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Abstract: There are different proposals in the literature on how to protect pedestrians using warning
systems to alert drivers of their presence. They can be based on onboard perception systems or
wireless communications. The evaluation of these systems has been focused on testing their ability to
detect pedestrians. A problem that has received much less attention is the possibility of generating
too many alerts in the warning systems. In this paper, we propose and analyze four different
algorithms to take the decision on generating alerts in a warning system that is based on direct
wireless communications between vehicles and pedestrians. With the algorithms, we explore different
strategies to reduce unnecessary alerts. The feasibility of the implementation of the algorithms was
evaluated with a deployment using real equipment, and tests were carried out to verify their behavior
in real scenarios. The ability of each algorithm to reduce unnecessary alerts was evaluated with
realistic simulations in an urban scenario, using a traffic simulator with vehicular and pedestrian
flows. The results show the importance of tackling the problem of driver overload in warning
systems, and that it is not straightforward to predict the load of alerts generated by an algorithm in a
large-scale deployment, in which there are multiple interactions between vehicles and pedestrians.

Keywords: vulnerable road users; pedestrian protection; traffic simulation; driver alert systems;
pedestrian-to-vehicle (P2V) communications

1. Introduction

One of the social needs related to road safety is the reduction in the number of accidents that
involve vulnerable road users (VRUs). This group includes cyclists, motorcyclists and pedestrians, and
their common feature is that, in an accident, they are not protected by a body vehicle. This means that
the severity of their injuries is always higher than in the passengers of any other motor vehicle, which
translates to a higher number of fatalities. In fact, the traffic accident statistics show that the number
of road accidents involving VRUs is not decreasing at the same rate as other types of accidents [1].
These antecedents justify that one of the priorities of the research strategy of the European Union is the
development of new information and communication technologies focused on improving the safety
of VRUs.

Specifically, pedestrians are the most vulnerable group of VRUs, since they are the passive part of
accidents and, in the event of an accident, their injuries are usually important. Using a mechanism
to provide additional awareness to drivers seems to be a simple approach to improve the safety of
pedestrians. Some systems with this aim have been proposed in the literature. These warning systems
help drivers to detect, in a better way than using only their senses, situations in which there is a risk
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of an accident. The systems can be based on sensors or on a communication mechanism between
vehicles and pedestrians. The evaluation of these warning systems usually focuses on measuring their
detection ability in different scenarios.

A different problem that has received much less attention in the literature is the potential overload
of drivers by a constant flow of alerts generated in the warning system. This problem is addressed
in this paper, in which we explore strategies for a warning system to reduce unnecessary alerts.
Unnecessary alerts are alerts generated by the warning system in situations that do not lead to real
danger for a pedestrian. In the design of a warning system, there is a trade-off between capturing all
the risky situations and generating so many alerts that the system becomes useless because drivers
cannot pay attention to the alerts.

In this paper, we consider the use of a cooperative warning system based on the connectivity
of pedestrians and vehicles, using Person-to-Vehicle (P2V) short-range wireless communications.
We propose four different alternative algorithms to activate alerts that warn drivers about potential
risks to pedestrians. These algorithms represent different strategies to avoid unnecessary alerts, while
still detecting all real risk situations for pedestrians. We validated the algorithms in real-life tests,
involving real vehicles and pedestrians, to verify the feasibility of the implementation of the system.
Then, to evaluate whether it is possible to reduce the alerts generated without losing alerts that
represent a real danger for pedestrians, we carried out a comprehensive simulation study that allowed
us to evaluate the behavior of the algorithms in an urban scenario.

The contributions of our paper are the following: (I) we identify the need to evaluate, in pedestrian
protection systems, the unnecessary alerts generated by these systems; (II) we show that different
algorithms to decide when to raise an alert in a warning system that behave well when evaluated
in a small-scale situation, can behave very differently in terms of load on drivers when the system
is used in vehicles roaming around urban areas; (III) we propose an algorithm to decide when to
create alerts in a warning system to protect pedestrians that is implementable in real equipment and
reduces unnecessary alerts by focusing on situations with high probability of risk to pedestrians; and
(IV) we develop a simulation framework, based on the SUMO traffic simulator, which allows accurately
representing the interactions of vehicles and pedestrians in realistic urban scenarios. The simulation
framework is an important tool to assess the effects of the deployment of warning systems in the
real world.

The rest of the paper is organized as follows: Section 2 reviews previous works on systems for
VRU protection; Section 3 presents the algorithms analyzed; Section 4 describes the experiments with
the real-life implementation of the algorithms; Section 5 analyzes, by means of simulations, the ability
of the different algorithms to reduce unnecessary alerts for drivers traveling through a city area; and
finally, Section 6 concludes the paper.

2. State of the Art

The analysis of the pedestrian safety conditions [2,3] and the deployment of measures to solve this
problem has been a common trend over the years. In the field of Advanced Driver Assistance Systems
(ADAS), several systems have been proposed to reduce road accidents in the past. Most systems rely on
onboard perception sensors such as computer vision and laser scanning (e.g., [4,5]). Both technologies
have limitations and strengths [6,7]. Computer vision is especially capable of reconstructing a model
of the environment, although problems arise in adverse weather and in changing lighting conditions.
In addition, a high computational cost is required. On the other hand, laser scanners can be a powerful
alternative with similar detection ranges. However, specific and complex algorithms are required,
and the divergence of laser beams is a clear limitation for detecting pedestrians far away from the
vehicle. These limitations motivate the use of sensor fusion in the perception of vehicle surroundings
(e.g., [8,9]).

In the case of pedestrian detection, a special treatment is required due to the clear differences
with other road users, such as their low speed, areas where they move, the ability to change direction,
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their small size compared with vehicles, their unprotected structure, etc. These characteristics imply
that assistance systems should be developed specifically for this purpose. The first works focused on
the use of computer vision, but even today, researchers are proposing novel approaches in this field
(e.g., [10]) to overcome the limitations detected. With the deployment of laser scanners in vehicles for
autonomous and semiautonomous driving functions, these sensors appear to be an alternative solution
and satisfactory results have been found [11,12]. Finally, solutions based on fusion of sensors, computer
vision and laser scanning, provide a promising area of research, even more so when these sensors
are also applied in vehicles for many other purposes [13]. A recent research project, EU PROSPECT
project [14], has followed this research line, investigating how to improve the effectiveness of active
VRU safety systems based on video and radar technologies.

On the other hand, the current deployment of cooperative systems (C-ITS) provides vehicles
with the possibility of accessing a large dataset on what is happening in their short, medium and
long range [15,16]. In this field, the use of Person-to-Vehicle (P2V) wireless communications has
also been proposed to reduce the number of crashes involving VRUs, as a particular case of safety
systems [17–29]. More specifically, the service called “Vulnerable road user protection (pedestrians and
cyclists)” is included in the list of Day 1.5 C-ITS Services [30]. The EU VRUITS project [31] proposes an
interesting architecture for the integration of VRUs in Cooperative ITS systems.

Nevertheless, the development of VRU protection systems based on wireless communications
requires addressing several challenges, different from those being studied for systems based on
on-board sensors, solving issues related to the correct pedestrian detection, the communications
equipment involved, the network congestion caused by exchanged messages, the avoidance of false
negatives or false positives, etc. Several interesting research works have addressed these challenges.
Some of them have focused on the possibility of using smartphones to establish Person-to-Vehicle
communications, and transmit pedestrian’s location data (i.e., beacons). The radio technologies
considered are Wi-Fi direct [19], Wi-Fi [22], 802.11p [26,28] or cellular [24,25,27,29]. In addition, the
new advances in 5G cellular networks, with the arrival of Device-to-Device operations [32], can open
new communication alternatives that can be useful for pedestrian protection systems.

