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Abstract: In addition to being sensitive to humidity, humidity sensors with moisture sensitive
elements are also sensitive to ambient temperature. The fusion of temperature and humidity data is
an effective way to improve the accuracy of humidity sensors. In view of the problem of insufficient
adaptive ability and poor universality in the current compensation algorithm, a piecewise processing
of measured error at different temperatures by using multiple linear regression is proposed in
this paper. The least squares method and back propagation (BP) neural network improved by a
genetic simulated annealing algorithm (GSA-BP) were used to compensate the measured humidity
data of different temperature ranges. The efficiency of the GSA-BP algorithm was tested, and the
compensation function model was established. The compensation accuracy was also compared
with the accuracies obtained by other methods. The experimental results show that the adaptive
segmentation compensation method can significantly improve the measured error of the humidity
sensor over a wide temperature range.
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1. Introduction

Automatic weather stations monitor changes in the climate environment in real time.
The meteorological sensors are susceptible to ambient influences and their measurement errors
exist objectively [1]. Usually, the humidity sensor used in automatic weather stations is a voltage
output type polymer film humidity sensitive capacitance sensor, which senses the humidity through
the humidity sensitive capacitor and then converts it into a voltage amount by the conversion
circuit [2]. The humidity sensitive capacitor is mainly composed of an upper electrode, a humidity
sensitive material, a lower electrode and a glass substrate. The humidity sensitive material is a
high-molecular-weight polymer with a dielectric constant that changes with the relative humidity
of the external environment. In addition to being sensitive to ambient humidity, humidity sensitive
materials are also sensitive to temperature. The temperature coefficient is not a constant but a variable.
Nonlinear compensation for measured data of the sensor is often required [3,4].

The humidity sensor manufacturer and meteorological calibrator will compensate for the influence
of temperature on the measurement results, but the compensation effect is not ideal under low
temperature (—20 °C) or high temperature (+50 °C) conditions, and the compensation algorithm
is not universal over a wide temperature range. It is important to study an efficient and adaptive
compensation method for improving the calibration efficiency.

In recent years, many scholars have compensated sensors using both hardware and software
and have achieved some notable results. References 5 and 6 proposed using a conditioning chip and
concentric wheatstone bridge circuit to compensate [5,6], but this hardware compensation circuit is

Electronics 2019, 8, 425; d0i:10.3390/electronics8040425 www.mdpi.com/journal/electronics


http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-1807-2996
http://dx.doi.org/10.3390/electronics8040425
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/8/4/425?type=check_update&version=3

Electronics 2019, 8, 425 2of 14

subject to electronic components’ temperature drift and process technology constraints, which results
in high cost and poor compensation. Software compensation has become a research hotspot because
of its low cost, strong applicability and high compensation accuracy. In 2014, reference 7 proposed
a combination of hardware and software. The circuit was first designed and compensated by the
extreme learning machine (ELM) [7]. The hardware compensation circuit itself would be affected by
the ambient temperature, the ELM algorithm easily produced the over fitting problem, and the optimal
effect could not be obtained. Reference 8 proposed using principal component analysis (PCA) to
improve the back propagation (BP) neural network for nonlinear compensation [8]. PCA was the most
widely used method of reducing the dimension and error correction. In practical applications, when
gross corruptions existed, PCA could not grasp the real subspace structure of the data well, and the
algorithm had no universality. In 2015, reference 9 used a particle swarm optimization (PSO) algorithm
to optimize the nonlinear compensation method of the BP neural network. PSO had no crossover
and mutation operations [9], and the search speed was fast, but it lacked dynamic speed adjustment
and would easily fall into a local extremum. The ability to adapt to ambient temperature was not
strong. In 2016, reference 10 proposed using the least squares support vector machine (LS-SVM)
to compensate [10]. Compared with the artificial neural network, the LS-SVM could overcome the
shortage of long training time and was faster than SVM in solving equations. The solution satisfied the
extreme condition, but it could not guarantee that it was a global optimal solution, and there was still
the problem of easily falling into a local extremum. All of these compensation methods simply applied
an algorithm to the sensor compensation and did not account for the influence of temperature, making
the compensation method less adaptive, and making it difficult to guarantee the superiority of the
compensation algorithm over a wide temperature range.

