc for the legacy device is related to the M2M node. However,

www.jnu.ac.kr

Electronics 2019, 8, 442 4 of 21

a traditional networking system is based on wired networks whose parameters are different from M2M
networks. M2M area networks can include not only of many devices acting themselves but also of
IoT sensor networking which includes large numbers of nodes cooperating to provide sophisticated
solutions. Individual management of each node is impossible in a considerable number of nodes [26].
Electronic Product Code global [27] is a GS1 enterprise to advance industry-driven system standards for
the Electronic Product Code (EPC) which is based on RFID technology (radio frequency identification).
96-bit binary is used as a unique number in EPC for the identifiable. However, in order to obtain
information, EPC has to be connected to the EOC information servers. In this case, limiting dynamic
updates of information is inefficient. For overcoming this issue, EPCglobal proposes an Object Naming
Service (ONS), that provides worldwide recovery services because converting is possible to Uniform
Resource Locator (URL) [28,29]. We know that when the URL name is associated with an IP address,
the information can be retrieved from the object. However, in ONS, the product type of resolution
is limited.

Bonjour [30], is a networking service which supports DNS naming and service discovery service,
created by Apple company. Bonjour finds and registers an Apple device and informs users what the
service is used with their Apple device. mDNS [31] uses each device as a DNS server and resolver.
mDNS plays a role as a carrier protocol in DNS-based service discovery, and name resolution does not
use a trusted DNS server. mDNS uses a multicasting method to resolve the name of the local network.
Though, it is not acceptable for multi-link networks as a result of a large amount of traffic. mDNS is a
privacy problem because it can provide a naming system without any security key. Bonjour software
provides service discovery with DNS based Service Discovery protocol (DNS-SD) [32]. DNS Service
Discovery protocol supports a list of port numbers and service devices for hosts.

In Mobile Ad-hoc Network (MANET) is also used as another name service system architecture [33].
This method creates a unique domain name using the device ID or user ID. However, the drawback of
this naming system is that the user cannot easily read when retrieving device information [34,35].

Keuntae Lee at al. [36] introduced the Domain Name System (DNS) Name Autoconfiguration
(DNSNA) for IoT devices in IPv4 and IPv6 networks. According to their proposed approach, for IoT
DNS name autoconfiguration Neighbor Discovery (ND) protocol and Dynamic Host Configuration
Protocol are used in IPv6 and IPv4 networks, respectively. DNSNA includes four main contributions,
such as a DNS naming framework, the DNS naming format for the device discovery, physical-contact
based Near Field Communication (NFC) for the IoT device authentication, and the service discovery
through DNS service resource records. The proposed approach evaluation results describe that in
the DNSNA scenario the average number of packets and the packet accumulation volume can be
reduced by 60.8% and 97% respectively. However, the system frameworks are too complex and generic
which, despite their many positive facets, attribute to slow response time and latency which are the
fundamental need of modern IoT networks. Our proposed approach is lightweight and targets modern
latency-aware applications for the IoT resource auto-registration and smart service access for indoor
services based on OCF IoTivity.

Tomohiro Yanase at al. [37] developed a flexible name autoconfiguration method which can
autogenerate Fully Qualified Domain Name (FQDN) based on IoT devices information, and this
function can be installed to the home gateway. According to the IPv6 characteristics, the number of
the IP addresses in the IPv6 environment is higher than IPv4 addresses, and they are described in
hexadecimal string format. Consequently, when clients communicate with the IPv6 address assigned
IoT device, this address should be a user-friendly identifier such as the authors introduced FQDN
instead of IP addresses. Home Getaway plays a role as a generator for FQDN of IoT devices and
registers domain names to the DNS server. When an IoT device is connected to the home network,
it automatically generates an IPv6 address. For obtaining information, home getaway sends a multicast
device search request and IoT device response with device information such as manufacturer name,
model number and IP address. After that home getaway configures FQDN according to the received
packet, the FQDN are generated for the IoT device, home getaway sends the registration request to the

Electronics 2019, 8, 442 5 of 21

DNS server with the IoT devices FQDN, and if the received IoT device FQDN is unique on the Internet
and the DNS server, this IoT device is successfully registered to the network. One of the disadvantages
of this system, if the generated FQDN is not unique on the Internet, the home getaway has to repeatedly
generate a new FQDN for the IoT device until it becomes unique on the Internet. It creates too much
overlapping on the network, as well as this system being proposed for the IPv6 environment.

The Open Connectivity Foundation (OCF) is an industry group [38] that is committed to developing
specification standards, promoting interoperability guidelines, and providing certification programs
for the Internet of Things devices. It has become one of the [39] industry standardization organizations
of IoT including Microsoft, Intel, Samsung Electronics, Electrolux and Qualcomm [40].

The IoTivity Framework API provides a framework for developers and can be used with different
operating systems and multiple programming languages [41]. The IoTivity framework is based on a
constrained application protocol, and it can provide optimized and dedicated protocols for the Internet
of Things devices. Resource Encapsulation is one of the essential parts of the IoTivity framework; it is
an abstract layer which includes common resource function modules. Developers’ work is becoming
easier with this module because it can provide functionalities for both the server and client side.
More precisely, for the client side, it supports monitoring the presence of resources in the network
with Resource cache and Broker functionalities. For the server side, it can provide a direct and simple
way for creating the resource and setting the properties and attributes. The OCF IoTivity framework
can operate as middleware in different operating systems and platforms; the framework manages
four essential functions including [42,43], resource discovery, data transmission, data management
and device management. Resource discovery provides various discovery structures for resources and
devices via remote and proximity connection. Data Transmission supports exchanging information
and controlling according to the stream and message model. Data Management is utilized for storing,
collecting, managing and analyzing the data from multiple resources. Device Management provides
device configuration, device management and diagnostics of devices.

3. Proposed IoT Device Auto-Registration Based on OCF

In our proposed approach, the IoT devices make auto-registration automatically to the DNS
server through the IoT Platform. Figure 1 describes the model of the proposed system architecture.
This architecture includes IoT devices, IoT Platform, DNS server and IoT Client. The IoT Platform
has a registration resource, discovery resource and data management functions. The IoT Platform
plays a role as a bridge between an IoT device and network when an IoT device is connected to
the network via an IoT Platform. The IoT Platform collects information of the IoT device, makes
auto-registration of the IoT device’s IP addresses and URL names, and makes address registration to
the DNS server. When the IoT clients send requests, the URL name request is via android application or
internet browser to the DNS server. The DNS server validates the URL name and finds out IP address
according to the URL name after that DNS sends an acknowledgment with the IP address to the client.
After taking the IP address successfully, the client can be able to send a request to the IoT devices for
exploring temperature/humidity or other types of information about the condition. For connecting and
changing the information we used CoAP [44], which is a network-oriented protocol that has similar
characteristics, like HTTP. However, CoAP also enables low overhead and multicasting functions.
The REST architecture is used in CoAP, which is a conventional system for accessing Internet resources.

On the one hand, Constrained Application Protocol supports the Uniform Resource Identifier.
REST architecture uses GET, PUT, POST and DELETE methods for corresponding to create, read, update
and delete operations. On the other hand, CoAP is based on lightweight User Datagram Protocol (UDP)
protocol, which supports IP multicast that fulfills group communication for the Internet of Things.
For compensating for the reliability of UDP protocols, CoAP defines retransmission mechanisms and
supports a resource description for discovery mechanisms [45].

As it can be seen that, in the first step, the IoT device makes auto-registration to the IoT Platform.
This registration includes IoT device’s parameters, such as “host,” “ID,” resource type, resource

Electronics 2019, 8, 442 6 of 21

interface, entity handler and resource property. In the second step, the IoT platform collects that
parameters in its database and checks them every time with the Resource Directory (RD) registration
resource and RD Resource Discovery. Besides that, the IoT Platform makes address registration to the
DNS server, and this registration includes only IP addresses and URL names. When a client wants to
connect to the IoT device, he or she sends a request with the URL name, and the URL name comes to
the DNS server, and the server checks its mapping table and response with equivalent IP address (steps
4 and 5). After taking the IoT device’s IP address successfully, the IoT client can be able to connect to
the IoT device for taking information about the indoor environment such as temperature, humidity,
is led on or off and so on (step 6). At the end of the process, the IoT device sends the response with
temperature level to the IoT client.

Electronics 2019, 8, x FOR PEER REVIEW 6 of 22

As it can be seen that, in the first step, the IoT device makes auto-registration to the IoT Platform.
This registration includes IoT device’s parameters, such as “host,” “ID,” resource type, resource
interface, entity handler and resource property. In the second step, the IoT platform collects that
parameters in its database and checks them every time with the Resource Directory (RD) registration
resource and RD Resource Discovery. Besides that, the IoT Platform makes address registration to
the DNS server, and this registration includes only IP addresses and URL names. When a client wants
to connect to the IoT device, he or she sends a request with the URL name, and the URL name comes
to the DNS server, and the server checks its mapping table and response with equivalent IP address
(steps 4 and 5). After taking the IoT device’s IP address successfully, the IoT client can be able to
connect to the IoT device for taking information about the indoor environment such as temperature,
humidity, is led on or off and so on (step 6). At the end of the process, the IoT device sends the
response with temperature level to the IoT client.

Figure 1. Proposed system architecture for auto-registration and resource discovery.

In general, there are two most common ways that the devices can acquire IP addresses. They are
manual address assignment and automatic address assignment. Almost all networks have automatic
IP address assignment with Dynamic host configuration protocol, because this protocol is more
convenient and reliable. Sometimes there are problems with reaching the DHCP server; in this case,
we can set up IP addresses manually. Both address assignment systems are acceptable for our system.

Figure 2 shows a sequence diagram for the proposed system architecture. Firstly, the IoT device
local parameters are configured. When the IoT device is connected to the IoT Platform, the device
sends IoT device resource values to the IoT Platform, and IoT Platform collects all the information
about the IoT device to its database. After that, the IoT platform sends a request for address
registration to the DNS server (IP address and URL name). When the client tries to connect to the IoT
device, he or she sends a request with the URL name (device001.jnu) to the client. Moreover, the
request comes to the DNS server, and the DNS server selects a proper IP address (192.168.0.2) from
its mapping table according to the URL name, after local IoT DNS sends an acknowledgment with
the IP address. After taking the IP address, the IoT client can be able to access the indoor environment,
and the IoT device sends the temperature of condition to the client {“temperature”: ”22,5”}.

Figure 1. Proposed system architecture for auto-registration and resource discovery.

In general, there are two most common ways that the devices can acquire IP addresses. They are
manual address assignment and automatic address assignment. Almost all networks have automatic
IP address assignment with Dynamic host configuration protocol, because this protocol is more
convenient and reliable. Sometimes there are problems with reaching the DHCP server; in this case,
we can set up IP addresses manually. Both address assignment systems are acceptable for our system.

Figure 2 shows a sequence diagram for the proposed system architecture. Firstly, the IoT device
local parameters are configured. When the IoT device is connected to the IoT Platform, the device
sends IoT device resource values to the IoT Platform, and IoT Platform collects all the information
about the IoT device to its database. After that, the IoT platform sends a request for address registration
to the DNS server (IP address and URL name). When the client tries to connect to the IoT device, he
or she sends a request with the URL name (device001.jnu) to the client. Moreover, the request comes
to the DNS server, and the DNS server selects a proper IP address (192.168.0.2) from its mapping
table according to the URL name, after local IoT DNS sends an acknowledgment with the IP address.
After taking the IP address, the IoT client can be able to access the indoor environment, and the IoT
device sends the temperature of condition to the client {“temperature”: ”22,5”}.

Figure 3 describes an example of IoT device registration resources to the IoT Platform. The given
properties provide information which is utilized for discovering IoT devices over the Internet by clients.
The properties of the structure are based on common properties of the OCF IoTivity core specification
that is a unique format for registration of IoT devices. These values consist of “host,” “device id,”

Electronics 2019, 8, 442 7 of 21

resource list, resource interface list, resource type list and list of methods. As can be seen, “host” is an
IoT device IP address and a host number, “id” is a unique identifier of the device, and it is relatively
used with “href” in order to get endpoint information. Items in the “resources” play a role in providing
a request by IoT clients: “dataType” are derived JavaScript Object Notation (JSON) values. The data
types can be adaptable for a specific utilization; for instance, the string length can be changed for a
particular condition. The “oic” is utilized for OCF defined interfaces, as well as, it is accepted as the
first segment in the Interface property value. The “oic.if.baseline” is applicable in RETRIEVE, UPDATE
methods and used for defining a view into all properties of a resource. The “policy” parameter provides
diverse rules for reliable accessing to the resource. This parameter is configured by the setting of
“key-value” pairs. OCF defined resource types and interfaces are specified using JSON and RESTfull
API Modeling Language (RAML), respectively.Electronics 2019, 8, x FOR PEER REVIEW 7 of 22

Figure 2. Sequence diagram of the proposed Internet of Things (IoT) device auto-registration.

Figure 3 describes an example of IoT device registration resources to the IoT Platform. The given
properties provide information which is utilized for discovering IoT devices over the Internet by
clients. The properties of the structure are based on common properties of the OCF IoTivity core
specification that is a unique format for registration of IoT devices. These values consist of “host,”
“device id,” resource list, resource interface list, resource type list and list of methods. As can be seen,
“host” is an IoT device IP address and a host number, “id” is a unique identifier of the device, and it
is relatively used with “href” in order to get endpoint information. Items in the “resources” play a
role in providing a request by IoT clients: “dataType” are derived JavaScript Object Notation (JSON)
values. The data types can be adaptable for a specific utilization; for instance, the string length can be
changed for a particular condition. The “oic” is utilized for OCF defined interfaces, as well as, it is
accepted as the first segment in the Interface property value. The “oic.if.baseline” is applicable in
RETRIEVE, UPDATE methods and used for defining a view into all properties of a resource. The
“policy” parameter provides diverse rules for reliable accessing to the resource. This parameter is
configured by the setting of “key-value” pairs. OCF defined resource types and interfaces are
specified using JSON and RESTfull API Modeling Language (RAML), respectively.

Figure 2. Sequence diagram of the proposed Internet of Things (IoT) device auto-registration.
Electronics 2019, 8, x FOR PEER REVIEW 8 of 22

Figure 3. The IoT device registration resources.

Figure 4 illustrates the overall collaboration of the proposed system architecture. As we can see
from the figure, firstly, the IoT device sends a device registration request to the IoT Platform;
secondly, the IoT Platform makes Address Registration to the DNS server. When a client wants to
access the indoor service, he or she sends a URL name request via a browser or Android application,
the URL name request comes to the DNS server, and the DNS server sends a response with the IP
address; after taking the IP address successfully, the client is able to send a request to the IoT device.
At the end of the process, the IoT device sends a response with temperature level.

Figure 4. Collaboration diagram of the proposed system.

4. Device Registration, Device Discovery and Sensing Data Processes of the Proposed System

4.1. Device Registration

Figure 5 describes the flowchart of the IoT device registration to the DNS server. First of all, the
IoT device is installed to the home, workspace or required place after it is connected to the Internet
through a wired or wireless connection. When the device is connected to the internet, the device
needs a unique IP address over the network. Usually, IP addresses are chosen dynamically through
a DHCP server because a manual method for applying IP addresses is cumbersome, as remembering
all the clients and their IP addresses in one host is impossible. After taking the IP address successfully,
the IoT device sets up an IP address and URL name. Then, the IoT device sends a registration request
with the URL name, IP address, as well as some other parameters of the IoT device such as resources
list, resource interface list, resource type list and method list to the IoT Platform.

IoT Platform DNS Server

IoT Device IoT Client

1.Device
Registration

2.Address
Registration

3.1 IP address
request

3.2 IP address
response

4.1 Temperature request

4.2 Temperature response

Figure 3. The IoT device registration resources.

Electronics 2019, 8, 442 8 of 21

Figure 4 illustrates the overall collaboration of the proposed system architecture. As we can see
from the figure, firstly, the IoT device sends a device registration request to the IoT Platform; secondly,
the IoT Platform makes Address Registration to the DNS server. When a client wants to access the
indoor service, he or she sends a URL name request via a browser or Android application, the URL
name request comes to the DNS server, and the DNS server sends a response with the IP address; after
taking the IP address successfully, the client is able to send a request to the IoT device. At the end of
the process, the IoT device sends a response with temperature level.

Electronics 2019, 8, x FOR PEER REVIEW 8 of 22

Figure 3. The IoT device registration resources.

Figure 4 illustrates the overall collaboration of the proposed system architecture. As we can see
from the figure, firstly, the IoT device sends a device registration request to the IoT Platform;
secondly, the IoT Platform makes Address Registration to the DNS server. When a client wants to
access the indoor service, he or she sends a URL name request via a browser or Android application,
the URL name request comes to the DNS server, and the DNS server sends a response with the IP
address; after taking the IP address successfully, the client is able to send a request to the IoT device.
At the end of the process, the IoT device sends a response with temperature level.

Figure 4. Collaboration diagram of the proposed system.

4. Device Registration, Device Discovery and Sensing Data Processes of the Proposed System

4.1. Device Registration

Figure 5 describes the flowchart of the IoT device registration to the DNS server. First of all, the
IoT device is installed to the home, workspace or required place after it is connected to the Internet
through a wired or wireless connection. When the device is connected to the internet, the device
needs a unique IP address over the network. Usually, IP addresses are chosen dynamically through
a DHCP server because a manual method for applying IP addresses is cumbersome, as remembering
all the clients and their IP addresses in one host is impossible. After taking the IP address successfully,
the IoT device sets up an IP address and URL name. Then, the IoT device sends a registration request
with the URL name, IP address, as well as some other parameters of the IoT device such as resources
list, resource interface list, resource type list and method list to the IoT Platform.

IoT Platform DNS Server

IoT Device IoT Client

1.Device
Registration

2.Address
Registration

3.1 IP address
request

3.2 IP address
response

4.1 Temperature request

4.2 Temperature response

Figure 4. Collaboration diagram of the proposed system.

4. Device Registration, Device Discovery and Sensing Data Processes of the Proposed System

4.1. Device Registration

Figure 5 describes the flowchart of the IoT device registration to the DNS server. First of all, the
IoT device is installed to the home, workspace or required place after it is connected to the Internet
through a wired or wireless connection. When the device is connected to the internet, the device needs
a unique IP address over the network. Usually, IP addresses are chosen dynamically through a DHCP
server because a manual method for applying IP addresses is cumbersome, as remembering all the
clients and their IP addresses in one host is impossible. After taking the IP address successfully, the
IoT device sets up an IP address and URL name. Then, the IoT device sends a registration request with
the URL name, IP address, as well as some other parameters of the IoT device such as resources list,
resource interface list, resource type list and method list to the IoT Platform.

The IoT Platform collects these parameters to its database and sends to the DNS server for address
registration, and the DNS server makes validation of these parameters and, if each given parameter
is acceptable and with the correct values, the IoT device is registered successfully to the DNS server.
On the other hand, if there is some problem with the IP address or URL name, the DNS Server gives a
response with the message “IP address and URL name are invalid.” In this case, IoT device installation
or parameters have to be rechecked.

The Resource Directory in the OCF Platform can provide a discovery service which allows devices
to publish their resource value information to an RD, and updates resource information and allows
deleting of resource information from the resource directory [33]. Figure 6 describes the sequence
diagram of the device registration process. First of all, the IoT device is installed and connected to
the Internet, after connection to the internet router gives an appropriate unique IP address to the IoT
device, and this IP address and URL name become related to this IoT device. After that, the IoT device
sends a registration request to the IoT Platform with IoT device parameters. These parameters are
collected to the RD Resource Discovery, Registration Resource and Database. The IoT Platform plays a
role as a bridge; it collects all of the IoT devices in its host. The next step is sending a request to the DNS
server for Address Registration. The DNS server validates all IP addresses, URL names and if they are
valid in this network the DNS server registers the IoT device successfully. If there are some invalid
parameters in the registration process, registration fails and the IoT device should be reinstalled.

Electronics 2019, 8, 442 9 of 21

Electronics 2019, 8, x FOR PEER REVIEW 9 of 22

The IoT Platform collects these parameters to its database and sends to the DNS server for
address registration, and the DNS server makes validation of these parameters and, if each given
parameter is acceptable and with the correct values, the IoT device is registered successfully to the
DNS server. On the other hand, if there is some problem with the IP address or URL name, the DNS
Server gives a response with the message “IP address and URL name are invalid.” In this case, IoT
device installation or parameters have to be rechecked.

Figure 5. IoT device registration process flowchart of the proposed approach.

The Resource Directory in the OCF Platform can provide a discovery service which allows
devices to publish their resource value information to an RD, and updates resource information and
allows deleting of resource information from the resource directory [33]. Figure 6 describes the
sequence diagram of the device registration process. First of all, the IoT device is installed and
connected to the Internet, after connection to the internet router gives an appropriate unique IP
address to the IoT device, and this IP address and URL name become related to this IoT device. After
that, the IoT device sends a registration request to the IoT Platform with IoT device parameters. These
parameters are collected to the RD Resource Discovery, Registration Resource and Database. The IoT
Platform plays a role as a bridge; it collects all of the IoT devices in its host. The next step is sending
a request to the DNS server for Address Registration. The DNS server validates all IP addresses, URL
names and if they are valid in this network the DNS server registers the IoT device successfully. If
there are some invalid parameters in the registration process, registration fails and the IoT device
should be reinstalled.

Start

Validation of
IP and URL

?

IoT device
Installation

Setup IP address
and URL name

RD Registration
Resource

IoT Platform
RD Resource

Discovery

Database

Registration
Request

DNS Server

Registration Failed
IF(Invalid) IF(Valid)

End

Internet

Internet
connectionIP Request IP Responce

Registered
successfully

Address
 Registration

Figure 5. IoT device registration process flowchart of the proposed approach.Electronics 2019, 8, x FOR PEER REVIEW 10 of 22

Figure 6. IoT device registration sequence diagram of the proposed system.

4.2. Device Discovery and Sensing Data

Figure 7 illustrates a general overview of the device discovery and sensing data response process
of the proposed system. The figure is divided into two parts: the first part describes the device
discovery and taking the IP address from the DNS server; the other part shows the process of the
sensing data from the IoT device. As we have explained above, the client sends a request to the IoT
DNS server for getting an IP address, and the DNS server checks its Map Table and response with an
appropriate IP address according to the URL name. After getting the IP address, the client is able to
send a request to the IoT device (coap://192.168.0.2:5683/temperature), and the IoT device sends a
response with indoor temperature.

Figure 7. The general overview of the device discovery and sensing data process.

Device and resource discovery are provided by CoAP endpoints. This function is critically
essential in the M2M applications, in which there is no people’s role in the process, and there is a
vulnerability due to static interfaces. CoRe Link Format provides resource discoverable services

IoT Device Internet IoT Platform DNS Server

Device
Installation

Internet Connection

IP address Request

IP address Responce

Set Up IP address
 and URL name

Registration Request
with IoT device parameters

Collecting parameters to
Discovery Resource

Registration Resource
Database

Address registration
Validation of IP address

 and URL name

Registration Failed

IF(IP address and URL
name are valid):

Registered successfully
IF(IP address and

URL name are
invalid):

Figure 6. IoT device registration sequence diagram of the proposed system.

4.2. Device Discovery and Sensing Data

Figure 7 illustrates a general overview of the device discovery and sensing data response process
of the proposed system. The figure is divided into two parts: the first part describes the device
discovery and taking the IP address from the DNS server; the other part shows the process of the
sensing data from the IoT device. As we have explained above, the client sends a request to the IoT
DNS server for getting an IP address, and the DNS server checks its Map Table and response with
an appropriate IP address according to the URL name. After getting the IP address, the client is able
to send a request to the IoT device (coap://192.168.0.2:5683/temperature), and the IoT device sends a
response with indoor temperature.

Device and resource discovery are provided by CoAP endpoints. This function is critically
essential in the M2M applications, in which there is no people’s role in the process, and there is
a vulnerability due to static interfaces. CoRe Link Format provides resource discoverable services
without fully manual configuration for improving interoperability in a CoRe environment. This process

Electronics 2019, 8, 442 10 of 21

depends on the server in which discoverable resources are used. Figure 8 describes the sequence
diagram of the device discovery. Firstly, the client makes a request preparation, he or she opens a
browser, enters the URL name to the address bar and clicks enter. In a sequence diagram, the client
sends a request with device001.jnu URL name and send it to the DNS server. After that, the DNS
server searches this URL name in its Map Table. If there is no equivalent IP address according to the
URL name in the Map Table, the DNS server sends a “Not Found” message, this process describes the
loop process, and it will continue until the client enters the available URL name. When the DNS server
finds a valid IP address according to the URL name, it sends an acknowledgment with an IP address
such as 192.168.0.2. When a client reaches the IP address successfully, he or she can send a request to
the IoT device. The IoT device sends an acknowledgment with temperature.

Electronics 2019, 8, x FOR PEER REVIEW 10 of 22

Figure 6. IoT device registration sequence diagram of the proposed system.

4.2. Device Discovery and Sensing Data

Figure 7 illustrates a general overview of the device discovery and sensing data response process
of the proposed system. The figure is divided into two parts: the first part describes the device
discovery and taking the IP address from the DNS server; the other part shows the process of the
sensing data from the IoT device. As we have explained above, the client sends a request to the IoT
DNS server for getting an IP address, and the DNS server checks its Map Table and response with an
appropriate IP address according to the URL name. After getting the IP address, the client is able to
send a request to the IoT device (coap://192.168.0.2:5683/temperature), and the IoT device sends a
response with indoor temperature.

Figure 7. The general overview of the device discovery and sensing data process.

Device and resource discovery are provided by CoAP endpoints. This function is critically
essential in the M2M applications, in which there is no people’s role in the process, and there is a
vulnerability due to static interfaces. CoRe Link Format provides resource discoverable services

IoT Device Internet IoT Platform DNS Server

Device
Installation

Internet Connection

IP address Request

IP address Responce

Set Up IP address
 and URL name

Registration Request
with IoT device parameters

Collecting parameters to
Discovery Resource

Registration Resource
Database

Address registration
Validation of IP address

 and URL name

Registration Failed

IF(IP address and URL
name are valid):

Registered successfully
IF(IP address and

URL name are
invalid):

Figure 7. The general overview of the device discovery and sensing data process.

Electronics 2019, 8, x FOR PEER REVIEW 11 of 22

without fully manual configuration for improving interoperability in a CoRe environment. This
process depends on the server in which discoverable resources are used. Figure 8 describes the
sequence diagram of the device discovery. Firstly, the client makes a request preparation, he or she
opens a browser, enters the URL name to the address bar and clicks enter. In a sequence diagram, the
client sends a request with device001.jnu URL name and send it to the DNS server. After that, the
DNS server searches this URL name in its Map Table. If there is no equivalent IP address according
to the URL name in the Map Table, the DNS server sends a “Not Found” message, this process
describes the loop process, and it will continue until the client enters the available URL name. When
the DNS server finds a valid IP address according to the URL name, it sends an acknowledgment
with an IP address such as 192.168.0.2. When a client reaches the IP address successfully, he or she
can send a request to the IoT device. The IoT device sends an acknowledgment with temperature.

Figure 8. Sequence diagram of the device discovery and sensing data.

5. Implementation Results

5.1. Implementation of IoT DNS Based on OCF IoTivitiy

Implementation of the proposed system consists of IoT devices, an IoT Client, IoT Platform
based on OCF network and IoT DNS server. We have IoT devices which can provide an indoor
service to the home. The IoT client can access the indoor services through the Internet. The IoT
Platform plays a role as a bridge for IoT devices and the IoT DNS server. The proposed system is
based on Constrained Application Protocol. The proposed local IoT DNS system provides IoT device
auto-registration and smart service access based on the OCF Platform. IoT devices register their
information by sending a POST/oic/rd request to the IoT Platform, and the IoT Platform makes
address registration to the local IoT DNS. Once the IoT device’s IP address and URL name are
registered to the DNS server, the user can use the services of the IoT device though taking information
from the local IoT DNS server.

Figure 9 presents the environment of the experiment which consists of the OCF Platform and
the Internet. For internet connectivity to the system, we can use LAN such as Wi-Fi. Additionally, the
system includes the IoT client, IoT DNS and IoT devices, which are connected with each other
through OCF protocol in the LAN. In the implementation of the local IoT DNS server; the IoT client

Figure 8. Sequence diagram of the device discovery and sensing data.

Electronics 2019, 8, 442 11 of 21

5. Implementation Results

5.1. Implementation of IoT DNS Based on OCF IoTivitiy

Implementation of the proposed system consists of IoT devices, an IoT Client, IoT Platform based
on OCF network and IoT DNS server. We have IoT devices which can provide an indoor service to the
home. The IoT client can access the indoor services through the Internet. The IoT Platform plays a role
as a bridge for IoT devices and the IoT DNS server. The proposed system is based on Constrained
Application Protocol. The proposed local IoT DNS system provides IoT device auto-registration and
smart service access based on the OCF Platform. IoT devices register their information by sending a
POST/oic/rd request to the IoT Platform, and the IoT Platform makes address registration to the local
IoT DNS. Once the IoT device’s IP address and URL name are registered to the DNS server, the user
can use the services of the IoT device though taking information from the local IoT DNS server.

Figure 9 presents the environment of the experiment which consists of the OCF Platform and the
Internet. For internet connectivity to the system, we can use LAN such as Wi-Fi. Additionally, the
system includes the IoT client, IoT DNS and IoT devices, which are connected with each other through
OCF protocol in the LAN. In the implementation of the local IoT DNS server; the IoT client can use
his or her Android phone which is provided with the User Interface for interacting with the clients.
The IoT devices are Raspberry Pies which are connected to the BME 280 temperature sensor, fan, LED
and servomotor, which are utilized for providing indoor smart services.

Electronics 2019, 8, x FOR PEER REVIEW 12 of 22

can use his or her Android phone which is provided with the User Interface for interacting with the
clients. The IoT devices are Raspberry Pies which are connected to the BME 280 temperature sensor,
fan, LED and servomotor, which are utilized for providing indoor smart services.

Figure 9. Experimental environment.

Table 1 describes the experimental environment tools for the development environment.
Android Studio 3.0.1 was used to the application development and performance analysis. Java
programming language was utilized for application implementation. We used five Raspberry Pies
for IoT devices and the IoT DNS server.

Table 1. Implementation environment.

Entities Hardware Platform Library and
Framework

IoT DNS Raspberry Pi 3 Model B Android Things
0.8

IoTivity 1.3.1

IoT Client Samsung Galaxy A9
Android

8.0.0(API 26) IoTivity 1.3.1

IoT
Devices

Raspberry Pi 3Model B, BME280 sensor Fan
Motor Led Servomotor

Android Things
0.8 IoTivity 1.3.1

IoT
Platform

PC (CPU: Intel i5-4570) Ubuntu 14.04 JRE System Library
(JavaSE-1.8)

The IoT DNS server runs on Raspberry Pi 3 Model B, and the operating system is Android Things
0.8, and program implemented in Java programming language.

Figure 9. Experimental environment.

Table 1 describes the experimental environment tools for the development environment. Android
Studio 3.0.1 was used to the application development and performance analysis. Java programming
language was utilized for application implementation. We used five Raspberry Pies for IoT devices
and the IoT DNS server.

Electronics 2019, 8, 442 12 of 21

Table 1. Implementation environment.

Entities Hardware Platform Library and Framework

IoT DNS Raspberry Pi 3 Model B Android Things 0.8 IoTivity 1.3.1
IoT Client Samsung Galaxy A9 Android 8.0.0 (API 26) IoTivity 1.3.1

IoT Devices
Raspberry Pi 3Model B,

BME280 sensor Fan
Motor Led Servomotor

Android Things 0.8 IoTivity 1.3.1

IoT Platform PC (CPU: Intel i5-4570) Ubuntu 14.04 JRE System Library
(JavaSE-1.8)

The IoT DNS server runs on Raspberry Pi 3 Model B, and the operating system is Android Things
0.8, and program implemented in Java programming language.

The IoT Device runs on Raspberry Pi 3 Model B which operates Android Things 0.8. The IoT
devices are connected to the BME 280 temperature sensor, fan, led and servomotor.

The IoT Client runs on Samsung Galaxy A 9 and operates Android 8.0.0, and IoTivity 1.3.1 was
used for development for the OCF client.

The IoT Platform runs on Ubuntu 14.04 (x64) platform, and JRE System Library [JavaSE-1.8] was
used for a library, and Java programming language was utilized for implementation of the system.

Figure 10 presents the testbed network environment of the proposed system. The testbed network
environment is a campus subnetwork at Jeju National University. As we have already mentioned
above, we used five Raspberry Pi 3 Model B as IoT devices and IoT DNS server. All of the devices are
connected to the Internet through wired and wireless connection to our Wi-Fi router, and they have
power connection.

Electronics 2019, 8, x FOR PEER REVIEW 13 of 22

The IoT Device runs on Raspberry Pi 3 Model B which operates Android Things 0.8. The IoT
devices are connected to the BME 280 temperature sensor, fan, led and servomotor.

The IoT Client runs on Samsung Galaxy A 9 and operates Android 8.0.0, and IoTivity 1.3.1 was
used for development for the OCF client.

The IoT Platform runs on Ubuntu 14.04 (x64) platform, and JRE System Library [JavaSE-1.8] was
used for a library, and Java programming language was utilized for implementation of the system.

Figure 10 presents the testbed network environment of the proposed system. The testbed
network environment is a campus subnetwork at Jeju National University. As we have already
mentioned above, we used five Raspberry Pi 3 Model B as IoT devices and IoT DNS server. All of the
devices are connected to the Internet through wired and wireless connection to our Wi-Fi router, and
they have power connection.

Figure 10. The testbed network environment of the IoT Domain Name System (DNS) and IoT Devices.

As we have already mentioned above for our experimental and testbed environment process,
we used four types of IoT devices in order to control the indoor environment. Namely, temperature
sensor, fan, led and servomotor. However, the system design is flexible and adaptable for a massive
number of IoT devices. IoT device auto-registration results include all of the IoT device registration
results for the IoT Platform.

The IoT Platform includes the IoT server and database for the registration of IoT devices. The
IoT platform is a high-performance device which has sufficient computing ability to communicate
with the IoT DNS server and IoT devices. The database is used for saving the information of the IoT

Figure 10. The testbed network environment of the IoT Domain Name System (DNS) and IoT Devices.

As we have already mentioned above for our experimental and testbed environment process, we
used four types of IoT devices in order to control the indoor environment. Namely, temperature sensor,
fan, led and servomotor. However, the system design is flexible and adaptable for a massive number
of IoT devices. IoT device auto-registration results include all of the IoT device registration results for
the IoT Platform.

Electronics 2019, 8, 442 13 of 21

The IoT Platform includes the IoT server and database for the registration of IoT devices. The IoT
platform is a high-performance device which has sufficient computing ability to communicate with the
IoT DNS server and IoT devices. The database is used for saving the information of the IoT devices
and sensing data that is collected from the environment. Figure 11 describes the implementation result
of the IoT devices auto-registration to the IoT platform. The parameter values of the IoT devices are
sent to the IoT Platform. The resource profile is based on a JSON format that is implemented in the
Android Platform. When the IoT devices are connected to the IoT platform, the IoT devices send POST
request with its parameters to the IoT Platform, and these parameters automatically register to the
IoT platform. As can be seen, the parameters include host, id, resource models such as resource list,
resource type list and method list of the IoT device. If we take the first IoT device as an example,
this device’s “host”: “coap://192.168.0.2:5683” is described based on <host>:<port> method. <host>
shows the name of the network or endpoint network, and <port> addresses network port number.
Id describes device URL name “device001.jnu.” In the figure, we have four types of IoT devices and
four of them have sent a POST registration request with their parameters. After that, every IoT device
is registered automatically to the platform. When the IoT device auto-registration process finishes, the
system shows a “Successful registration!” message.

Electronics 2019, 8, x FOR PEER REVIEW 14 of 22

devices and sensing data that is collected from the environment. Figure 11 describes the
implementation result of the IoT devices auto-registration to the IoT platform. The parameter values
of the IoT devices are sent to the IoT Platform. The resource profile is based on a JSON format that is
implemented in the Android Platform. When the IoT devices are connected to the IoT platform, the
IoT devices send POST request with its parameters to the IoT Platform, and these parameters
automatically register to the IoT platform. As can be seen, the parameters include host, id, resource
models such as resource list, resource type list and method list of the IoT device. If we take the first
IoT device as an example, this device’s “host”: “coap://192.168.0.2:5683” is described based on
<host>:<port> method. <host> shows the name of the network or endpoint network, and <port>
addresses network port number. Id describes device URL name “device001.jnu.” In the figure, we
have four types of IoT devices and four of them have sent a POST registration request with their
parameters. After that, every IoT device is registered automatically to the platform. When the IoT
device auto-registration process finishes, the system shows a “Successful registration!” message.

Figure 11. IoT device auto-registration result.

Figure 12 shows the implementation result of the IP address discovering by the IoT client. The
screenshot of our proposed system android application shows obtaining the IP address from IoT
DNS. The process includes four main phases. Firstly, the IoT Client is connected to the IoT DNS server
through coap://192.168.0.3:5683/dns. Secondly, for getting the IP address, the IoT client has to write a
URI name (device001.jnu) to the address bar. Then the client can click Get IP from the DNS button to
get the valuable IP address according to the URI name. In the last phase, the IoT DNS sends an

Figure 11. IoT device auto-registration result.

Electronics 2019, 8, 442 14 of 21

Figure 12 shows the implementation result of the IP address discovering by the IoT client.
The screenshot of our proposed system android application shows obtaining the IP address from
IoT DNS. The process includes four main phases. Firstly, the IoT Client is connected to the IoT DNS
server through coap://192.168.0.3:5683/dns. Secondly, for getting the IP address, the IoT client has to
write a URI name (device001.jnu) to the address bar. Then the client can click Get IP from the DNS
button to get the valuable IP address according to the URI name. In the last phase, the IoT DNS sends
an acknowledgment with an IP address (192.168.0.2). If the IoT DNS server does not include the IP
address requested by an IoT Client, the IoT DNS response with a “Not Found” message.

Electronics 2019, 8, x FOR PEER REVIEW 15 of 22

acknowledgment with an IP address (192.168.0.2). If the IoT DNS server does not include the IP
address requested by an IoT Client, the IoT DNS response with a “Not Found” message.

Figure 12. The result of getting an Internet Protocol (IP) address from IoT DNS.

One of the crucial aspects of the OCF standard is an interface. The oic.if.baseline interface consists
of all the properties of the resource. When an IoT client wants to know all properties of a resource,
the “baseline” interface is utilized. The client sends the URI query parameter definition
“if=oic.if.baseline” in a retrieve request. When this query parameter definition is added, the server
will send the response with a resource representation which consists of all of the implemented
properties of a resource, such as, temperature, light, led and so on. The server sends an error message
when it is not able to send back all of the resource representations.

Figure 13 describes the implementation result of accessing the indoor service. It is clear that IoT
client is connected to the local IoT DNS server with coap://192.168.0.3:5683/dns. The IoT client enters
the URI name (device001.jnu) to the address bar and clicks “Get IP from DNS button.” After that, the
IoT DNS server sends, in response, the IP address to the client (192.168.0.2). After getting tje IP
address from the IoT DNS, the IoT client is able to connect with the IoT device which equips with a
BME 280 and with “coap://192.168.0.2/temperature” request the client clicks the “Request to IoT device”
button for accessing the temperature sensing service. Once the temperature sensing service is
requested, then a temperature value is returned in JSON format.

Figure 12. The result of getting an Internet Protocol (IP) address from IoT DNS.

One of the crucial aspects of the OCF standard is an interface. The oic.if.baseline interface consists
of all the properties of the resource. When an IoT client wants to know all properties of a resource, the
“baseline” interface is utilized. The client sends the URI query parameter definition “if=oic.if.baseline”
in a retrieve request. When this query parameter definition is added, the server will send the response
with a resource representation which consists of all of the implemented properties of a resource, such
as, temperature, light, led and so on. The server sends an error message when it is not able to send
back all of the resource representations.

Figure 13 describes the implementation result of accessing the indoor service. It is clear that IoT
client is connected to the local IoT DNS server with coap://192.168.0.3:5683/dns. The IoT client enters the
URI name (device001.jnu) to the address bar and clicks “Get IP from DNS button.” After that, the IoT
DNS server sends, in response, the IP address to the client (192.168.0.2). After getting tje IP address
from the IoT DNS, the IoT client is able to connect with the IoT device which equips with a BME 280
and with “coap://192.168.0.2/temperature” request the client clicks the “Request to IoT device” button for
accessing the temperature sensing service. Once the temperature sensing service is requested, then a
temperature value is returned in JSON format.

Electronics 2019, 8, 442 15 of 21

Electronics 2019, 8, x FOR PEER REVIEW 16 of 22

Figure 13. Fragment of IoT resource discovery and accessing sensing data.

5.2. Performance Evaluation

For the performance evaluation of the proposed system, we checked the overall system with
three steps: IoT device registration, the IP address request-response process, and accessing indoor
service. These processes are monitored by using the Android Studio. Additionally, we ran our
evaluation according to three groups, in order to analyze the flexibility and adaptability of the
propped approach.

5.2.1. IoT Device Registration Performance Evaluation

Figure 14 shows the evaluation results for the IoT device registration Round Trip Time (RTT). In
this experiment, we present the evaluation results through the collection of RTT 25 times. The same
hardware and network environment do the RTT for each registration. The RTT is collected in the IoT
device through the time difference between the time for sending the registration request and the time
for receiving the registration response. The results describe the RTTs are taken by between 2990 and
3000 ms, the average is 2996 ms, and the standard deviation is 3.3 ms. According to the results, IoT
device registration takes about 3 s in our proposed system. The quantity of the latency for every
device registration is approximately 5 ms, which compared to the average registration time latency
is very low.

Figure 13. Fragment of IoT resource discovery and accessing sensing data.

5.2. Performance Evaluation

For the performance evaluation of the proposed system, we checked the overall system with three
steps: IoT device registration, the IP address request-response process, and accessing indoor service.
These processes are monitored by using the Android Studio. Additionally, we ran our evaluation
according to three groups, in order to analyze the flexibility and adaptability of the propped approach.

5.2.1. IoT Device Registration Performance Evaluation

Figure 14 shows the evaluation results for the IoT device registration Round Trip Time (RTT).
In this experiment, we present the evaluation results through the collection of RTT 25 times. The same
hardware and network environment do the RTT for each registration. The RTT is collected in the IoT
device through the time difference between the time for sending the registration request and the time
for receiving the registration response. The results describe the RTTs are taken by between 2990 and
3000 ms, the average is 2996 ms, and the standard deviation is 3.3 ms. According to the results, IoT
device registration takes about 3 s in our proposed system. The quantity of the latency for every device
registration is approximately 5 ms, which compared to the average registration time latency is very low.

Electronics 2019, 8, x FOR PEER REVIEW 17 of 22

Figure 14. Round Trip Time of the IoT device registration.

Figure 15 includes the comparison among three different numbers of IoT devices registrations
in order to investigate the response time of the proposed system. When the new IoT device is
connected to the home network, it sends an auto-registration POST request with IoT device’s
parameters. We simulated for a period of 100 ms. In general, the response time increases as the
number of users increase and querying the system at the same time. At the first round, we assume
that 200 IoT devices sent the registration request to the IoT DNS server for auto-registration, 500
devices at the second round, and lastly, we evaluated the performance of implementation by
increasing the number of IoT devices to 800. Figure 14 shows that when only one IoT device sends a
registration request, registration takes approximately 2996 ms, but when 200 IoT devices send
registration requests at the same time, it takes between 62,000 and 81,000 ms. The registration time of
the system for the first two groups is nearly the same (in only one point the second group spends
response time more than 8500 ms). However, when we increase the number of IoT devices to 800, the
IoT devices registration time increases significantly compared to the other two groups. More
precisely, after increasing the number of IoT devices to 800, registration time reaches 92,000 ms, which
means as the number of the devices increases response time also increases.

Figure 15. Device registration response time in a different simultaneous request.

Figure 14. Round Trip Time of the IoT device registration.

Electronics 2019, 8, 442 16 of 21

Figure 15 includes the comparison among three different numbers of IoT devices registrations in
order to investigate the response time of the proposed system. When the new IoT device is connected
to the home network, it sends an auto-registration POST request with IoT device’s parameters.
We simulated for a period of 100 ms. In general, the response time increases as the number of users
increase and querying the system at the same time. At the first round, we assume that 200 IoT devices
sent the registration request to the IoT DNS server for auto-registration, 500 devices at the second round,
and lastly, we evaluated the performance of implementation by increasing the number of IoT devices
to 800. Figure 14 shows that when only one IoT device sends a registration request, registration takes
approximately 2996 ms, but when 200 IoT devices send registration requests at the same time, it takes
between 62,000 and 81,000 ms. The registration time of the system for the first two groups is nearly the
same (in only one point the second group spends response time more than 8500 ms). However, when
we increase the number of IoT devices to 800, the IoT devices registration time increases significantly
compared to the other two groups. More precisely, after increasing the number of IoT devices to 800,
registration time reaches 92,000 ms, which means as the number of the devices increases response time
also increases.

Electronics 2019, 8, x FOR PEER REVIEW 17 of 22

Figure 14. Round Trip Time of the IoT device registration.

Figure 15 includes the comparison among three different numbers of IoT devices registrations
in order to investigate the response time of the proposed system. When the new IoT device is
connected to the home network, it sends an auto-registration POST request with IoT device’s
parameters. We simulated for a period of 100 ms. In general, the response time increases as the
number of users increase and querying the system at the same time. At the first round, we assume
that 200 IoT devices sent the registration request to the IoT DNS server for auto-registration, 500
devices at the second round, and lastly, we evaluated the performance of implementation by
increasing the number of IoT devices to 800. Figure 14 shows that when only one IoT device sends a
registration request, registration takes approximately 2996 ms, but when 200 IoT devices send
registration requests at the same time, it takes between 62,000 and 81,000 ms. The registration time of
the system for the first two groups is nearly the same (in only one point the second group spends
response time more than 8500 ms). However, when we increase the number of IoT devices to 800, the
IoT devices registration time increases significantly compared to the other two groups. More
precisely, after increasing the number of IoT devices to 800, registration time reaches 92,000 ms, which
means as the number of the devices increases response time also increases.

Figure 15. Device registration response time in a different simultaneous request. Figure 15. Device registration response time in a different simultaneous request.

5.2.2. IP Address Request-Response Performance Evaluation

Figure 16 describes the evaluation results for the IP address request-IP address response
process Round Trip Time (RTT). The evaluation results were tested through the collection of RTT
25 times. Our proposed system’s application interface shows the connected available IoT DNS server
(coap://192.168.0.3:5683/dns). In order to get the IP address from the IoT DNS server, the client sends a
request with the URL name and clicks “Get IP address” button from the Android application and the
IoT DNS server sends a response with the IP address of the IoT device, this process which is sending a
request and taking response IoT DNS server are described in 1 RTT. The same hardware and network
environment are used to the RTT of each request and response. The results illustrate the RTTs are
between a minimum of 25 ms and the maximum 49 ms, the average RTT is 37 ms, and the standard
deviation is 6.9 ms.

Electronics 2019, 8, 442 17 of 21

Electronics 2019, 8, x FOR PEER REVIEW 18 of 22

5.2.2. IP Address Request-Response Performance Evaluation

Figure 16 describes the evaluation results for the IP address request-IP address response process
Round Trip Time (RTT). The evaluation results were tested through the collection of RTT 25 times.
Our proposed system’s application interface shows the connected available IoT DNS server
(coap://192.168.0.3:5683/dns). In order to get the IP address from the IoT DNS server, the client sends
a request with the URL name and clicks “Get IP address” button from the Android application and
the IoT DNS server sends a response with the IP address of the IoT device, this process which is
sending a request and taking response IoT DNS server are described in 1 RTT. The same hardware
and network environment are used to the RTT of each request and response. The results illustrate the
RTTs are between a minimum of 25 ms and the maximum 49 ms, the average RTT is 37 ms, and the
standard deviation is 6.9 ms.

Figure 16. Round Trip Time of the IoT device registration.

Figure 17 describes the IP request-response time results for the 100 ms period. As we have
already explained, response time increases as the number of requests increase. We evaluated the
results according to the three categories of IP address requests. The first category includes 200 IP
address requests; the second group consists of 500 IP address requests, and the last group includes
800 requests at the same time. In the initial ms of the evaluation response time for 200 requests, 500
requests and 800 requests are equal to 63,300, 62,200 and 62,500 ms, respectively. According to the
graph, the maximum response time is more than 91,000 ms. However, the response time of the system
for the three groups is almost the same; we are not able to see a significant difference among them.
Although the number of IP requests increases but the response time of the system remains stable, the
results illustrate that the proposed system is flexible and adaptable enough.

Figure 16. Round Trip Time of the IoT device registration.

Figure 17 describes the IP request-response time results for the 100 ms period. As we have already
explained, response time increases as the number of requests increase. We evaluated the results
according to the three categories of IP address requests. The first category includes 200 IP address
requests; the second group consists of 500 IP address requests, and the last group includes 800 requests
at the same time. In the initial ms of the evaluation response time for 200 requests, 500 requests
and 800 requests are equal to 63,300, 62,200 and 62,500 ms, respectively. According to the graph,
the maximum response time is more than 91,000 ms. However, the response time of the system for the
three groups is almost the same; we are not able to see a significant difference among them. Although
the number of IP requests increases but the response time of the system remains stable, the results
illustrate that the proposed system is flexible and adaptable enough.Electronics 2019, 8, x FOR PEER REVIEW 19 of 22

Figure 17. IP address response time for a different simultaneous request.

5.2.3. Performance Evaluation of Accessing Indoor Service

After taking the IP address successfully from the IoT DNS server, the client sends a GET request
(coap://192.168.02:5683/temperature) for checking indoor temperature level by clicking “Request to
IoT device” button from the application, and the IoT device sends response with temperature level
in JSON format such as {“temperature”: “22,5”}. Figure 18 illustrates the evaluation results for smart
service access to the indoor environment. We also present the evaluation results via the collection of
RTT 25 times. For analyzing the smart service access to the indoor environment, the same network
and hardware environment are utilized. The RTT is taken based on the difference between the
sending request time and the time for receiving the last response. The RTTs are taken between a
minimum of 30 ms and maximum of 61 ms, the average response time is equal to 40 ms, and the
standard deviation is 7.7 ms.

Figure 18. Round Trip Time for accessing indoor service.

For accessing indoor service evaluation performance, we ran the simulation three times
according to three various user groups in the 100 ms period. As can be seen from Figure 19, as the
amount of the users increase the response time also increases in the proposed system. When 200 users
send a request for accessing the indoor service at the same time, minimum and maximum response
time is between 61,000 ms, and it is more than 85,000 ms (in only one point), respectively. When user
numbers are equal to 500, the response time also increases a little bit. However, it is difficult to make

Figure 17. IP address response time for a different simultaneous request.

5.2.3. Performance Evaluation of Accessing Indoor Service

After taking the IP address successfully from the IoT DNS server, the client sends a GET request
(coap://192.168.02:5683/temperature) for checking indoor temperature level by clicking “Request to
IoT device” button from the application, and the IoT device sends response with temperature level in
JSON format such as {“temperature”: “22,5”}. Figure 18 illustrates the evaluation results for smart

Electronics 2019, 8, 442 18 of 21

service access to the indoor environment. We also present the evaluation results via the collection of
RTT 25 times. For analyzing the smart service access to the indoor environment, the same network and
hardware environment are utilized. The RTT is taken based on the difference between the sending
request time and the time for receiving the last response. The RTTs are taken between a minimum of
30 ms and maximum of 61 ms, the average response time is equal to 40 ms, and the standard deviation
is 7.7 ms.

Electronics 2019, 8, x FOR PEER REVIEW 19 of 22

Figure 17. IP address response time for a different simultaneous request.

5.2.3. Performance Evaluation of Accessing Indoor Service

After taking the IP address successfully from the IoT DNS server, the client sends a GET request
(coap://192.168.02:5683/temperature) for checking indoor temperature level by clicking “Request to
IoT device” button from the application, and the IoT device sends response with temperature level
in JSON format such as {“temperature”: “22,5”}. Figure 18 illustrates the evaluation results for smart
service access to the indoor environment. We also present the evaluation results via the collection of
RTT 25 times. For analyzing the smart service access to the indoor environment, the same network
and hardware environment are utilized. The RTT is taken based on the difference between the
sending request time and the time for receiving the last response. The RTTs are taken between a
minimum of 30 ms and maximum of 61 ms, the average response time is equal to 40 ms, and the
standard deviation is 7.7 ms.

Figure 18. Round Trip Time for accessing indoor service.

For accessing indoor service evaluation performance, we ran the simulation three times
according to three various user groups in the 100 ms period. As can be seen from Figure 19, as the
amount of the users increase the response time also increases in the proposed system. When 200 users
send a request for accessing the indoor service at the same time, minimum and maximum response
time is between 61,000 ms, and it is more than 85,000 ms (in only one point), respectively. When user
numbers are equal to 500, the response time also increases a little bit. However, it is difficult to make

Figure 18. Round Trip Time for accessing indoor service.

For accessing indoor service evaluation performance, we ran the simulation three times according
to three various user groups in the 100 ms period. As can be seen from Figure 19, as the amount of the
users increase the response time also increases in the proposed system. When 200 users send a request
for accessing the indoor service at the same time, minimum and maximum response time is between
61,000 ms, and it is more than 85,000 ms (in only one point), respectively. When user numbers are equal
to 500, the response time also increases a little bit. However, it is difficult to make a comparison between
the first and the second groups, because the system response time for the first two groups is almost
the same. Only in some points, the second group is closer to the 8500 ms response time. The third
group simulation results are higher than the other two groups when 800 users send the GET request for
checking indoor temperature. With the CoAP network protocol, it takes more than 85,000 ms in some
points. However, in some other points, response times are nearly similar to the other two groups.

Electronics 2019, 8, x FOR PEER REVIEW 20 of 22

a comparison between the first and the second groups, because the system response time for the first
two groups is almost the same. Only in some points, the second group is closer to the 8500 ms
response time. The third group simulation results are higher than the other two groups when 800
users send the GET request for checking indoor temperature. With the CoAP network protocol, it
takes more than 85,000 ms in some points. However, in some other points, response times are nearly
similar to the other two groups.

Figure 19. Accessing indoor service response time in the different simultaneous request.

6. Conclusions

We proposed the IoT resource auto-registration and smart service access for indoor services
based on OCF IoTivity for IoT devices in this paper. The proposed approach can support the device
auto-registration scheme which enables devices to be registered to the local IoT DNS server by itself
to be discovered by IoT clients from the Internet in IP version 4 environment. For developing the
proposed IoT DNS in the OCF IoTivity, the scenarios of registration, device discovery, service
accessing, and the implementation results were explained in detail. With our proposed auto-
registration system for Domain Names, Internet of Things devices are able to register their internet
protocol addresses and URI names automatically to Domain Name System server through Open
Connectivity Foundation’s IoTivity framework. Furthermore, we also design the Android application
which interacts in real time with clients and IoT devices. Some experiments are carried out in order
to test the performance analysis of the proposed system; the interactions are monitored for the auto-
registration, getting an IP address and service access. Additionally, the response time of auto-
registration, IP request-response process and accessing indoor services are checked in three different
groups (200, 500 and 800), in order to check the proposed system’s flexibility and adaptability. In the
future, we will consider and develop the proposed system’s security functions such as securing the
communication among users, IoT devices and local IoT DNS server with secure data transmission.
Furthermore, we will consider a mechanism to access the IoT device by authorized users in a more
robust and secure fashion.

Author Contributions: A.K. and D.H.K. conceived the idea, designed the overall system and wrote the paper.
W.J. assisted in model design and implementation of the system. D.H.K. conceived the overall idea of the IoT
DNS server, and proof-read the manuscript.

Acknowledgments: This work was supported by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No.2017-0-00526, Development of Intelligent
IoT System capable of cooperation and learning between things in movement-free environment), and this
research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information
Technology Research Center) support program(IITP-2019-2014-1-00743) supervised by the IITP(Institute for

Figure 19. Accessing indoor service response time in the different simultaneous request.

Electronics 2019, 8, 442 19 of 21

6. Conclusions

We proposed the IoT resource auto-registration and smart service access for indoor services
based on OCF IoTivity for IoT devices in this paper. The proposed approach can support the device
auto-registration scheme which enables devices to be registered to the local IoT DNS server by itself
to be discovered by IoT clients from the Internet in IP version 4 environment. For developing the
proposed IoT DNS in the OCF IoTivity, the scenarios of registration, device discovery, service accessing,
and the implementation results were explained in detail. With our proposed auto-registration system
for Domain Names, Internet of Things devices are able to register their internet protocol addresses and
URI names automatically to Domain Name System server through Open Connectivity Foundation’s
IoTivity framework. Furthermore, we also design the Android application which interacts in real time
with clients and IoT devices. Some experiments are carried out in order to test the performance analysis
of the proposed system; the interactions are monitored for the auto-registration, getting an IP address
and service access. Additionally, the response time of auto-registration, IP request-response process
and accessing indoor services are checked in three different groups (200, 500 and 800), in order to check
the proposed system’s flexibility and adaptability. In the future, we will consider and develop the
proposed system’s security functions such as securing the communication among users, IoT devices
and local IoT DNS server with secure data transmission. Furthermore, we will consider a mechanism
to access the IoT device by authorized users in a more robust and secure fashion.

Author Contributions: A.K. and D.H.K. conceived the idea, designed the overall system and wrote the paper.
W.J. assisted in model design and implementation of the system. D.H.K. conceived the overall idea of the IoT DNS
server, and proof-read the manuscript.

Acknowledgments: This work was supported by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No.2017-0-00526, Development of Intelligent IoT
System capable of cooperation and learning between things in movement-free environment), and this research
was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology
Research Center) support program (IITP-2019-2014-1-00743) supervised by the IITP (Institute for Information
& communications Technology Planning & Evaluation). Any correspondence related to this paper should be
addressed to DoHyeun Kim.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Wilkinson, J.S. Internet of Things (IoT). In Communication Technology Update and Fundamentals; Taylor&Francis:
New York, NY, USA, 2018.

2. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [CrossRef]

3. Mehmood, F.; Ullah, I.; Ahmad, S.; Kim, D. Object detection mechanism based on deep learning algorithm
using embedded IoT devices for smart home appliances control in CoT. J. Ambient Intell. Humaniz. Comput.
2019. [CrossRef]

4. Bellavista, P.; Cardone, G.; Corradi, A.; Foschini, L. Convergence of MANET and WSN in IoT Urban Scenarios.
IEEE Sens. J. 2013, 13, 3558–3567. [CrossRef]

5. Jin, W.; Kim, D. Development of Virtual Resource Based IoT Proxy for Bridging Heterogeneous Web Services
in IoT Networks. Sensors 2018, 18, 1721. [CrossRef] [PubMed]

6. Kaplinger, T.E.; Moore, V.S.; Nusbickel, W.L. Self-Documentation for Representational State Transfer (REST)
Application Programming Interface (API). U.S. Patent 9,959,363, 1 May 2018.

7. Guinard, D.; Trifa, V.; Karnouskos, S.; Spiess, P.; Savio, D. Interacting with the soa-based internet of things:
Discovery, query, selection, and on-demand provisioning of web services. IEEE Trans. Serv. Comput. 2010, 3,
223–235. [CrossRef]

8. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey on
enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]

9. Ahmad, S.; Hussain, I.; Fayaz, M.; Kim, D.-H. A Distributed Approach towards Improved Dissemination
Protocol for Smooth Handover in MediaSense IoT Platform. Processes 2018, 6, 46. [CrossRef]

http://dx.doi.org/10.1016/j.future.2013.01.010
http://dx.doi.org/10.1007/s12652-019-01272-8
http://dx.doi.org/10.1109/JSEN.2013.2272099
http://dx.doi.org/10.3390/s18061721
http://www.ncbi.nlm.nih.gov/pubmed/29861453
http://dx.doi.org/10.1109/TSC.2010.3
http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.3390/pr6050046

Electronics 2019, 8, 442 20 of 21

10. SCOOP. The Role of IoT Platforms in an Evolving IoT Business and Technology Context. Available online:
https://www.i-scoop.eu/internet-of-things-guide/internet-things-iot-platforms/ (accessed on 5 April 2019).

11. Ahmad, S.; Hang, L.; Kim, D.H. Design and Implementation of Cloud-Centric Configuration Repository for
DIY IoT Applications. Sensors 2018, 18, 474. [CrossRef] [PubMed]

12. Shelby, Z.; Bormann, C. 6LoWPAN: The Wireless Embedded Internet; John Wiley & Sons: Hoboken, NJ, USA,
2011; Volume 43.

13. Chen, C.Y.; Chao, H.C.; Wu, T.Y.; Fan, C.I.; Chen, J.L.; Chen, Y.S.; Hsu, J.M. IoT-IMS communication platform
for future internet. Int. J. Adapt. Resil. Auton. Syst. 2011, 2, 74–94. [CrossRef]

14. OIC Core Specification V1.1.0; Open Connectivity Foundation, Inc.: Beaverton, OR, USA, 2016. Available
online: https://openconnectivity.org/specs/OIC_Core_Specification_v1.1.0.pdf (accessed on 10 January 2019).

15. Liao, M.; Yuping, D.; Yongping, D. DNS Extension for Autonomous Internet (AIP). 2017. Available online:
https://tools.ietf.org/html/draft-diao-aip-dns-02 (accessed on 2 April 2019).

16. Drako, D. Policy-Managed DNS Server for to Control Network Traffic. U.S. Patent 8,447,856, 21 May 2013.
17. Leiner, B.M.; Cerf, V.G.; Clark, D.D.; Kahn, R.E.; Kleinrock, L.; Lynch, D.C.; Postel, J.; Roberts, L.G.; Wolff, S.

A brief history of the Internet. ACM SIGCOMM Comput. Commun. Rev. 2009, 39, 22–31. [CrossRef]
18. Fellman, B. Internet Domain Name Registration System. U.S. Patent 6,980,990, 27 December 2005.
19. Hinden, R.; Deering, S. IP Version 6 Addressing Architecture (No. RFC 4291); IGI Global: Hershey, PA, USA, 2006.
20. Dainotti, A.; Benson, K.; King, A.; Huffaker, B.; Glatz, E.; Dimitropoulos, X.; Richter, P.; Finamore, A.;

Snoeren, A.C. Lost in Space: Improving Inference of IPv4 Address Space Utilization. IEEE J. Sel. Areas Commun.
2016, 34, 1862–1876. [CrossRef]

21. Narten, T.; Nordmark, E.; Simpson, W.; Soliman, H. Neighbor Discovery for IP Version 6 (IPv6); IETF RFC 4861;
John Wiley & Sons: Hoboken, NJ, USA, 2007.

22. Alsadhan, A.A.; Hussain, A.; Alani, M.M. Detecting NDP Distributed Denial of Service Attacks Using
Machine Learning Algorithm Based on Flow-Based Representation. In Proceedings of the 2018 11th International
Conference on Developments in eSystems Engineering (DeSE), Cambridge, UK, 2–5 September 2018; pp. 134–140.

23. Jeong, J.; Lee, S.J. Method for Naming DNS for IOT Device. U.S. Patent 15/745,665, 25 October 2018.
24. Jara, A.; Ladid, L.; Skarmeta, A. The internet of everything through ipv6: An analysis of challenges solutions

and opportunities. J. Wirel. Mob. Netw. Ubiquitous Comput. Dependable Appl. 2013, 4, 97–118.
25. Kim, J.; Lee, J.; Kim, J.; Yun, J. M2M Service Platforms: Survey, Issues, and Enabling Technologies. IEEE Commun.

Surv. Tutor. 2014, 16, 61–76. [CrossRef]
26. Kim, J.; Jeon, H.; Lee, J. Network management framework and lifetime evaluation method for wireless sensor

networks. Integr. Comput. Aided Eng. 2012, 19, 165–178. [CrossRef]
27. Gorbach, G. IoT Standards Get a Big Push: Meet the Open Connectivity Foundation (OCF). 23 February

2016. Available online: https://www.arcweb.com/blog/iot-standards-get-big-push-meet-open-connectivity-
foundation-ocf (accessed on 14 January 2019).

28. Yang, X.; Moore, P.; Chong, S.K. Intelligent products: From lifecycle data acquisition to enabling
product-related services. Comput. Ind. 2009, 60, 184–194. [CrossRef]

29. Laranjo, I.; Macedo, J.; Santos, A. Internet of Things for Medication Control: Service Implementation and
Testing. Procedia Technol. 2012, 5, 777–786. [CrossRef]

30. Boyd, S. Gigaom—New Open Connectivity Foundation combines Open Interconnect Consortium and
AllSeen Alliance. 26 February 2016. Available online: https://gigaom.com/2016/02/20/new-open-connectivity-
foundation-combines-open-interconnect-consortium-and-allseen-alliance/ (accessed on 14 January 2019).

31. Sawers, P. Microsoft, Intel, Samsung, & Others Launch IoT Standards Group: Open Connectivity Foundation;
VentureBeat: San Francisco, CA, USA, 2015.

32. IoTivity Project. Available online: https://www.iotivity.org (accessed on 16 January 2019).
33. Park, S. OCF: A New Open IoT Consortium. In Proceedings of the 31st International Conference

on IEEE Advanced Information Networking and Applications Workshops (WAINA), Taipei, Taiwan,
27–29 March 2017.

34. Bouhaddi, M.; Radjef, M.S.; Adi, K. An efficient intrusion detection in resource-constrained mobile ad-hoc
networks. Comput. Secur. 2018, 76, 156–177. [CrossRef]

35. Loo, J.; Mauri, J.L.; Ortiz, J.H. Mobile Ad Hoc Networks. Mobile Ad Hoc Networks: Current Status and Future
Trends; CRC Press: Boca Raton, FL, USA, 2012.

https://www.i-scoop.eu/internet-of-things-guide/internet-things-iot-platforms/
http://dx.doi.org/10.3390/s18020474
http://www.ncbi.nlm.nih.gov/pubmed/29415450
http://dx.doi.org/10.4018/jaras.2011100105
https://openconnectivity.org/specs/OIC_Core_Specification_v1.1.0.pdf
https://tools.ietf.org/html/draft-diao-aip-dns-02
http://dx.doi.org/10.1145/1629607.1629613
http://dx.doi.org/10.1109/JSAC.2016.2559218
http://dx.doi.org/10.1109/SURV.2013.100713.00203
http://dx.doi.org/10.3233/ICA-2012-0397
https://www.arcweb.com/blog/iot-standards-get-big-push-meet-open-connectivity-foundation-ocf
https://www.arcweb.com/blog/iot-standards-get-big-push-meet-open-connectivity-foundation-ocf
http://dx.doi.org/10.1016/j.compind.2008.12.009
http://dx.doi.org/10.1016/j.protcy.2012.09.086
https://gigaom.com/2016/02/20/new-open-connectivity-foundation-combines-open-interconnect-consortium-and-allseen-alliance/
https://gigaom.com/2016/02/20/new-open-connectivity-foundation-combines-open-interconnect-consortium-and-allseen-alliance/
https://www.iotivity.org
http://dx.doi.org/10.1016/j.cose.2018.02.018

Electronics 2019, 8, 442 21 of 21

36. Lee, K.; Kim, S.; Jeong, J.; Lee, S.; Kim, H.; Park, J.-S. A framework for DNS naming services for
Internet-of-Things devices. Future Gener. Comput. Syst. 2019, 92, 617–627. [CrossRef]

37. Yanase, T.; Tanaka, H.; Suzuki, H. Flexible Name Autoconfiguration for IoT Devices. In Proceedings of the
2018 Eleventh International Conference on Mobile Computing and Ubiquitous Network (ICMU), Auckland,
New Zealand, 5–8 October 2018; pp. 1–6.

38. Singh, V.P.; Dwarakanath, V.T.; Haribabu, P.; Babu, N.C. IoT standardization efforts—An analysis.
In Proceedings of the 2017 International Conference on Smart Technologies for Smart Nation (SmartTechCon),
Bengaluru, India, 17–19 August 2017; pp. 1083–1088.

39. Shelby, Z.; Sensinode; Hartke, K. Constrained Application Protocol (CoAP). draft-ietf-core-coap-18. 28 June 2013.
Available online: http://tools.ietf.org/html/draft-ietf-core-coap-18 (accessed on 20 January 2019).

40. Muhonen, T. Standardization of Industrial Internet and IoT (IoT–Internet of Things)–Perspective on Condition-Based
Maintenance; University of Oulu: Oulu, Finland, 2015.

41. IoTivity.org. Available online: https://iotivity.org/documentation/architecture-overview (accessed on
23 January 2019).

42. Open Connectivity Foundation. Available online: https://openconnectivity.org/ (accessed on 30 January 2019).
43. Ahmad, S.; Mehmood, F.; Mehmood, A.; Kim, D. Design and Implementation of Decoupled IoT Application

Store: A Novel Prototype for Virtual Objects Sharing and Discovery. Electronics 2019, 8, 285. [CrossRef]
44. Bormann, C.; Castellani, A.; Shelby, X. CoAP: An Application Protocol for Billions of Tiny Internet Nodes.

IEEE Internet Comput. 2012, 16, 62–67. [CrossRef]
45. Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP); Internet Engineering Task

Force (IETF) RFC-7252: Fremont, CA, USA, 2014.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.future.2018.01.023
http://tools.ietf.org/html/draft-ietf-core-coap-18
https://iotivity.org/documentation/architecture-overview
https://openconnectivity.org/
http://dx.doi.org/10.3390/electronics8030285
http://dx.doi.org/10.1109/MIC.2012.29
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Proposed IoT Device Auto-Registration Based on OCF
	Device Registration, Device Discovery and Sensing Data Processes of the Proposed System
	Device Registration
	Device Discovery and Sensing Data

	Implementation Results
	Implementation of IoT DNS Based on OCF IoTivitiy
	Performance Evaluation
	IoT Device Registration Performance Evaluation
	IP Address Request-Response Performance Evaluation
	Performance Evaluation of Accessing Indoor Service

	Conclusions
	References