On the other hand, given the large number of pedestrians and vehicles in populated urban areas,
a key issue that has been studied most recently is network congestion (e.g., [18,26]) caused when safety
messages are exchanged by pedestrian and vehicles. These safety messages could be standard C-ITS
messages (e.g., using ETSI ITS-G5 in Europe) [26,28]. These works show that the congestion of the
wireless channel can have a significant impact on the loss and latency of messages. Therefore, there
are different proposals to reduce network congestion, such as to reduce the transmission power in
pedestrians’ smartphones [21] or to adapt the beaconing frequency, e.g., using a higher beaconing rate
when a pedestrian is at a higher risk [18,21,26].

The study of pedestrian protection systems based on collision prediction algorithms has also
received some attention from researchers [21,22,26,29]. The main issue with these algorithms is that
their performance is very sensitive to pedestrians who change their course suddenly, a situation that
can be common. In fact, more elaborate algorithms, using many parameters to predict whether a
collision is going to happen, can exacerbate the problem and lead to false negatives. Additionally, the
evaluation of these protection systems is of paramount importance. The most common approach to
evaluate them has been to deploy small scenarios, for example, a single intersection; and the evaluation
is limited to validate the functionality of the system, e.g., that alerts are generated according to the
design of the solution.

A related problem that has received much less attention is the driver overload caused by the alerts
generated by the protection system, and strategies to reduce unnecessary alerts. This issue is especially
critical when drivers travel around cities with multiple pedestrian-to-vehicle interactions in many
different situations. To evaluate properly the latter, the use of small scenarios with a limited number of
pedestrians and vehicles is not enough; we need experiments in a scenario as close as possible to our
current cities: a highly populated urban area with cars and pedestrians.
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In [21], the problem of the possibility of generating too many warnings to drivers is mentioned,
but the evaluation does not deal with it and focuses instead on the reception of signals at an intersection,
to see if, even in the presence of buildings, the reception is good enough to get the messages needed by
the proposed warning system. In [29], a driver warning system to protect pedestrians using cellular
communications is proposed. This work uses simulations with SUMO to evaluate the use of the
warning system in an urban area. The proposed system warns of potential collisions between vehicles
and pedestrians when, considering the speed of vehicles and pedestrians, it predicts that a vehicle
and a pedestrian are going to end up in the same zone. False negatives and positives of the system
are evaluated. False negatives happen when the system does not raise an alert, but the condition
defined in the system to generate alerts finally occurs. In this system, this could happen because
the prediction can be wrong, for example, because pedestrians can change their speed very quickly.
False positives happen when the system raises an alert, but the condition defined in the system to
generate alerts finally does not occur. Again, this can happen, for example, because of mistakes in
predictions. The evaluation in [29] shows that there are some number of false negatives and positives
in the proposed system. However, the authors of [29] did not provide information about the absolute
number of alerts generated by the system or their length, and did not assess the number of alerts that
are raised correctly according to the warning system, but that do not result in a danger for pedestrians
(unnecessary alerts). For example, the zone to raise an alert in the algorithm proposed in [29] covers the
sidewalks in both sides of the road, thus the system raises an alert when a car moves in one direction
and there is a pedestrian on the sidewalk on the other side of the road. This is not a false positive, as
it is what is expected from the design of the warning system, but it is an unnecessary alert because
the pedestrian is never in danger. Our paper analyzes how this kind of alerts lead to an overload in
drivers that jeopardize the feasibility of the pedestrian protection system.

3. Algorithms for a Communication-Based Warning System to Protect Pedestrians

3.1. The Warning System

Our paper focuses on the use of a communication-based warning system to improve pedestrian
safety. The system tries to warn drivers in situations where their vehicle can become a potential future
risk to pedestrians, so drivers can increase their attention and be more cautious. Therefore, the system
triggers an alert in a vehicle to warn the driver when some conditions are met. The conditions try
to predict in advance that the vehicle might be a risk to a pedestrian. In the system, a vehicle has a
different alert for each pedestrian that can be potentially at risk. An alert will be active as long as
the conditions are still met. As proposed also in [21], the user interface in the vehicle may choose to
aggregate simultaneous alerts to simplify the presentation of the warnings to drivers. We analyzed the
effect of this strategy (see Section 5) by evaluating, besides the absolute number of alerts, the amount
of time in which at least one alert is active.

In this paper, we do not discuss detailed user interface aspects. Alerts may be represented by some
specific sounds or lights or, in advanced systems, information may be projected on the windshield.
Better user interface solutions can help drivers deal with a larger number of alerts, but even so, alerts
are inputs that drivers must process, thus warning systems have to limit these inputs whenever
possible to avoid unnecessarily distracting drivers.

We have designed four different alternative algorithms for the warning system. Each algorithm
represents a different strategy to trigger alerts, so we can compare them. An important requirement
for the algorithms is to ensure the feasibility of their implementation in the real world. That is why
our proposed algorithms only manage simple information that can be readily available with current
technology. This information is both local and remote. Local information, available in the vehicle, is its
location and heading. We also assume that vehicles have a digital map with the location of the crossings
in the area. It would also be possible to equip the crossings with a device advertising its location
(in fact, we use this approach in our experiments in Section 4). Remote information, not directly
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available in the vehicle, is the location of pedestrians. Therefore, we also need some communication
mechanism to send this information from pedestrians to vehicles.

In our system, we assume that pedestrians have a device that sends beacons that include its
location. This could be a dedicated device or an application in a mobile phone. Beacons are received
in vehicles. Although other options are possible, in our proposal, the communication between user
devices and vehicles is based on a direct short-range radio system using Wi-Fi/IEEE 802.11. When a
beacon is received, the algorithm in use in the warning system evaluates the situation and, if required,
triggers an alert. Once an alert is active, a timer is used to deactivate the alert. If the timer expires
without receiving a new beacon that confirms, according to the respective algorithm, the alert situation,
the alert is deactivated. The timer of an alert is restarted each time a beacon that confirms that alert
is received.

3.2. The Algorithms to Decide When Alerts are Active

The four algorithms are defined as follows:

1. Algorithm 0: This is the simplest approach. If a vehicle detects a pedestrian at a distance that is
below a threshold, an alert is triggered for that pedestrian. The threshold is called alert distance
threshold (thad), and is a configurable parameter in the algorithm: a larger threshold means more
time to react but also more and longer alerts. The behavior of Algorithm 0 is presented in Figure 4.
In this figure, and the following, several example scenarios are shown, and those in which an
alert is active are highlighted with a red circle, while those that do not activate an alert have a
green circle. Note that Algorithm 0 is very simple and robust. It does not need to worry about
the course of the vehicle, for example, as it only depends on the distance between pedestrians
and vehicles. On the other hand, Algorithm 0 can be expected to create many unnecessary alerts
that distract the drivers. Therefore, Algorithm 0 is intended as a baseline performance reference
for our work.

2. Algorithm 1 (Figure 1): We add a restriction to Algorithm 0. In this case, an alert is triggered if
the conditions of Algorithm 0 are met, but also the vehicle is close to a crossing. Therefore, an
alert is active when a vehicle is close to a crossing and the distance between the vehicle and the
pedestrian is below thad. The vehicle is considered close to a crossing using the same threshold as
the one used to activate the alerts (thad). The reason for this is that in both cases the requirement
is that a driver must be able to brake before traveling that distance.

3. Algorithm 2 (Figure 2): We add a new restriction to Algorithm 1. To trigger an alert, the vehicle
not only has to be close to a crossing, the crossing must be in front of the vehicle. The crossing
is considered in front of the vehicle if the crossing is located at an angle of ±90◦ around the
direction of movement of the vehicle.

4. Algorithm 3 (Figure 3): We add a new restriction to Algorithm 2. To trigger an alert, the pedestrian
that causes the alert must be in front of the vehicle and near the crossing. Therefore, an alert,
associated with a pedestrian, is active when the vehicle is close to a crossing, the pedestrian is
close to the same crossing, the pedestrian and the crossing are in front of the vehicle, and the
distance between the vehicle and the pedestrian is below thad. The pedestrian is close to the
crossing using a threshold that we call pedestrian safety threshold (thps).
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The four algorithms (see a summary in Table 1) represent improvements to better capture
situations that can lead to a risk to pedestrians. We add restrictions that try to reduce the number
of unnecessary alerts, i.e., triggered alerts that do not correspond to a real danger. For example, we
focus on crossings, because warning drivers about any pedestrian walking on a sidewalk would
create many unnecessary alerts. However, it is worthwhile to alert a driver approaching a crossing
of the existence of a nearby pedestrian who could enter the crossing. Note that there could be some
practical adaptations to this approach without changing the philosophy of the algorithms. Intersections
could be considered as “crossings” by the algorithms even if they do not have a crossing, since they
are places where pedestrians are likely to try to cross the road. Additionally, any pedestrian that
leaves the sidewalk and enters the road could be immediately considered as “close to a crossing” by
the algorithm, but this strategy would require more location accuracy than currently available on
smartphones, although this could change in the future. Another strategy used in the algorithms is to
focus on situations in front of the vehicle and not behind.

Table 1. Summary of algorithms.

Algorithm Conditions

Algorithm 0 DVehicle−pedestrian < thad

Algorithm 1
DVehicle−Pedestrian < thad
DVehicle−Crossing < thad

Algorithm 2
DVehicle−Pedestrian < thad
DVehicle−Crossing < thad

Crossing in front of vehicle

Algorithm 3

DVehicle−Pedestrian < thad
DVehicle−Crossing < thad

Crossing in front of vehicle
Pedestrian in front of vehicle

DPedestrian−Crossing < thps

The number of alerts generated by an algorithm is of key importance for its feasibility. Ideally,
we would like to trigger alerts only when a situation is going to lead to a risk for a pedestrian, and
as early as possible. However, drivers would end up ignoring an alert system that generates too
many unnecessary alerts. Therefore, the warning system must capture risky situations while avoiding
unnecessary alerts. To determine the best approach to create alerts to protect pedestrians, we can
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modify the distance between the vehicle and the pedestrian where we begin to trigger alerts (thad),
and the type of algorithm (the intelligence of the algorithm in detecting potential risky situations).

In this paper, we show that some of the algorithms do not achieve the expected improvements in
reducing the number of unnecessary alerts. Therefore, it is important to understand that the design of
these algorithms, which try to predict risky situations for pedestrians, is a complex issue, especially
when considering the global effects as our research does.

3.3. Configuration of the Algorithms

In the algorithms, we have two configurable parameters, the alert distance threshold (thad) and
the pedestrian safety threshold (thps, only for Algorithm 3). We study next how to choose appropriate
values for those parameters.

3.3.1. Alert Distance Threshold

In all algorithms, there is no alert if the vehicle is far from pedestrians but, when the vehicle
approaches a pedestrian, an alert can be triggered when the distance from the vehicle to the pedestrian
reaches the thad. Therefore, under ideal conditions, an alert will be triggered at a distance from the
vehicle to the pedestrian equal to thad. Ideally, to minimize the number of alerts, we would like thad
to be as small as possible. However, we also need thad to be large enough to allow a vehicle to stop
before traveling that distance. There is a rate of deceleration, decel, which allows the vehicle to stop at
thad. We can relate thad, decel, and the initial speed of the vehicle, siveh , by Equation (1):

thad = tr × siveh +
0.5 ×

(
siveh

)2

decel
(1)

In Equation (1), the first addend accounts for the distance traveled before starting to brake due to
the driver reaction time, tr; and the second corresponds to the distance traveled during braking.

We must choose a thad that allows the vehicle to brake at a reasonable deceleration rate. Modern
cars can achieve deceleration rates of more than 9 m/s2 [33]. We select a more comfortable target
deceleration rate of 5 m/s2. We use 60 km/h (16.67 m/s) as the siveh , which is higher than the legal
limit for urban traffic in many cities, being a conservative choice. We assume that the driver reaction
time is 0.5 s [34]. With these numbers, and according to Equation (1), the thad must be greater than
36.11 m. In our simulation work, described in Section 5, we explore different values of thad, namely
40 m, 70 m, and 100 m. This allows us to study the effect of providing different safety margins to
drivers to deal with alerts.

3.3.2. Pedestrian Safety Threshold

In Algorithm 3, this threshold, thps, defines the distance from the pedestrian to the crossing to
trigger alerts. thps must be large enough for a vehicle to react, avoiding putting the pedestrian at risk.
The earliest time in which a danger is possible is after the pedestrian walks the distance to reach the
crossing (thps). Thus, in the worst case, a vehicle must be able to stop in the time tpc, which is the time
the pedestrian needs to reach the crossing:

tpc =
thps

sped
(2)

where sped is the speed of the pedestrian. The deceleration rate needed in the vehicle to stop in the
time tpc is:

decel =
siveh

tpc − tr
(3)

For example, if we want a decel ≤ 5 m/s2, with siveh = 60 km/h = 16.67 m/s and sped = 1.6 m/s,
applying Equations (2) and (3) results in that thps must be greater than 6.13 m assuming a driver
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reaction time of 0.5 s [34]. We chose a conservative value of thps = 10 m for our simulations presented
in Section 5.

4. Evaluation of the Feasibility of the Defined Alerts

In this section, we evaluate the feasibility of implementing the proposed algorithms in the real
world. In the tests, the vehicles were fitted with physical communications equipment, and pedestrians
were equipped with mobile phones with an installed application. The tests were carried out on
the closed test tracks of the University Institute for Automobile Research (INSIA) of the Technical
University of Madrid. The equipment used is the following:

1. Vehicular communication modules. These modules were based on an AR9220 chipset that uses
the ath9k modified driver to allow the 802.11p bands. The operating system that incorporated the
modules was a Debian wheezy with a 3.19.0 kernel version. The kernel was configured to allow
OCB (Outside the Context of a BSS) mode in the ath9k driver. This module also acts as a Wi-Fi
router, which enables a 2.4 GHz network with neighboring devices (we used this communication
functionality in our experiments). Finally, the module included the Global Navigation Satellite
System NV08C-CSM chipset (NVC). It is an integrated GLONASS + GPS + GALILEO + SBAS
satellite navigation receiver for use in various applications that demand low cost, low power
consumption and uncompromised performance. One module was installed in the vehicle while
another module was used to identify the position of the pedestrian crossing.

2. Motorola Nexus 6 smartphone. This phone was used to position the pedestrian and send this
information to the vehicle. In particular, pedestrians used the smartphone to become part of
the V2X environment. The smartphone oversaw the execution of two actions. On the one hand,
it used its geo-position libraries to calculate its geographical coordinates. On the other hand,
the smartphone connected automatically to the Wi-Fi network of the vehicle V2X on-board unit
(OBU) when the phone was within its range of coverage. An ad-hoc application installed in the
smartphone retrieved the position and sent it (in a custom message) to the vehicle (the OBU).
In the vehicle, the pedestrian was added to the list of elements that navigates in the surroundings,
and the pedestrian protection algorithms were applied.

3. Trimble® R4 DGPS receiver provided an update rate of 10 Hz and worked with differential
correction via GPRS. Differential correction was performed by software NTRIP Client 2.0 and
connected to a server of differential correction NTRIP (Networked Transport of RTCM via Internet
Protocol) via a smartphone connection and Bluetooth GPS equipment. Given its high accuracy,
this equipment was used for the validation of the positions in the preliminary calibration studies
and during the tests to assess those cases in which the positioning errors could imply errors in
the warnings (false positives or false negatives).

The tests performed were as follows:

1. Estimation of positioning errors (in static and dynamic conditions)
2. Tests for the analysis of the warning system

4.1. Positioning Errors Estimation

Although the accuracy of satellite positioning depends on the conditions of the site and when the
measurements are taken, these tests were intended to have a rough estimate of the margins of error
that can be considered as usual in the equipment used later in the analysis of the warning system.
Since the warnings can be very dependent on the correct positioning, it was necessary to evaluate to
what extent the algorithms’ response can be influenced by the positioning errors.

Firstly, we analyzed the dispersion in the positioning of a static position with the three pieces of
equipment used during a 2-h test. The dispersion of the Trimble DGPS receiver was very low (0.02 m)
in comparison with the other two (2.15 m and 3.27 m for the NVC GPS of the communication modules
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and the mobile phone, respectively), thus it was taken as reference. On the other hand, the mobile
phone presented a somewhat different behavior from the other two receivers. Because the phone
includes accelerometers, it can estimate whether it is moving or not, thus when it does not detect
movement, it offers a single fixed position for long intervals of time, which is only modified in certain
instants. Then, it takes another position that is maintained again a certain time until the conditions
of the satellites change significantly. This behavior differs from the oscillations of the other receivers,
which fluctuate over time, without fixing a position due to the knowledge of being in a static location.

After that, we performed a test on the test track with a vehicle that equips three receivers in
very close positions (two modules with NVC GPS and the Trimble DGPS receiver). The vehicle
traveled following a path with continuous changes of direction, registering the differences in the
positioning between the NVC GPS of the vehicle communication modules and the Trimble DGPS
receiver (our reference). Figure 5 shows the registered positioning errors in the vehicle communication
modules, errors that are bounded below 2 m, after an initialization time. In this figure, and the
following ones, the axes represent the recorded trajectories in Universal Transverse Mercator (UTM)
coordinate system. Furthermore, we also verified the high repeatability in the response of the two
communication modules, working under the same conditions, with a difference of less than 20 cm.

Finally, it should be noted that these results are dependent on the test conditions, but they can
provide an idea of the order of magnitude of expected errors. Next, the performance of the proposed
warning system was assessed, and the extent to which these positioning errors have influence on
warnings was analyzed.

Electronics 2019, 8, x FOR PEER REVIEW 10 of 26 

 

receivers, which fluctuate over time, without fixing a position due to the knowledge of being in a 
static location. 

After that, we performed a test on the test track with a vehicle that equips three receivers in very 
close positions (two modules with NVC GPS and the Trimble DGPS receiver). The vehicle traveled 
following a path with continuous changes of direction, registering the differences in the positioning 
between the NVC GPS of the vehicle communication modules and the Trimble DGPS receiver (our 
reference). Figure 5 shows the registered positioning errors in the vehicle communication modules, 
errors that are bounded below 2 m, after an initialization time. In this figure, and the following ones, 
the axes represent the recorded trajectories in Universal Transverse Mercator (UTM) coordinate 
system. Furthermore, we also verified the high repeatability in the response of the two 
communication modules, working under the same conditions, with a difference of less than 20 cm. 

Finally, it should be noted that these results are dependent on the test conditions, but they can 
provide an idea of the order of magnitude of expected errors. Next, the performance of the proposed 
warning system was assessed, and the extent to which these positioning errors have influence on 
warnings was analyzed.  

 

Figure 5. Differences in positioning. 

4.2. Warning System Analysis 

We have seen that it is on the mobile phone where we found larger errors in positioning. 
Therefore, we analyzed the effect on our proposed algorithms of positioning errors in the mobile 
phone. For this analysis, we address the six scenarios in Figures 1–4, which define key situations for 
the behavior of the algorithms of the warning system. To replicate the scenarios, we defined four test 
configurations involving a vehicle and a static pedestrian (see the testbed architecture in Figure 6). 
Table 2 shows the configurations used in the experiments. In each test, the vehicle followed a straight 
line, first arriving at the pedestrian location, afterwards at the crossing, and then leaving the crossing 
behind. Depending on the configuration, i.e., the distance between the pedestrian and the crossing, 
the activation and deactivation points of the alerts triggered by the different algorithms of our system 
were different. In these tests, we considered that 𝑡ℎ  is 10 m. This threshold is much lower than the 
values that we would use in practice, but this fact simplified the tests and, as we were interested in 
studying the impact on the system of positioning errors, this low 𝑡ℎ  highlighted the effects of 

Figure 5. Differences in positioning.

4.2. