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Abstract: A conventional coordinate rotation digital computer (CORDIC) has a low throughput rate
due to its recursive implementation of micro-rotations. On the contrary, a fully-pipelined cascaded
CORDIC provides a very high throughput rate at the cost of high complexity and large area. In this
paper, possible design choices of cascaded CORDIC are explored over a wide range of operating
frequencies, throughput rates, latency, and area complexity. For this purpose, we present a fine-grained
critical path analysis of the cascaded CORDIC in terms of bit-level delay. Based on the propagation
delay estimate, we propose an algorithm for determining the required number of pipeline stages
and locations of the pipeline registers in order to meet the time constraint in a particular application.
A hybrid cascaded-recursive CORDIC is also proposed to increase the throughput rate, and to reduce
the latency and energy per sample (EPS). From synthesis results, we show that the proposed pipelined
cascaded CORDIC with only four pipeline stages requires 31.1% less area and 29.0% less EPS compared
to a fully-pipelined CORDIC. An eight stage pipelined recursive cascaded CORDIC provides 18.3%
less EPS and 40.4% less area-delay product than a conventional CORDIC.

Keywords: coordinate rotation digital computer; pipelining; parallel; digital arithmetic; digital signal
processing; VLSI

1. Introduction

The key concept of coordinate rotation digital computer (CORDIC) arithmetic is that it can
effectively compute trigonometric functions, vector rotation, multiplication, and division through an
iterative formulation of shift and add operations. Ever since the CORDIC algorithm was first described
in 1959 by Jack E. Volder [1,2], a wide variety of explorations of CORDIC applications, algorithms,
and architectures have been investigated to find low-cost, high-performance hardware solutions [3–12].

Throughput and power consumption have become the major issues in CORDIC algorithm design,
especially for implementations in embedded systems with limited resources. As CORDIC acts as a basic
arithmetic operator in addition to adders, subtractors, and multipliers in hardware implementation, their
performance greatly affects the performance of the entire system, especially in CORDIC applications
requiring high performance, such as fast Fourier transform (FFT) [13] or embedded FPGA-based
synthesizers, including chaotic Pseudo-random number generators [14]. In particular, the latency
of CORDIC computation is a major issue due to the large number of iterations required to preserve
sufficient precision of the output, despite its linear-rate convergence [15]. Therefore, the speed of
CORDIC operations is limited either by the required precision (number of iterations) or the clock period.
Angle recoding (AR) methods [5,6,8–10] can be used to reduce the number of CORDIC iterations by
encoding the rotation angle as a linear combination of a set of selected elementary angles. However,
selective implementation of micro-rotation carries significant scaling overhead.
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Parallel processing and pipelining are two popular techniques used to enhance the performance
of any computing system [16]. Area is traded for speed in parallel processing while latency and register
complexity are traded for speed in pipeline processing [17,18]. The scope of parallel processing and
pipelining for improving the performance of CORDIC has been explored in the literature [9,19–21].
Due to the inherent sequential nature of CORDIC, it is not possible to have a full parallel CORDIC,
and any parallel implementation of CORDIC carries significant overhead. In [9], it was further shown
that the rotation direction can be determined once the input angle is known in order to enable parallel
realization of micro-rotations. Despite the parallel execution of CORDIC rotation according to [9],
the decomposition method of each positional binary weight produces extra micro-rotation stages,
especially as the word length of the input angle increases.

An alternative approach to speed up CORDIC is to reduce the clock period and increase the
throughput rate of the CORDIC output. As the CORDIC iterations are identical and involve nearly the
same complexity, mapping them onto pipelined architectures is very hardware-friendly. The main
objective of pipelined implementation is to reduce the critical path. The pipelined architecture of
CORDIC was suggested by Deprettere et al. in 1984 [21]. Pipelined CORDIC circuits were used
thereafter for high-throughput sinusoidal wave generation, FFT, adaptive filters, and other signal
processing applications [22–24]. Given each pipeline stage performs one predetermined micro-rotation,
the number of shifts required for shift-add or shift-sub operations in each pipeline stage is known a
priori. Therefore, shift operations can be hardwired, and barrel-shifters can be completely eliminated in
the non-recursive cascaded implementation of CORDIC. Then, the critical path of pipelined CORDIC
amounts to the time required to execute add or subtract operations in each stage.

Fully-pipelined-cascaded CORDIC (FPCC) has potential for a very low clock period and very high
throughput. However, such high throughput rate is usually not required in real applications. For example,
when CORDIC is used to implement the complex butterfly operation for a fast Fourier transform (FFT),
the throughput rate provided by CORDIC must match the throughput requirement of the application and
the type of FFT implementation, such as fully-pipelined implementation, folded-pipeline implementation,
and the number of butterfly circuits. On the other hand, we find that removing a pair of pipeline registers
to merge two pipeline stages does not substantially increase the critical path. The propagation delay of a
pair of CORDIC stages is generally assumed to be the sum of delays of two adders or two subtractors.
However, such an assumption is currently invalid in ASIC and FPGA implementation, wherein adders
or subtractors in each stage are not considered as discrete components. We also find that the rear stages
in the cascaded CORDIC have longer propagation delays than the preceding stages, thus inserting
pipeline registers for each is not a good pipelining strategy for a given number of stages. However, there
is no systematic analysis regarding the appropriate pipeline decision in a cascaded CORDIC. In this
paper, we discuss the fine-grained estimation of propagation delays in cascaded CORDIC. Based on that,
we derive a formulation that could be used by a designer to determine the number of pipeline stages to
be considered and where to place the pipeline registers in the cascaded design.

Cascaded CORDIC involves one CORDIC unit for each micro-rotation, while at the other
extreme, recursive CORDIC uses only one CORDIC unit for all micro-rotations. Instead, we can
have a hybrid of non-recursive cascaded CORDIC and recursive CORDIC, which we refer to as
pipelined-recursive-cascaded CORDIC (PRCC). PRCC consist of a cascade of a few CORDIC units,
where each such CORDIC unit performs a certain number of micro-rotations recursively. In this paper,
we investigate the design and implementation of such recursive cascade as another design option for
the cascaded CORDIC.

The rest of the paper is organized as follows. A critical path analysis for a cascaded CORDIC
with unknown rotation angles is presented in Section 2. The fine-grained critical path analysis of a
cascaded CORDIC for known rotation angles is presented in Section 3. An algorithm for determining
the number of pipeline registers and their locations for a given timing constraint is also proposed
in Section 3. A hybrid recursive cascaded CORDIC is presented in Section 4. The performance of
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the proposed designs in terms of area, throughput, latency, and power consumption is discussed in
Section 5. Conclusions are given in Section 6.

2. Critical Path Analysis of Cascaded CORDIC for Unknown Rotation Angles

The rotation mode of the CORDIC algorithm performs vector rotation iteratively, as follows [1,2]:

xn+1 = xn − sign(ωn) · yn · 2−n (1a)

yn+1 = yn + sign(ωn) · xn · 2−n (1b)

ωn+1 = ωn − sign(ωn) · tan−1(2−n) (1c)

for 0 ≤ n ≤ N − 1, where N is the number of micro-rotations, and sign(ωn) = −1 if ωn < 0 and
sign(ωn) = 1 otherwise. The initial value of [x0 y0] is a two-dimensional vector to be rotated, and ω0

is set to the rotation angle θ.
Figure 1a shows the structure of the conventional CORDIC circuit for recursive implementation

of all micro-rotations whereas Figure 1b shows the structure of the cascaded CORDIC where possible
locations of pipeline registers are marked with a thick solid lines. The barrel-shifters in Figure 1a can
be completely eliminated in the cascaded CORDIC because the shift operations can be hardwired.
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Figure 1. (a) A conventional recursive coordinate rotation digital computer (CORDIC) circuit. BS:
barrel shifter; REG: register. (b) N-stage non-recursive cascaded CORDIC.

If the rotation angle is not known in advance, i.e., sign(ωn) for 0 ≤ n ≤ N − 1 is not given,
a circuit for angle update according to Equation (1c) is required. The propagation delay of the
fully-pipelined-cascaded CORDIC (FPCC), where all the thick solid lines between the CORDIC sections
in Figure 1b are replaced with pipeline registers, can be represented as

TFPCC(L) = TINV + TADDSUB(L). (2)

where TINV and TADDSUB(L) are propagation delays of an inverter and L-bit adder or subtractor,
respectively. Sign extension to avoid overflow is not considered because the word-length is generally
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retained during CORDIC operations. Assuming that a ripple carry adder (RCA) is used for the adder
or subtractor, we have [25]

TADDSUB(L) = TXOR + TFAAC + (L− 2)TFACC + TFACS (3)

where TXOR is a delay of a 2-input XOR gate. TFAAC, TFACC, and TFACS are delays of the 1-bit full
adder (FA) from port input-A to port carry-out, from port carry-in to port carry-out, and from
port carry-in to port sum, respectively. Note that the propagation delay of an adder or subtractor
increases by TFACC as the bit-width of the input increases by 1.

If all pipeline registers marked by thick solid lines in Figure 1b are removed, we can obtain
a non-pipelined-cascaded CORDIC (NPCC), and the black-dotted line in Figure 1b becomes the
critical path. Then, the propagation delay of an N-stage, L-bit NPCC TNPCC(N, L) can be generalized
as follows:

TNPCC(N, L) = N(TINV + TADDSUB(L)) (4)

where (N− 1)(TINV + TADDSUB(L)) is taken to obtain sign(ω1), sign(ω2), ..., sign(ωN−1), and another
TINV + TADDSUB(L) is the propagation delay of the inverter and adder or subtractor in the last stage.

3. Critical Path Analysis and Design of Cascaded CORDIC for Known Rotation Angles

3.1. Critical Path Analysis of Non-Pipelined Cascaded CORDIC

In this section, the precise critical path is analysed when signs for all the micro-rotations are
known in advance assuming that the input rotation angle is known. Removing all pipeline registers
and the angle-update circuit yields a non-pipelined cascaded CORDIC (NPCC) whose critical path is
shown in the red-dotted line in Figure 1b. A detailed bit-level block diagram of an N-stage, L-bit NPCC
is shown in Figure 2, where xnl and ynl are the lth bit of xn and yn, respectively, and the corresponding
critical path is shown in the red-dotted line. Note that in Figure 2, the word-lengths of xn and yn for
0 ≤ n ≤ N are set to the number of stages such that L = N. To estimate the propagation delay of
the NPCC, let us first find the propagation delay of the first stage assuming that NPCC has only one
stage (shown in the first row in Figure 2). Note that the propagation delay of the first stage is the path
from the input sign(ω0) to the most significant bit (MSB) of the output x1(L−1), whose delay is equal to
the sum of the propagation delay of the L-bit adder or subtractor in Equation (3) and the delay of an
inverter. Then, the propagation delay of the first stage in an L-bit NPCC is

TNPCC(1, L) = TINV + TADDSUB(L) (5)

where TNPCC(n, L) is the propagation delay of the n-th stage in an L-bit NPCC.
Now assume that one more stage is added for a total of two stages, but there are no pipeline

registers between stages. One can see from Figure 1b that the input to the adder or subtractor on the
right side in the second stage is obtained by right-shifting x1 by 1. Therefore, addition or subtraction
in the second stage can begin only if the second least significant bit (LSB) of x1, i.e., x11, is available.
Note that x11 is the LSB in the input of the adder or subtractor after the LSB x10 is truncated. Therefore,
the propagation delay of a 2-stage NPCC is the sum of the delay from sign(ω0) to x11 in the first
stage and the delay from x11 to y2(L−1) in the second stage. The increased propagation delay due to
inclusion of one more stage becomes TXOR + TFAAC + TFACS, which is much lower than the delay of
one L-bit RCA. Similarly, when one more stage is added to n-stage NPCC, yielding a total of n + 1
stages, the propagation delay increment ∆n can be estimated as follows:

∆n = TXOR + TFAAC + (n− 1)TFACC + TFACS, (6)
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for 1 ≤ n < N, and
TNPCC(n + 1, L) = TNPCC(n, L) + ∆n. (7)

It should be noted that the increased propagation delay does not depend on the input word-length but
rather on the number of shifts in the CORDIC unit when separate pipeline stages are merged, which is
much less than the delay of TADDSUB(L), especially in the initial CORDIC stages. The propagation
delay of the N-stage NPCC is

TNPCC(N, L) = TNPCC(1, L) +
N−1

∑
n=1

∆n. (8)

Substituting Equations (3), (5), and (6) into Equation (8) yields

TNPCC(N, L) = TINV + N(TFAAC + TXOR + TFACS) +
(
(N2 − 3N)/2 + L− 1

)
TFACC. (9)

Equation (9) shows that the propagation delay of the NPCC can be estimated for any given values of N
and L if TINV, TFAAC, TXOR, TFACS, and TFACC are approximated. Table 1 lists the estimated propagation
delays of the N-stage, 16-bit NPCC for 1 ≤ N ≤ 16 and the actual propagation delays obtained from
the synthesis results using the TSMC 90 nm CMOS library [26]. One can see from the second column in
Table 1 that the delay increment ∆N increases with N because more shifts are performed in later stages.
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Figure 2. Detailed bit-level block diagram and critical path of an N-stage non-pipelined cascaded
CORDIC without an angle update circuit. The word length L is assumed to be equal to the number of
stages N.
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Table 1. Propagation delay estimates (ns) of an N-stage, 16-bit non-pipelined-cascaded CORDIC
(NPCC), and corresponding synthesis results obtained using the TSMC 90 nm CMOS library.

N ∆N TNPCC Syn. Results

1 0.45 1.74 1.70
2 0.53 2.19 2.09
3 0.62 2.72 2.59
4 0.70 3.34 3.20
5 0.79 4.05 3.92
6 0.87 4.84 4.75
7 0.96 5.71 5.69
8 1.04 6.67 6.74
9 1.13 7.72 7.76

10 1.21 8.85 8.88
11 1.30 10.06 10.09
12 1.38 11.36 11.40
13 1.47 12.75 12.80
14 1.55 14.22 14.29
15 1.64 15.77 15.88
16 · 17.41 17.56

TINV = 0.10 ns, TXOR = 0.12 ns, TFAAC = 0.18 ns, TFACC = 0.08 ns, and TFACS = 0.15 ns were set for the
simulation by [26], but they can be adjusted based on the temperature and output load capacitance.

3.2. Critical Path Analysis of Pipelined Cascaded CORDIC

All stages in a fully-pipelined cascaded CORDIC have the same critical path, which is from
the inverter to the adder or subtractor in a stage, and its throughput is 1/TFPCC(L) in Equation (2).
When such a high throughput rate is not required, some pipeline registers can be removed in order
to merge stages. In this section, we analyse the propagation delay of a partially-pipelined-cascaded
CORDIC (PPCC), where some of the pipeline stages are merged. Let us denote TPPCC(L)(n, m) as
the propagation delay from the n-th stage to the m-th stage (assuming that the pipeline registers are
located before the n-th stage and after the m-th stage) in an L-bit PPCC, and there are no other registers
between them. Then, TPPCC(L)(n, m) is determined from the longest path between the input of the
n-th stage (xn−1 or yn−1) and the output of the m-th stage (xm or ym). If n = m, the registers are located
before and after the n-th stage, thus

TPPCC(L)(n, n) = TFPCC(L), (10)

for 1 ≤ n ≤ N. Also, we have

TPPCC(L)(n, n + 1) = TPPCC(L)(n, n) + ∆n (11)

where ∆n is defined in Equation (6). Therefore,

TPPCC(L)(n, m) = TPPCC(L)(n, n) +
m−1

∑
k=n

∆n. (12)

Substituting Equations (6) and (10) into Equation (12) yields the propagation delay from the n-th stage
to the m-th stage in a PPCC:

TPPCC(L)(n, m) = TINV + (m− n + 1)(TFAAC + TXOR + TFACS)+(
(m2 − 3m− n2 + 3n + 2L− 4)/2

)
TFACC.

(13)
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Let us denote the propagation delay of the K-stage in an L-bit PPCC involving N micro-rotations and
(K− 1) pairs of pipeline registers as TPPCC(N, K, L). Specifically, if the registers are located before the
n1-th stage, the n2-th stage, . . . , and the nK−1-th stage, TPPCC(N, K, L) can be determined from

TPPCC(N, K, L) = max {TPPCC(L)(1, n1 − 1), TPPCC(L)(n1, n2 − 1),
TPPCC(L)(n2, n3 − 1), ..., TPPCC(L)(nK−1, N)}. (14)

3.3. Algorithm Design for a Pipelined Cascaded CORDIC

Based on the above analysis, we propose an algorithm for minimizing the number of pipeline
stages and the locations of pipeline registers in a cascaded CORDIC. Figure 3 shows a flowchart of the
proposed search algorithm. The goal of the algorithm is to minimize the number of pipeline stages in
order to minimize pipeline overhead without violating the timing constraint per stage. For a given
timing constraint T, assume that

TPPCC(L)(n, n) < T, for 1 ≤ n ≤ N, (15)

otherwise, the PPCC can never meet the timing requirement. It is assumed that the values of TINV,
TFAAC, TXOR, TFACS, and TFACC are known, and the values of n, m, and k are initialized. To search for
the first location of the pipeline registers, TPPCC(L)(1, 2) is estimated according to Equation (13). If the
value of TPPCC(L)(1, 2) is less than T, we can infer that pipeline registers are not required between the
first and second stages. Then, m is increased by 1 to test whether the registers should be placed before
the third stage by calculating TPPCC(L)(1, 3). In this manner, the value of m is increased by 1 until
TPPCC(L)(1, m) is larger than the timing constraint. If the value of TPPCC(L)(1, m) is larger than the value
of T, the pipeline registers should be placed after the (m− 1)-th stage. Then, the location of the first
pipeline registers (m− 1) is stored in P(0), and the algorithm continues to search for the next location
of pipeline registers P(1). Because the pipeline registers are located before the m-th stage, the initial
position of propagation delay n is reset to m for the next search, and the value of m is increased until
the next location of pipeline register is found or m reaches the end of the stage. When the algorithm
terminates, the location of pipeline registers can be retrieved from P(k), and the total number of pipeline
stages K is taken to be (k + 1). Pseudo-code of the algorithm is given in Algorithm 1.

Start
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TPPCC(L)(n,m)

by (15)

TPPCC(L)(n,m)<T ?

m=N?

Yes

Yes

P(k)=m-1
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T (timing constraint), N, L, TINV, 
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n=m=1, k=0
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Figure 3. The algorithm used to determine number of pipeline stages and to choose locations of
pipeline registers in the cascaded CORDIC.
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Algorithm 1 Searches the locations of pipeline registers

1: set T, N, L;
2: obtain TINV, TXOR, TFAAC, TFACS, TFACC;
3: n = 1; m = 1; k = 0;
4: do
5: m = m + 1;
6: if (TPPCC(L)(n, m) ≥ T)
7: P(k) = m− 1;
8: k = k + 1;
9: n = m;

10: end if
11: while (m < N)
12: end while

In Table 2, we show design examples of a cascaded CORDIC obtained with the proposed critical
path analysis and design algorithm when the timing constraint is defined as a maximum usable
frequency (MUF) ranging from 100 MHz to 300 MHz and when N = L = 16. The minimum clock
period T in the third column of Table 2 is the reciprocal of the corresponding MUF. Six examples
with different constraints are designed with the TSMC 90 nm standard CMOS libraries [26]. In the
example shown in Design-1, NPCC is used when any timing constraint is not given, and its estimated
propagation delay is 17.41 ns. If higher throughput is required, a pipelined-cascaded CORDIC can
be used with a few pipeline stages. In Design-2, only one pair of pipeline registers is sufficient to
accommodate the timing constraint. It should be noted that the first pipeline stage in Design-3 has
seven CORDIC units, whereas the second pipeline stage has only five CORDIC units because ∆n is
larger at later stages due to larger shifts. More pipeline registers are used as the minimum required
clock frequency increases, as shown in Table 2. In Design-6 (which requires minimum clock frequency
of 300 MHz), the PPCC requires seven pairs of pipeline registers in order to have eight pipeline stages.

Table 2. Design examples of a cascaded CORDIC obtained using the TSMC 90 nm standard CMOS
library (N = L = 16).

Design Clock T Location of Pipeline Registers
Estimated Delay (ns)(MHz) (ns) P(0) P(1) P(2) P(3) P(4) P(5) P(6)

Design-1 × × × × × × × × × TNPCC(16, 16) = 17.41
Design-2 100 10.00 10 × × × × × × TPPCC(16)(11, 16) = 9.09
Design-3 150 6.66 7 12 × × × × × TPPCC(16)(8, 12) = 6.43
Design-4 200 5.00 6 10 13 × × × × TPPCC(16)(14, 16) = 4.93
Design-5 250 4.00 4 7 10 12 14 × × TPPCC(16)(8, 10) = 3.91
Design-6 300 3.33 3 6 8 10 12 14 15 TPPCC(16)(4, 6) = 3.23

TINV = 0.10 ns, TXOR = 0.12 ns, TFAAC = 0.18 ns, TFACC = 0.08 ns, and TFACS = 0.15 ns were set in the
simulation by [26], but they can be adjusted based on the temperature and output load capacitance.

4. A Recursive Cascaded CORDIC

In this Section, we propose a recursive cascaded CORDIC design, namely a pipelined-recursive-
cascaded CORDIC (PRCC). Figure 4 shows the structure of a 2-stage PRCC that performs N successive
micro-rotations using two CORDIC units. When N is even, the first N/2 micro-rotations out of N
micro-rotations are performed during the first stage, whereas the remaining N/2 micro-rotations are
performed during the second stage. A pair of 2:1 MUXes in the first stage selects the initial input values
x0 and y0 during the first clock cycle of the period of the first N/2 clock cycles, and it selects outputs
from two adders or subtractors in the first stage during the subsequent N/2− 1 clock cycles. The first
stage is responsible only for the first N/2 cycles of micro-rotations and passes the intermediate results
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xN/2 and yN/2 to the second stage. Another pair of inputs are taken and fed in parallel to the MUXes in
every N/2 cycles. A pair of 2:1 MUXes in the second stage selects xN/2 and yN/2 from the first stage
every N/2 cycles, and the second stage performs the remaining N/2 micro-rotations. PRCC can also be
implemented with more than two CORDIC units. If N is represented as a multiple of K, where K > 2,
we can have a K-stage PRCC, where each stage is responsible for (N/K) micro-rotations, and each stage
receives a pair of inputs from the previous stage every (N/K) cycles.

      

x0 y0

MUXMUX

+/- +/-

sign(                   )12/,....,1,0 N

REG

BS (>> 0, 1, 2, …, 
N/2-1)

REG

MUXMUX

+/- +/-

BS (>> 0, 1, 2, …, 
N/2-1)

BS (>> 0, 1, 2, …, 
N/2-1)

REG REG

BS (>> 0, 1, 2, …, 
N/2-1)

N/2       N/2

N/2

NN

N/2

xN/2 yN/2

xN yN

N

sign(                         )1,...,12/,2/  NNN

N

stage-1

stage-2

      N/2       N/2

Figure 4. Structure of a 2-stage pipelined recursive cascaded CORDIC. −→ N/2 indicates a right-shift
by (N/2) bit locations. ←− N/2 indicates a sign-extension by (N/2)-bits.

The hardware-complexity of the barrel-shifter in a PRCC can be effectively reduced with a simple
hardwired pre-shifting scheme [7], as shown in the second stage of Figure 4. Only the (N/2) most
significant bits of the input words from the registers can be loaded to the barrel-shifters, because N/2
is the minimum number of shifts in the second stage and the N/2 less significant bits would become
truncated during shifting. Therefore, the barrel-shifter must implement a maximum of N/2 shifts.
The output from the barrel-shifters are loaded into the (N/2) LSBs of the adder or subtractor, and the
N/2 MSBs of the corresponding operand are sign-extended. The barrel-shifter in the second stage
can be implemented using N/2 · dlog2(N/2)e number of MUXes, whereas N · dlog2(N)eMUXes are
required without using hardwired pre-shifting. Therefore, the area complexity of a PRCC can be
reduced by implementing hardwired pre-shifting.

The propagation delay of the barrel-shifter could also be decreased by hardwired pre-shifting.
As the maximum number of shifts in the first and second stages are equal, as shown in Figure 4, each
stage has the same propagation delay TMUX · dlog2(N/2)e, where TMUX is the propagation delay of the
2:1 MUX. Therefore, the critical path of a PRCC is determined by any of its stages. However, the critical
path of a PRCC is less than that of a conventional CORDIC because the maximum number of shifts
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with the barrel-shifters in a PRCC is less than that in a conventional CORDIC. The propagation delay
of the K-stage, L-bit PRCC with N micro-rotations is

TPRCC(N, K, L) = (dlog2(N/K)e+ 1)TMUX + TADDSUB(L). (16)

Note that dlog2(N/K)eTMUX is the delay of a barrel-shifter and another TMUX is the delay of a 2:1
MUX used for input selection.

5. Design Examples and Results

The hardware and time complexities of the proposed designs and conventional designs for known
rotation angles are listed in Table 3. The proposed K-stage PPCC is compared with an NPCC and
FPCC [21], which are two opposing CORDIC versions in terms of pipeline strategy in a cascaded
CORDIC. The proposed K-stage PRCC is also compared with a conventional CORDIC [1] computed
through recursive computation of one stage and opposing non-recursive cascaded CORDIC computed
through N stages. The propagation delay in a conventional CORDIC is the sum of delays of a 2:1 MUX,
barrel-shifter, and adder or subtractor. FPCC has the shortest critical path, which involves an inverter
and an adder or subtractor. The FPCC, NPCC, and PPCC produce an output sample during every cycle
when they are used in the pipelined CORDIC applications, whereas the conventional CORDIC and
K-stage PRCC produce the output sample every N and N/K cycles, respectively. The K-stage PRCC
has K CORDIC units, thus it involves a factor K more adders or subtractors, barrel-shifters, registers,
and MUXes than a conventional CORDIC. However, the area of a K-stage PRCC is less than a factor K
greater than that of a conventional CORDIC due to its hardwired pre-shifting. The propagation delay
of a PRCC can be reduced to be less than that of a conventional CORDIC.

Table 3. Comparison of hardware and time complexities from different CORDIC architectures with N
micro-rotations and L-bit inputs.

Design Propagation Delay Throughput Number of Hardware Elements
ADDSUB BS REG MUX

Conventional [1] TMUX + TBS + TADDSUB(L) 1/N 2 2 2 2
FPCC [21] TFPCC(L) in Equation (2) 1 2N 0 2N 0

NPCC TNPCC(N, L) in Equation (9) 1 2N 0 0 0
K-Stage PPCC TPPCC(N, K, L) in Equation (14) 1 2N 0 2(K− 1) 0
K-Stage PRCC TPRCC(N, K, L) in Equation (16) K/N 2K 2K 2K 2K

Conventional: conventional CORDIC, MUX: 2:1 multiplexor, BS: barrel-shifter, ADDSUB: adder or subtractor,
and REG: register.

We coded Designs-1, 2, 3, 4, and 6 in the design examples in Table 2 in VHDL and synthesized those
using the Synopsys Design Compiler with the TSMC 90 nm general purpose standard CMOS library [26].
A conventional CORDIC [1], 2, 4, and 8-stage PRCCs, and an FPCC [21] were also synthesized and
compared for known rotation angles. The values of L and N were 16. The maximum propagation
delay, throughput per second (TPS), latency required to obtain the first output sample, area, power
consumption at 50 MHz operating frequency, energy consumed per sample (EPS) required to produce a
50 MHz clock output, and area-delay product (ADP) are listed in Table 4.

The conventional CORDIC has the smallest area of 2092 µm2 because it involves only one CORDIC
unit with throughput rate of 26.1 Mega samples per second (MSPS). It is shown that PRCCs have
lower delays than a conventional CORDIC due to the hardwired pre-shifting. Specifically, a 2-stage
PRCC occupies a factor 1.6 greater area than a conventional CORDIC, but it offers nearly double
the throughput in the pipeline CORDIC application, 7.9% less EPS, and 20.7% less ADP. Similarly,
the 4-stage and 8-stage PRCCs provide factors 4.3 and 8.9 larger throughput, 11.7% and 18.3% less EPS,
and 32.3% and 40.4% less ADP compared to the conventional design, respectively. FPCC can produce
an output during every cycle at 549 MHz maximum operating frequency. However, in applications
that do not require such high throughput, NPCC or PPCC can be alternative architectural options by
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removing unnecessary pipeline registers. If the throughput rate of less than 60 MSPS is acceptable,
NPCC becomes the one of the best options as it requires 38.8% less area and uses 11.9% less EPS
compared to the fully-pipelined design. 2, 3, 4, and 8-stage PPCCs produce 109 MSPS, 155 MSPS,
202 MSPS, and 310 MSPS, but require 36.3%, 33.7%, 31.1%, and 20.7% less area with 24.1%, 29.6%,
29.0%, and 23.4% less EPS than FPCC, respectively. The 4 and 8-stage PPCCs offer 45.8% to 41.5%
savings in EPS and 28.7% and 46.6% savings in ADP over a conventional CORDIC. One should note
that the propagation delays of PPCCs obtained by synthesis closely match the estimated propagation
delays shown in Table 2.

Table 4. Performance comparison of the conventional and cascaded CORDIC algorithms based on
synthesis results for known rotation angles (N = L = 16).

Design Delay TPS Latency Area Power EPS ADP
(ns) (ns) (Msps) (µm2) (mW) (mW·ns) (µm2·ns)

Conventional [1] 2.39 26.15 38.24 2092 0.04 13.46 79,998
2-Stage PRCC 2.30 54.34 36.80 3444 0.07 12.39 63,369
4-Stage PRCC 2.22 112.61 35.52 6090 0.14 11.88 54,079
8-Stage PRCC 2.14 233.64 34.24 11,138 0.27 10.98 47,670

NPCC (Design-1) 17.57 56.91 17.57 10,211 0.45 9.05 179,407
2-Stage PPCC (Design-2) 9.15 109.28 18.30 10,644 0.38 7.79 97,392
3-Stage PPCC (Design-3) 6.45 155.03 19.35 11,077 0.36 7.23 71,446
4-Stage PPCC (Design-4) 4.95 202.02 19.80 11,511 0.36 7.29 56,979
8-Stage PPCC (Design-6) 3.22 310.55 25.76 13,244 0.39 7.87 42,645

FPCC [21] 1.82 549.45 29.12 16,710 0.51 10.28 30,412
Conventional: conventional CORDIC, TPS: throughput per second, Power: power consumption at 50 MHz
clock frequency, EPS: energy consumed per sample at 50 MHz clock frequency, and ADP: area-delay product.
Design-n is listed in Table 2.

We designed NPCC, PPCC, and FPCC for unknown rotation angles. The proposed designs for
different number of pipeline stages with different timing constraints were synthesized, and Table 5
lists the synthesis results. Note that 3, 4, and 6 stages are sufficient to produce greater than 100 MSPS,
150 MSPS, and 200 MSPS TPS, which requires 31.3%, 28.1%, and 24.1% less area and 19.0%, 25.2%, and
25.6% less EPS than an FPCC, respectively. From Table 5, we know that remarkable savings in terms of
area and EPS can also be obtained over fully-pipelined designs, even for unknown rotation angles.

Table 5. Performance comparison of the conventional and cascaded CORDIC algorithms based on
synthesis results for unknown rotation angles (N = L = 16).

Design Delay TPS Latency Area Power EPS ADP
(ns) (ns) (Msps) (µm2) (mW) (mW·ns) (µm2·ns)

NPCC 20.29 49.28 20.29 18,161 0.37 7.48 368,486
3-Stage PPCC 9.88 101.21 29.64 19,305 0.31 6.34 190,733
4-Stage PPCC 6.32 158.22 25.28 20,198 0.29 5.86 127,651
6-Stage PPCC 4.52 221.23 27.12 21,336 0.29 5.83 96,438

FPCC [21] 1.91 523.56 30.56 28,111 0.39 7.84 53,692
TPS: throughput per second, Power: power consumption at 50 MHz clock frequency, EPS: energy consumed
per sample at 50 MHz clock frequency, and ADP: area-delay product.

6. Summary and Conclusions

A conventional CORDIC is inherently sequential and involves large latency. It offers low throughput
rate due to its recursive implementation of micro-rotations. In contrast, a fully-pipelined non-recursive
cascaded CORDIC provides very high throughput rate at the cost of large area complexity. However,
such high throughput is not required in many applications. For example when CORDIC is used for
implementing the complex butterfly operation for FFT calculations, the throughput rate of CORDIC
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must match the throughput requirement of the application and the type of FFT implementation. On the
other hand, we see that the critical path does not increase substantially when some of the pipeline stages
are removed from a fully-pipelined cascaded CORDIC. Therefore, we have explored other design choices
for a CORDIC with varying operating frequency, throughput rate, latency, and area complexity. In this
paper, we present a precise estimate of the propagation delays in CORDIC circuits to determine the
critical paths in the pipelined and non-pipelined recursive and non-recursive CORDIC architectures.
We have shown that the propagation delay does not increase significantly and does not depend on the
input word length when adjacent pipeline stages are merged. Instead, the propagation delay depends
on the number of shifts in the CORDIC unit. Therefore, more initial stages in CORDIC can be merged to
form a single pipeline stage compared to the later stages. We proposed an algorithm to search for the
locations of pipeline registers in order to minimize the number of pipeline stages and determine the
desired critical path for a given timing constraint. We have also proposed a hybrid cascaded CORDIC
and recursive CORDIC to increase throughput and save energy per sample. We have shown that PPCC
requires less area with lower EPS than an FPCC, and a PRCC operates with less EPS and has lower ADP
compared to the conventional recursive design.
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Abbreviations

The following abbreviations for various CORDICs are used in this manuscript:

CORDIC COordinate Rotation Digital Computer
FPCC Fully-Pipelined-Cascaded CORDIC
PRCC Pipelined-Recursive-Cascaded CORDIC
NPCC Non-Pipelined-Cascaded CORDIC
PPCC Partially-Pipelined-Cascaded CORDIC
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