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Abstract: This paper presents a novel architecture for ring learning with errors (LWE) cryptoprocessors
using an efficient approach in encryption and decryption operations. By scheduling multipliers
to work in parallel, the encryption and decryption time are significantly reduced. In addition,
polynomial multiplications are conducted using radix-2 and radix-8 multiple delay feedback (MDF)
architecture-based number theoretic transform (NTT) multipliers to speed up the multiplication
operation. To reduce the hardware complexity of an NTT multiplier, three bit-reverse operations
during the NTT and inverse NTT (INTT) processes are removed. Polynomial additions in the
ring-LWE encryption phase are also arranged to work simultaneously to reduce the latency.
As a result, the proposed efficient-scheduling parallel multiplier-based ring-LWE cryptoprocessors
can achieve higher throughput and efficiency compared with existing architectures. The proposed
ring-LWE cryptoprocessors are synthesized and verified using Xilinx VIVADO on a Virtex-7 field
programmable gate array (FPGA) board. With security parameters n = 512 and q = 12,289, the
proposed cryptoprocessors using radix-2 single-path delay feedback (SDF), radix-2 MDF, and radix-8
MDF multipliers perform encryption in 4.58 µs, 1.97 µs, and 0.89 µs, and decryption in 4.35 µs, 1.82 µs,
and 0.71 µs, respectively. A comparison of the obtained throughput and efficiency with those of
previous studies proves that the proposed cryptoprocessors achieve a better performance.

Keywords: encryption; decryption; number theoretic transform; polynomial multiplier; ring-learning
with errors

1. Introduction

The internet of things (IoT), with billions of connected devices currently in use, has been
developed dramatically during the past decades; therefore, a stronger cryptosystem with the goals
of confidentiality, integrity, and authentication has become a necessity. There exist two types
of cryptosystems named symmetric cryptography and asymmetric or public key cryptography.
The former uses a single key between two parties to enable a secure communication, where the
key is kept private from all other parties. Owing to its simplicity, this scheme is widely used. However,
a symmetric key algorithm can be used only when the sender and receiver have agreed on the secret
key. Asymmetric, or public key cryptosystems use two keys, including one private key and one public
key. Whereas the private key is kept secret for the decryption process, the public key is used for
encryption and can be revealed to all other parties. The encryption operation is conducted using a
public key, and the encrypted message can only be decrypted using the corresponding private key.
The security level of these algorithms depends on the difficulty of deriving a private key from a public
key. Existing cryptographic primitives such as the symmetric advanced encryption standard (AES)
and asymmetric elliptic curve cryptosystems (ECC) [1–3] can be applied to achieve the aforementioned
security goals. For example, the encryption and decryption operations conducted in ECC are based
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on an elliptic curve and computation over a Galois field GF(p) or GF(2m), where p and m are prime
numbers. In the key generation operation, the receiver selects a random number for its private key
kS and a base point PS to calculate ECC point multiplication QS = kS · PS. The public key goes to the
sender, who encrypts the input data before sending them to the receiver. At the receiver, the original
data can be recovered using the secret key of the receiver and ECC point multiplication operations.
However, recent advances in quantum computing intimidate the security of existing cryptographic
schemes. The security of ECC and that of Rivest, Shamir, and Adleman (RSA) cryptosystems [4] are
based on the difficulty of solving the elliptic-curve discrete logarithm problems and the difficulty
of solving certain number theoretic problems, respectively. As early as 1994, Shor [5] proposed an
algorithm to solve the integer factorization problem and the discrete logarithm problems in polynomial
time when using quantum computers. Therefore, the National Institute of Standards and Technology
(NIST) is planning to standardize quantum-resistant cryptosystems such as lattice-based cryptography
because the security proofs of lattice-based cryptography are based on the worst-case hardness of
the lattice problems, and there are no known algorithms that can efficiently solve them. Learning
with errors (LWE) is a well-known lattice-based problem that has attracted significant intention in
recent years. In this context, the ring-LWE cryptosystems described in [6–12] are the most studied
lattice-based cryptosystems in terms of both software and hardware. A block diagram of the ring-LWE
cryptosystem is described in Figure 1.

Figure 1. Block diagram of ring-learning with errors (LWE) cryptosystem.

The ring-LWE public-key cryptosystem operations are conducted in a polynomial ring, normally
Rq = Zq[x]/ f (x). These operations include polynomial addition, polynomial multiplication, and
modulo reduction. Among them, polynomial multiplication is the most computationally intensive [9]
and can be efficiently executed using a number theoretic transform (NTT) based polynomial
multiplication. In addition to the significant progress made regarding the theory of lattice-based
cryptography, practical implementations of this cryptosystem have recently gained the attention of the
research community. Some software implementations of ring-LWE cryptosystems can be found in the
literature. In [6], the authors presented efficient techniques to obtain a high-speed computation
in ring-LWE encryption and decryption. A high-speed, low-latency software-based ring-LWE
cryptographic scheme is introduced in [8] to perform biomedical image storing and transmission.
In addition, the processing time of ring-LWE cryptosystems can be considerably improved by
employing parallel operations on a graphics processing unit (GPU) [10]. The aforementioned
software demonstrations show that the ring-LWE cryptographic scheme offers a higher level of
security with lower latency compared with previous cryptosystems. To prove the practicality and
efficiency of ring-LWE cryptoprocessor, many hardware deployments have also been conducted
in [7,9,13,14]. The study in [13] illustrates that ring-LWE cryptoprocessors require less hardware
resources than conventional cryptosystems such as ECC to carry out encryption and decryption
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operations. In addition, a ring-LWE scheme can operate at a higher frequency than ECC scheme.
Therefore, a ring-LWE cryptosystem outperforms ECC in terms of throughput and efficiency. In the
design of an NTT multiplier, SDF-architecture based and multiple-path delay commutator (MDC)
architecture based schemes have been deployed. An SDF-architecture based multiplier requires less
hardware than an MDC-architecture based multiplier; however, it offers lower throughput than an
MDC-architecture based multiplier. In [7], high-throughput ring-LWE cryptoprocessors using SDF
and MDC-architecture based multipliers are discussed. The results in [7] show that, for ring-LWE
encryption and decryption, the throughputs achieved are at gigabits and megabits per second, respectively.
However, this architecture requires a significant number of hardware resources and a long computation
time because the NTT multipliers operate separately and the NTTs work serially.

In this paper, we present an efficient scheduling architecture to conduct ring-LWE cryptography
encryption and decryption operations. To decrease the encryption time, the multipliers used in
the proposed ring-LWE encryption operation are scheduled to work concurrently. The adders in
the encryption phase also operate simultaneously. Therefore, the encryption latency is reduced by
the computation time of one polynomial multiplication and one polynomial addition. In addition,
the NTT multipliers are designed using a multiple delay feedback (MDF) architecture to lessen the
hardware complexity and speed up the encryption and decryption operations. As a result, with a
lower hardware complexity, the proposed ring-LWE cryptoprocessors provide higher throughput and
efficiency compared with other designs.

The rest of this paper is organized as follows: Section 2 provides background information on
ring-LWE cryptography and an NTT multiplier. In Section 3, the proposed ring-LWE cryptoprocessors
using efficient-scheduling parallel multipliers are presented. A performance analysis and comparison
are discussed in Section 4. Finally, some concluding remarks are given in Section 5.

2. Ring-LWE Cryptography

2.1. Operations in Ring-LWE Cryptography

The ring-LWE cryptography, a public key cryptosystem introduced by Regev [15] in 2005, is
a machine learning problem that is equivalent to the worst-case lattice problems. The ring-LWE
cryptosystem is built on a polynomial ring Rq = Zq[x]/ f (x), where q ≡ 1 mod 2n is a sufficiently
large public prime number, and f (x) is the irreducible polynomial. Normally, f (x) = xn + 1, where
the security parameter n is a power of 2. The ring-LWE distribution on Rq × Rq consists of pairs (a, t)
with a ∈ Rq chosen uniformly random, and t = a× s + e ∈ Rq, where s is a fixed secret element and e
is sampled from a discrete Gaussian distribution χσ with a standard deviation σ. The procedures of
a ring-LWE cryptosystem, including the key generation, encryption, and decryption, are described
as follows.

2.1.1. Key Generation

This process generates a private key r2 and public key (a, p). The polynomial a is chosen uniformly,
and two polynomials r1 and r2 are sampled from the Gaussian distribution χσ. The polynomial r2

becomes the private key, and two polynomials r1 and r2 participate in the public key generation process.

p← r1 − a× r2. (1)

2.1.2. Encryption

The ring-LWE encryption operation encrypts the input message m to the cipher-text (c1, c2).
Initially, the input message m is encoded into the polynomial me using an encoder. Depending on the
i-th coefficient of m, it is encoded as (q− 1)/2 (if m[i] = 1) or 0 (if m[i] = 0). The cipher-text (c1, c2) is
calculated based on the public key (a, p), the encoded message, and three error polynomials e1, e2, and
e3 sampled from the Gaussian distribution.
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c1 ← a× e1 + e2

c2 ← p× e1 + e3 + me.
(2)

2.1.3. Decryption

The decryption operation recovers the original message m from the cipher-text (c1, c2). This
operation starts with the calculation of the pre-decoded polynomial md

md ← c1 × r2 + c2. (3)

The original message m is recovered from the pre-decoded polynomial md using a decoder.
The i-th coefficient of the message m is converted to 1 if and only if its corresponding value md[i]
satisfies the condition q/4 ≤ md[i] ≤ 3q/4; otherwise, it is converted to 0.

2.2. Arithmetic Operations over a Ring

The operations over ring Rq = Zq[x]/ f (x) include polynomial multiplication, polynomial
addition, and modulo reduction. Given ai and bi in Rq, two polynomials a(x) and b(x) over the
ring can be expressed as follows.

a(x) = a0 + a1x + a2x2 + ... + an−1xn−1

b(x) = b0 + b1x + b2x2 + ... + bn−1xn−1 (4)

The polynomial multiplication over ring Rq is the arithmetic requiring the longest processing
time. Among existing approaches used to execute polynomial multiplication introduced in [7,9,16],
the NTT-based algorithm is efficient. If the root of unity in the fast Fourier transform (FFT) is taken
from a finite ring instead of a complex number, the NTT can be viewed as a variation of the FFT. Given
a primitive n-th root of unity ω, the NTT of each coefficient of a(x) is calculated as follows:

Ai =
n−1

∑
j=0

ajω
ij mod q. (5)

Thus, the inverse number theoretic transform (INTT) is defined as

ai = n−1
n−1

∑
j=0

Ajω
−ij mod q. (6)

Assume that α and β are extended vectors of a(x) and b(x) by filling n zero elements.
The multiplication of two polynomials a(x) and b(x) can be expressed as forms of NTT and INTT,
where � is a point-wise multiplication.

c(x) = a(x) · b(x) = INTT2n
ω (NTT2n

ω (α)� NTT2n
ω (β)). (7)

The negative wrapped convolution can be implemented to avoid zero padding in an NTT
multiplication. Considering c to be the negative convolution of a(x) and b(x), the negative wrapped
convolution can be described as

ci =
i

∑
j=0

ajbi−j −
n−1

∑
j=i+1

ajbn+i−j (8)

Define a′ = (a0, ψa1, ..., ψan−1), b′ = (b0, ψb1, ..., ψbn−1), and c′ = (c0, ψc1, ..., ψcn−1), where
ψ ≡ ω mod q, the NTT polynomial multiplication becomes
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c′ = a′ · b′ = INTTn
ω(NTTn

ω(a′)� NTTn
ω(b
′)). (9)

Using the negative wrapped convolution, the NTT multiplication can be calculated based solely
on the n-coefficient. Detail operations of NTT-based polynomial multiplication are described in
Algorithm 1.

Algorithm 1: Number theoretic transform (NTT)-based polynomial multiplication using
negative wrapped convolution.

Input : a = (a0, . . . , an−1), b = (b0, . . . , bn−1)
Output : c = a× b = (c0, . . . , cn−1)

1 Precomputations
2 pψ = (1, ψ, . . . , ψn−1); pψ−1 = (1, ψ−1, . . . , ψ−(n−1)), where ψ2 = ωn)
3 Temp. variables
4 A = (A0, . . . , An−1), B = (B0, . . . , Bn−1), C = (C0, . . . , Cn−1), a′ = (a′0, . . . , a′n−1), b′ =

(b′0, b′1, . . . , b′n−1), (c
′
0, . . . , c′n−1)

5 a′ := pψ ◦ a
6 b′ := pψ ◦ b
7 A := NTT(a′)
8 A := NTT(b′)
9 C := A ◦ B

10 c′ := INTT(C)
11 c := c′ ◦ pψ−1

12 Return(c)

The polynomial addition d(x) of two polynomials a(x) and b(x) is simply adding the
corresponding coefficients of two polynomials and then applying modulo reduction (MR).

di = (ai + bi) mod q (10)

In an MR operation, the coefficients of the resulting polynomial should be reduced by modulus q.
To execute this operation, a few MR algorithms are presented in [7,9,17]. Since security parameters
used in this study are n = 512 and q = 12,289, the SAMS2 algorithm for q = 12,289 presented in [7] is
applied to perform the MR reduction.

2.3. Discrete Gaussian Sampler

In the operations of ring-LWE cryptosystems, polynomials sampled from a discrete Gaussian
distribution χσ with a standard deviation σ are required. In [16,18–21], the authors present several
methods to conduct discrete Gaussian sampling. Among these methods, rejection sampling and
inversion sampling are popular choices. In practice, rejection sampling for a discrete Gaussian
distribution is slow owing to the high rejection rate for the sampled values, which are far from the
center of distribution. The inversion method first generates a random probability and then selects
a sample value such that the cumulative distribution up to that sample point is just larger than the
randomly generated probability. Since the random probability should be of high precision, this method
also requires a large number of random bits. The Knuth–Yao algorithm [16] uses a random walk model
for sampling from any non-uniform distribution. However, the output of Knuth–Yao is generated
within an unpredictable amount of time [7], and it is therefore not a reliable sampler. In this work,
we deploy the linear feedback shift registers (LFSRs) method proposed in [21] because it offers a low
complexity with an approximated uniform pseudo-random distribution; hence, it can be exploited to
generate an accurate approximation of a Gaussian distribution with a low maximum auto-correlation.
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2.4. Ring-LWE Encryption and Decryption Algorithm

In this paper, we use the ring-LWE encryption and decryption algorithms discussed [7].
Furthermore, in the encryption operation, multipliers and adders are scheduled to work in parallel to
optimize the computation latency. The detailed algorithms used to perform ring-LWE encryption and
decryption operations are presented in Algorithms 2 and 3, respectively. In an encryption operation, the
input message m in binary form is converted into a ring polynomial me using an encoder. This encoder
compares each bit m[i] of the input message m to decide if it is encoded as 0 or (q− 1)/2. To compute
the cipher-text (c1, c2), three error polynomials e1, e2, and e3 generated from a discrete Gaussian
sampler are required. In addition, the public key (a, p) and error polynomial e1 are transformed using
NTT cores. The main part of the encryption algorithm is calculating cipher-texts c1 and c2 using
polynomial addition and polynomial multiplication. In this work, we use two temporary variables c10

and c20 to store the multiplication results of two scheduled NTT multipliers Mult1 and Mult2. At the
same time, adder Add1 calculates the addition between encoded information me and error polynomial
e3. The multiplication result c10 is used to compute cipher-text c1 through adder Add2, which adds c10

and error polynomial e2, whereas c20 is assigned to adder Add3 to add with c21 and obtain cipher-text
c2. Note that the additions through two adders Add2 and Add3 are executed in parallel to speed up
the encryption operation.

Algorithm 2: Ring-learning with errors (LWE) encryption algorithm.

Input : a, q ∈ Zq, m ∈ {0, 1}n, ωn ∈ Zn
q

Output : c1, c2 ∈ Zn
q

1 Gaussian Sampler
2 e1 ← Gaussian-Sampler(n, q, σ)
3 e2 ← Gaussian-Sampler(n, q, σ)
4 e3 ← Gaussian-Sampler(n, q, σ)
5 Encoder
6 for i = 0 : n− 1 do
7 me[i]← b q

2c ×m[i]
8 end
9 Number Theoretic Transform

10 a← NTT(a, ωn)
11 p← NTT(p, ωn)
12 e1 ← NTT(e1, ωn)
13 e2 ← NTT(e2, ωn)
14 e3 ← NTT(e3, ωn)
15 Cipher-text computation
16 Multiplication in parallel
17 c10 ← Mult1NTT(a, e1)
18 c20 ← Mult2NTT(p, e1)
19 Addition in parallel
20 c21 ← Add1(me, e3)
21 c1 ← Add2(c10, e2)
22 c2 ← Add3(c20, c21)
23 Return(c1, c2)

Algorithm 3 describes the ring-LWE decryption process. Initially, cipher-text c1 is transformed
using the NTT and driven to multiplier Mult3 to compute the multiplication between c1 and r2.
The pre-decoded message md is calculated using adder Add4 whose inputs are md1 and cipher-text
c2. The original message m is recovered by decoding message md. Depending on the value of the i-th
coefficient of md, the corresponding value of m is decoded as 1 or 0.
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Algorithm 3: Ring-LWE decryption algorithm.

Input : c1, c2, r2 ∈ Zn
q ; ωn, ω−1

n ∈ Zq
Output : Original message m

1 Number Theoretic Transform
2 c1 ← NTT(c1, ωn)
3 r2 ← NTT(r2, ωn)
4 Ring computation
5 md1 ← Mult3NTT(c1, r2)
6 md ← Add4(md1, c2)
7 Decoder
8 for i = 0 : n− 1 do
9 if (b q

4c) ≤ md[i] ≤ 3× b q
4c) then

10 m[i] = 1;
11 else
12 m[i] = 0;
13 end
14 end
15 Return(m)

3. Proposed Ring-LWE Cryptoprocessor Architectures

3.1. Proposed Ring-LWE Encryption and Decryption Architectures

Figure 2 describes the top module of the proposed ring-LWE cryptoprocessors. The whole
processor is directed by control signals generated from a controller. The system includes a Gaussian
sampler to generate error polynomials, an encoder to encode the input message m, a decoder that
decodes message md to recover the original message m, multipliers, adders, and modulus to perform
arithmetic operations over ring.

Figure 2. Proposed top-level ring-LWE cryptopocessors.

To conduct ring-LWE encryption and decryption, the efficient-scheduling parallel multiplier-based
architectures shown in Figure 3 is proposed. As can be seen, the ring-LWE encryption architecture
used to encrypt the input message m with the public key (a, p) is illustrated. When the encryption
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signal is enabled, the input message m is initially encoded using an encoder. A two-input MUX
matrix encodes the message m to the ring polynomial me. Each bit m[i] of the input message m
becomes the control signal of each MUX deciding whether bit m[i] should be converted into 0 or
(q− 1)/2. The encoded message me is then added with the error polynomial e3 generated from a
discrete Gaussian distribution through adder Add1. The public key (a, p) is multiplied with error
polynomial e1 using MDF architecture-based multipliers Mult1 and Mult2. These multipliers are
controlled by the scheduling signal m_sc. When the signal m_sc is enabled, two multipliers work
simultaneously to reduce the multiplication time. When the multiplications at Mult1 and Mult2 are
accomplished, two signals m1_d and m2_d are assigned to 1. The scheduling signals a_sc triggers two
adders Add2 and Add3, where the additions (a× e1) + e2 and (p× e1) + (me + e3) are executed in
parallel, respectively. Once these additions are completed, two signals a2_d and a3_d are assigned
to 1. The output of adder Add2 is cipher-text c1, and the output of adder Add3 is cipher-text c2.
The encryption process is thus accomplished.

Figure 3. Proposed efficient-scheduling parallel multiplier-based ring-LWE cryptoprocessor architecture.

The decryption architecture is used to recover the original message m from the cipher-text (c1, c2)
when needed. This process starts when the decryption control signal dec is enabled. The proposed
MDF-architecture based multiplier Mult3 calculates the multiplication between cipher-text c1 and
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private key r2. The signal m3_d = 1 indicates that this multiplication has been carried out. The output
of multiplier Mult3 is then added with cipher-text c2 through adder Add4 enabled by signal m3_d.
The pre-decoded message md is available when signal a4_d of adder Add4 equals to 1. To recover
message m from the pre-decoded message md, a decoder with a two-input MUX matrix is used. Each
value of the polynomial md is compared with q/4 and 3× q/4 to obtain the control signal of the
corresponding MUX. If i-th value of md is within this range, the corresponding value of m is decoded
as 1; otherwise, it is decoded as 0. Finally, the original message m is completely recovered. The timing
diagram of the operations in encryption and decryption phases is described in Figure 4.

Figure 4. Timing diagram of proposed ring-LWE cryptoprocessors.

3.2. Proposed NTT Multiplier Architecture

As mentioned previously, polynomial multiplication is an important operation in ring-LWE
cryptosystems. Theoretically, an NTT-based polynomial multiplication consists of NTT, INTT,
point-wise multiplication, and three bit-reverse processes. To decrease the latency and hardware
complexity of the polynomial multiplier, we use the reverse Cooley–Tukey algorithm [22] to remove
three bit-reverse operations. The design of the MDF-architecture based NTT multiplier is presented
in Figure 5. In detail, Figure 5a describes the top level of the proposed MDF-architecture-based NTT
multiplier to conduct the multiplication of two polynomials a(x) and b(x). Figure 5b presents the
radix-8 MDF-architecture-based NTT multiplier. The multiplication of two input polynomials a(x) and
b(x) is processed using NTT operations NTT(a) and NTT(b), followed by a point-wise multiplication.
The result from the point-wise multiplication is then processed by the INTT block to get the polynomial
multiplication result c(x). For the radix-k MDF-architecture based NTT multiplier, n-coefficients of
the input polynomial are divided into k paths. Each path consists of n/k coefficients with the indexes
of (i + j× (log2 n− 1)), where i = 0, . . . , k− 1, and j = 0, . . . , n/k− 1. The input polynomial with
n = 512 coefficients is allocated as Figure 5c.
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(a)

(b)

(c)

Figure 5. (a) Data flow of the proposed number theoretic transform (NTT) multiplier, (b) Proposed
radix-8 multiple delay feedback (MDF)-architecture based NTT multiplier, and (c) Data structure of the
proposed radix-8 MDF-architecture based multiplier.

4. Simulation Results and Comparison

The proposed efficient-scheduling parallel multiplier-based ring-LWE cryptoprocessors were
modeled in Verilog HDL, synthesized and implemented in Xilinx VIVADO on a Virtex-7 FPGA
platform. Three architectures, namely, radix-2 SDF (radix-2S), radix-2 MDF (radix-2M), and radix-8
MDF (radix-8M) were developed. The simulation results are shown in Table 1.
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As can be seen from Table 1, the proposed cryptoprocessors achieved a higher throughput than
the architectures in [7,13,16]. It can be explained that the proposed NTT multipliers, as well as
adders, were scheduled to work in parallel to speed up the computation time, resulting in an increase
in the system throughput. The proposed radix-2S cryptoprocessor required the least amount of
hardware resources, whereas the radix-8M architecture provided the highest throughput. Specifically,
the proposed radix-2S architecture used only 74.43% and 46.39% of the number of lookup tables (LUTs)
and slices in [7] to perform the encryption, respectively. For the ring-LWE encryption, the radix-2S
and radix-8M crytoprocessors offered an improvement in throughput of up to 90% compared with the
similar architecture presented in [7], while the radix-2M architecture outperformed its predecessor
R2M in [7] by approximately 1.5 times in terms of throughput. Although the ring-LWE architectures
in [13,16] required a small number of LUTs and slices, the encryption and decryption latencies of these
architectures were extremely large. Therefore, these architectures provided a very low throughput.
As described in Table 1, the throughput of the proposed radix-2S architecture was about ten times
larger than that in [13,16].

The system efficiency was a parameter used to evaluate the performance of the proposed
cryptoprocessors and existing studies. This parameter was presented in [23]. As shown in Table 1,
the proposed radix-8M architecture achieved the highest encryption efficiency, followed by the
radix-2M architecture. The efficiency of the proposed architectures outperformed that of other
architectures in general.

Table 1. Implementation results and performance comparison of the proposed ring-learning with
errors (LWE) cryptoprocessors.

Proposed
Radix-2S R2S [7] Proposed

Radix-2M R2M [7] Proposed
Radix-8M R8M [7] [13] [16]

Devices Virtex-7 Stratix IV Virtex-7 Stratix IV Virtex-7 Stratix IV Virtex-6 Virtex-6

LUTs (enc.) 23,015 28,977 29,802 31,890 61,154 62,994 5,595 1,536
LUTs (dec.) 6,623 6,761 7,252 7,272 25,160 27,313 – –

Slices (enc.) 13,588 29,290 18,933 31,540 42,374 56,435 4,760 953
Slices (dec.) 6,354 7,616 7,657 8,641 23,495 32,019 – –

Cycles (enc.) 1,832 2,207 651 1,194 240 391 13,769 13,300
Cycles (dec.) 1,754 1,145 612 644 224 225 8,883 5,800

Time (enc.) (µs) 4.58 9.33 1.97 5.16 0.89 1.73 54.86 47.90
Time (dec.) (µs) 4.35 4.59 1.82 2.78 0.71 1.04 35.39 21.00

Thr. (enc.) a

(Mbps) 1,565.07 824.03 3,638.58 1,491.26 8,053.93 4,465.12 130.66 149.64

Thr. (dec.) a

(Mbps) 117.70 111.55 281.32 184.17 721.13 492.31 14.47 24.38

Eff. (enc.) b

(Kbps/LUT)
68.00 28.41 122.09 46.69 131.70 70.88 23.35 97.42

Eff. (dec.) b

(Kbps/LUT)
17.77 16.50 38.79 25.33 28.66 18.02 2.29 15.87

a Throughput (Thr.) = (Working frequency × No. of bits)/No. of clock cycles. b Efficiency (Eff.) = Throughput/No.
of LUTs.

5. Conclusions

This paper presents an efficient-scheduling parallel multiplier-based cryptoprocessor architecture
to perform the ring-LWE encryption and decryption. By exploiting MDF-architecture based NTT
multipliers and scheduling operations of multipliers and adders, the encryption and decryption times
are significantly decreased. In addition, the bit-reverse processes in an NTT multiplier are removed
to reduce the system hardware complexity. As a result, the proposed cryptoprocessors can lead to a
significant reduction in hardware complexity and achieve a much higher throughput and efficiency
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compared to existing architectures. Therefore, the proposed ring-LWE cryptoprocessors are promising
solutions for the security systems that require high throughput, high efficiency, and low latency.
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