In recent years, we have conducted considerable research on the nonlinear compensation
of humidity sensors. From 2012 to 2017, we proposed an improved BP neural network
nonlinear compensation method, which used a genetic algorithm (GA) to optimize the weight
and threshold [11,12]. The method avoided the BP neural network plunging into a local extremum,
but the compensation speed was slow when the amount of humidity data was large. Furthermore,
combined with the influence of temperature on the humidity sensor, a method of segmentation
compensation was proposed, and the compensation speed was fast [13], but the segmentation node
was artificially selected. The intelligence and adaptive ability were not high. On the basis of our
previous research, and inspired by the idea of a multi-information approach, this paper proposes an
adaptive nonlinear compensation method for humidity sensors. According to the influence regularity
of temperature on humidity sensors, the sensor was compensated by adaptive segmentation, and the
effects of various compensation methods were compared and studied.

2. Principle of Compensation

Through a large number of experimental tests, the measured error of the humidity sensor has
been shown to be linear near room temperature and nonlinear at high and low temperatures. Some
sensors are also nonlinear near room temperature. In the experiment, the humidity sensor was put
into the temperature and humidity test chamber, which can adjust the temperature and humidity
simultaneously. The standard humidity value was calculated from the measured values of the
precise dew point instrument, temperature sensor and pressure gauge. The temperature at which
the water vapor in the air becomes dewdrops is called the dew point temperature. The dew point
temperature is a means of expressing air humidity. The standard humidity value can be calculated
by the experimentally measured dew point value, temperature value and pressure value. In this
experiment, the data acquisition range of the data collector was 0.1 uV-100 V, the sensitivity was
100 nV, and the error was +0.002%. The temperature was measured by a second-class standard PT100
temperature sensor with an allowable error value of +£0.15 °C. During the experiment, all equipment
and instruments were verified with high measurement accuracy and could obtain accurate, scientific
and reasonable data. The measured value of the humidity sensor was read by the high precision data
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acquisition unit. The temperature and humidity test chamber was adjusted, and the points near the
preset value were observed and recorded. The experimental principle is shown in Figure 1.
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Figure 1. Error experiment of humidity sensor at different temperatures.

The humidity-sensitive capacitive sensor was placed in the temperature and humidity regulating
chamber. The humidity was set to 10% RH, and the temperature was changed. After the temperature
was stabilized, the measured value of the humidity sensor was read. The humidity was set to 30% RH,
50% RH, 70% RH and 90% RH, and the above steps were repeated. The measuring error curve of the
humidity sensor at different temperatures was obtained as shown in Figure 2.
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Figure 2. Measured error curve of the humidity sensor at different temperatures.

From the error curve of Figure 2, it can be seen that the error of the humidity sensor obviously
increases in low and high temperature regions and has nonlinear characteristics. The original
measurement value of the sensor was compensated according to different ambient temperatures, such
that the compensated value was close to the standard value. Setting the ambient temperature T, the
relationship between the original measured value of the humidity sensor H; and the compensated
humidity value Hc is Equation (1).

He = f(H.,T) @

Hc and T are both single-valued functions of Hj, then the inverse function H; = f~'(H¢,T)
exists. So the introduced influence parameter T and the measured value H; were used as data to be
compensated, and the regression analysis was performed by the binary linear regression function. The
regression effect and the value of the segmentation point T1, T, were determined based on the value
of the coefficient of determination R2. The least squares method and GSA-BP neural network were



Electronics 2019, 8, 425 4 of 14

used to compensate the different temperature intervals. The function of segmentation compensation is
similar to Equation (2).
AHLT), T € [To, Ti]
He = f(Hy, T) = f2(H,T),T € [Ty, T3] )
f3(Hy, T),T € [Ty, T3]

Among these values, Top < Ty < T, < T3, fo(Hj, T) is the compensation function of the temperature
range with good linear regression effect. A simple and efficient least squares method was used for line
fitting. f1(H, T) and f3(Hj, T) are compensated functions at low temperature and high temperature,
respectively, and the GSA-BP neural network was used. The influence of temperature T was effectively
reduced, and the measured data were approximated to the stand value of humidity. The overall idea
of optimal compensation is shown in Figure 3.

o| GSA-BP
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gl Ly Afiaptlve output He
humidity H, judge T2
whether .
Temperaturef | N segment Ts
parameter T is needed T
3! A-B .
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Humidity sensor ~ Adaptive Compensation
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Figure 3. Compensation principle of humidity sensor.

3. Adaptive Segmentation Based on Multiple Linear Regression

For the humidity measurement errors at different temperatures, the key to improve the accuracy
of compensation is to judge whether the segmentation compensation is necessary and find the best
segmentation point. The linear regression method mainly determines how to obtain the best fitting
line through the sample. The process is a mathematical optimization method, and it searches for the
best function of data by minimizing the square of error [14]. In the regression analysis, two or more
independent variables were included, and these independent variables can be approximated by a
straight line. As seen from Figure 2, in the temperature experiment of the humidity sensor, there is a
certain linear relationship between the measured error of humidity sensor and the temperature value
in some intervals. The multivariate linear regression method can be used to analyze and compensate
errors in linear intervals [15]. The regression model between the expected ideal humidity value, the
measured value and the temperature was established. The coefficient of determination was calculated
and whether it needed segmentation compensation according to its value was determined.

A multiple linear regression model for temperature compensation was established, such as
Equation (3).

Ho; = Bo + p1Hyi + B2T; 3)

where Ho; is the expected humidity value of the regression, Hj; is the measured value of the humidity
sensor, T; is the value of the ambient temperature, i represents the i-th group data, i = 1,2,3,--- ,n,
there are 7 sets of data, and B, f1, B2 are the regression coefficients. The actual regression model can
be expressed as Equation (4).

Hoi = po + P1Hri + B2T; 4)

where fy, f1 and f, are the estimated values of o, 1 and B, respectively. Hp; is the estimated value of
Hp;, and the residual of them is ¢;. It can be known from the least squares method that Bo, E1 and ﬁz
should minimize the sum of squares of the residuals ¢;.

Q= Z & = Z(Hol' - HOi)z = Z(HOi ~ po— prH; —32Ti)2 ©)
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According to the extremum principle of multivariate function, when Q gets the minimum value,
the partial derivatives of Q to fo, f1 and 5 are all equal to zero. Then there is Equation (6).

37% - 22<H0i —Bo—B1Hii —ﬁzTi)(—l) =0

3791 = 22<HOi —ﬁo _ﬁAlHy —ﬁzTi)(—Hli) =0 ©)

%92 - ZZ(Hoi — Bo - P1Hy; —32Ti)(—Ti) =0

Then Equation (7) is derived.
npo + prY Hyi + pX. Ti = ¥. Ho;
BoX Hii + F1Y Hi® + poX. T;Hy = Y. HHo; ()

BoX Ti+p1X. TiHyi + po X T = Y. TiHoi

Its matrix form is

n Y. Hj 2T Bo Y. Ho;
Y H; Y.H;? Y.THjy pr | = Y. HiHo; 8)
YT, Y.TH; YT/ p2 Y. TiHo;

In Equation (8), two of the matrices can be written as

1 Hn Th
n Y Hj LT 1 .1 1 Hp T,
YH; YH? YTH;|=|Hny Hp - Hp o : )
YT, YTH; YT T, T, - Ty o
1 Hp Ty
Ho
Y Ho,; 11 1| g,
Y.HpHo; |=| Hn Hp -+ Hp : (10)
Y. TiHo; Tn T, --- Ty :
HOn
Assume
1 Hp T
1 Hp T
_ - X (11)
1 Hp Ta
Then, Equations (9) and (10) can be rewritten as
n Y. Hj; Y. T
YH; YH? YTHj; |=XX (12)
YT, Y.TH; YT
Y. Ho;
Y.HiHo; | =X'Hp (13)

Y. TiHo;
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Substitute Equation (12) and Equation (13) into Equation (8)

fo
X'X| B1 |=XHo (14)
p2
Thus, the regression coefficients are obtained by Equation (15)
ol
,8} = (X'X)" X'Hp (15)
p2

By taking the regression coefficients into the multiple linear regression model, a compensation
function can be obtained. To verify the rationality of the model, the coefficient of determination R?
is used to estimate the fit of the model to the measured data. In multiple regression analysis, the
coefficient of determination is the square of the path coefficient, that is

N — 2
Ho; - Ho
L SSR %( oi —Hoi)

=Ccr - — . =
55T Y. (Hoi —Hoi)

1

(16)

In Equation (16), Hp; is the average expected humidity value of Hp;. The total dispersion
square sum SST reflects the discrete state of all expected humidity values Hp;. The regression square

sum SSR reflects the difference after regression. The sum of squared residuals is SSE = }, &%, s0
i

SST = SSR + SSE. Then, Equation (16) can be rewritten to Equation (17)
2
&
> SSR 1 SSE 1 Zz‘ ! (17)
~— QcpLcer  ~¢ceT T T . — 2
SSR + SSE SST Y (Hoi — Hoi)

1

The coefficient of determination R? represents the interpretation degree of the estimated value
Hop; to the ideal value Hp;. The larger the R?, the closer the regression curve is to the ideal humidity
value [16].

Therefore, the regression coefficients Sy, f1, f2 and coefficient of determination R? are calculated
by using the actual measured humidity value Hj, temperature value T; and the expected ideal humidity
value Hp;.The coefficient of determination R? is used to judge whether to segment and to determine
the segmentation point. The specific implementation steps are as follows.

1. The error curve of humidity sensor is linear at room temperature. So the initial temperature
value Ty is determined to be about 25 °C. The measured error of humidity sensor at the ambient
temperature 25 °C is —6%——1% when the humidity is 10%-90% RH.

2. Read the previous temperature value T,_; and the next temperature value T, and their
respective humidity values.

3.  Each time a set of temperature and corresponding humidity data are read, a regression is
performed to obtain a coefficient of determination R?.

4. IfR? > 0911, return to step 2, if R? < 0.911, get the segmentation points T1 and T>.

5. When the temperature interval of the linear interval is greater than 5 °C, thatis, Ty — T > 5, the
segmentation compensation will be performed according to Figure 3. If Ty — T < 5, the whole
process will be compensated by GSA-BP. An adaptive segmentation flowchart based on multiple
linear regression is shown in Figure 4.
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Figure 4. Flow chart of searching segmentation point.

The multiple linear regression method is used to analyze the humidity measurement errors at
different temperatures. For the intervals with better linearity, the multiple regression model established
by Equation (4) is used to compensate the errors.

4. Nonlinear Compensation Model

The nonlinear interval adopts the BP neural network with strong nonlinear mapping ability to
compensate. The input of the BP neural network is temperature T and the measured value Hj, and the
output is the compensated humidity value Hc. The humidity sensor temperature compensation model
was established, and the BP neural network was trained by multiple sets of data. To improve the local
minimum of the BP neural network, a genetic simulated annealing algorithm was used.

The genetic simulated annealing algorithm is an optimization algorithm that combines a genetic
algorithm and a simulated annealing algorithm. The local search ability of the genetic algorithm is
limited, but the ability to grasp the overall search process is strong. The simulated annealing algorithm
has strong local search ability and can prevent the search process from falling into the local optimal
solution. However, little is known regarding the state of the entire search space. It is inconvenient to
make the search process enter the optimal search area, which makes the simulated annealing algorithm
less efficient. However, if the genetic algorithm is combined with the simulated annealing algorithm, a
global search algorithm with excellent performance can be developed [17,18].

The BP neural network based on the genetic simulated annealing algorithm (GSA-BP) is mainly
divided into the determination of BP network structure and the selection of weight and threshold. The
specific compensation steps are the following:

1.  Determine the topology structure of the BP neural network. The BP neural network is set to
a three-layer network structure. The original measured value of temperature T and humidity
sensor Hj are the network inputs, and the number of input nodes #; is 2. The number of hidden
layer nodes n; is set to 7 according to the compensation effect. The output of the network is the
humidity value Hc after compensation, and the number of output nodes n3 is 1. The number of
optimized parameters of the genetic simulated annealing algorithm is determined as follows:
(n1 + 1)1’12 + (712 + 1)713 = 29.

2. Initialize the genetic simulated annealing algorithm. The population size with weights and
thresholds M is 60; the maximum number of iterations MAXGEN is 2000; the crossover probability
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P, is 0.6; the mutation probability P, is 0.1; the initial temperature Ty is 100; the end temperature
T, is 0.99; the temperature cooling coefficient d is 0.99.

3. Initialize the weights and thresholds of the BP neural network and calculate fitness. The initial
population of the genetic simulated annealing algorithm is generated by combining the initial
weights and thresholds of the BP neural network initialization with the original measured values
Hj and temperature T. Each individual in the genetic simulated annealing algorithm represents
all the weights and threshold of a network, and the algorithm then calculates the fitness of
each individual through a fitness function. The fitness function of this paper adopts the fitness
stretching method, and the fitness of the i-th individual after improvement is calculated by

Equation (18).
. efilT
fit(i) = = (18)
Y, /T
i=1
Among these values, f; is the i-th individual fitness before improvement, f; = Im To and

T are the initial temperature and the current temperature in the simulated annealing algorithm
respectively, T = T(0.998""1). gen is the current genetic evolution algebra, and M is the
population size. Hp; and Hc; are the standard humidity values expected and the humidity values
actually obtained by the network of the i-th individual.

4. The genetic simulated annealing algorithm finds individuals with optimal fitness based on a
series of operations such as selection, crossover, mutation and annealing. Compare the current
fitness and historical best fitness of each individual in the population. If the current value is
better, the current value is the best value of the history, and save the individual as the best value
of history, otherwise the best value will not change.

5. The genetic simulated annealing algorithm obtains the optimal individual as the initial weight
and threshold of the BP neural network. The optimized BP neural network is used to train the
humidity data at different temperatures.

Figure 5 shows the process of the compensation method of the humidity sensor. After inputting
the original measured values of the humidity sensors and ambient temperature, the GSA optimizes the
weights and thresholds of the BP neural network. Finally, the compensated humidity value is obtained.
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Figure 5. Flow chart of compensation algorithm based on genetic simulated annealing (GSA-BP).

5. Experimental Results and Analysis

5.1. Performance Analysis of Optimized Compensation Algorithm GSA-BP

The variables of the segmentation compensation function are the actual measured value of the
humidity sensor and the ambient temperature value. GSA is a random search algorithm. The number
of iterations is uncertain. The representative training process was compared with the BP neural
network, which is not optimized.

It can be seen from Figure 6 that when the GSA-BP neural network evolves to 70 generations, its
adaptation value reaches a minimum, the optimal weight and threshold of the BP neural network are
found, and the number of termination iterations is 77. In Figure 7, the number of iterations of the BP
neural network is 229. It can be seen that under the same conditions, the number of iterations of the BP
neural network optimized by GSA is small, and the training speed is fast, which indicates that the BP
neural network optimizes the operation efficiency significantly.
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5 |
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Figure 6. Training iterations of GSA-BP neural network.
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Best Validation Performance is 0.00038292 at epoch 229

Train
Validation
Test

Mean Squared Error (mse)

0 50 100 150 200
235 Epochs

Figure 7. Training iterations of back propagation (BP) neural network.

Figure 8 is the humidity compensation effect curve of the GSA-BP neural network. It can be seen
from the figure that the errors between the predicted output and the expected output are very small,
and the BP neural network optimized by GSA has a good compensation effect.

1

——10%RH
——30%RH
0.8r 50%RH
—— 70%RH
0.6} ——90%RH
0.4} :

Relative error after compensation / %

-20 -10 0 10 20 30 40 50
Temperature / °C

1 1 1

Figure 8. Compensation curve of GSA-BP neural network.
5.2. Segmentation Optimization Compensation Model

Through the above theoretical analysis and verification of experimental data, the influence of
temperature on the humidity sensor can be seen. One hundred and fifty sets of data obtained by
repeating experiments on the same humidity sensor were used as training samples, and 15 sets of data
were used as network test samples. The process of establishing a humidity compensation model is as
follows:

1. Read the measured data set and interpolate it. The temperature points set in the experiment
have some discreteness. So the continuous function is added on the basis of the discrete data and
that the continuous curve passes all the given discrete data points. The interpolated data will be
compensated for later.

2. Read two groups of temperature and corresponding humidity in sequence from the temperature
of 25 °C, use the binary linear regression function to regress the data after interpolation, and
determine the regression effect according to the value of the criterion R?. When R? < 0.911, the
regression is stopped. The value of R? is 0.8468 when the experimental data stops returning. The
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temperature value at this time is the temperature segmentation points Ty, T, which are 22.36 and
29.98, respectively.

3.  Determine whether the interval of the temperature segmentation point is greater than 5. The
experimental data satisfy this condition; therefore, segmentation compensation is made. The
least squares method is used for linear fitting of the temperature range [22.36, 29.98|. Taking the
straight line fitting effect of 30% RH as an example, the fitted straight lineis: ¢ = —0.2695T + 4.4723,
where ¢ is the compensation value, and T is the temperature value. When the value of measured
humidity is 30% RH, input the value of temperature and obtain the corresponding humidity
compensation value, then add the measured value to obtain the compensated value.

4. Use GSA to optimize the weight and threshold of the BP neural network, train the neural network,
and compensate the data in the nonlinear interval.

5. The compensation function model is shown in Figure 9. The compensation effect diagram is
shown in Figure 10. It can be seen from Figure 10 that the compensated humidity value has a
good linear relationship with the standard humidity such that the measured value is closer to the
true value.
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Figure 9. Compensation function model.
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The original measurement data of the same humidity sensor were compensated by using reference
11, reference 13 and the method proposed in this paper. Reference 11 used a genetic algorithm (GA)
improved BP neural network without segmentation compensation, where GA is a population-based
optimization algorithm [19]. Reference 13 used a least squares and BP neural network to compensate.
In this paper, the BP neural network improved by adaptive selection and combined with genetic
simulated annealing was used for compensation. To avoid the randomness of the algorithm, the same
group of data was run many times, and the compensation effect was the same; therefore, the average
value of the same group of data after multiple runs was taken. The three methods compensate the data
as shown in Table 1, and the corresponding error curve is shown in Figure 11.

Table 1. Error after compensation of three methods.

Environment Standard Value of Relative Error of Different Methods of Compensation (%)
Temperature (°C) Humidity (%RH) Reference 11 Reference 13 This Paper
-19.68 11.79 —0.34553 —0.3857 —-0.2912
-14.98 11.56 —-0.25367 —-0.2678 —-0.2198
-9.65 11.15 —-0.24591 -0.1783 —-0.1423
-4.78 9.26 0.0321 —-0.0026 0.0035
3.45 9.61 0.0056 —0.0098 0.0102
20.01 23.55 —-0.1785 0.0728 0.0128
24.58 25.05 —-0.0148 —-0.0118 0.0021
29.98 25.95 0.04726 0.0248 0.0219
38.89 27.8 0.0147 0.0975 0.0175
51.21 29.25 0.0947 0.0752 0.0642

It can be seen from Table 1 and Figure 11:

1. The overall trend of the compensation effects of the three methods is the same. The compensation
error used in reference 11 is large, and the error at the segmentation node significantly increased.
The compensation effect of the method in this paper is relatively stable. In particular, the curve
between 0 and 40 °C tends to be gentle and close to zero.

2. The adaptive segmentation compensation method combines the simplicity and efficiency of the
least squares method with the high precision of the GSA-BP neural network. The measurement
error of humidity significantly improved over the entire temperature range. In the vicinity of the
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segmentation point (22.36 °C, 29.98 °C) obtained by the adaptive calculation, the compensation
effect is particularly significant.

0.1

0.05}

-0.05}

Compensating errors / %

* + * Reference 11

03T =& Reference 13 .
/ —&— This paper

-0.4 - - -

-20 0 20 40 60
Temperature / C

Figure 11. Error curve after compensation by three methods.
6. Conclusions

We use this method to compensate for humidity sensors of different temperature ranges and
different individual temperatures. According to the error curve under different ambient temperatures,
multiple linear regression analysis was used to determine the segmentation points, and different
algorithms were used to compensate. The results show that the method has strong universality and is
effective for different temperature ranges and individual measurements.

In addition, the introduction of independent component analysis method into the reconstruction
of measured error might further improve the compensation effect [20]. It should be added that the
initial temperature is 25 °C when determining the segmentation point in this method. This temperature
is employed because the humidity error of the sensor used in this experiment is relatively linear at
approximately 25 °C after multiple measurements. If other sensors are used, the initial values will be
determined according to the humidity curves of those different sensors. However, the initial values
will be not very strict, and the nearby values can be adaptively processed as initial values.
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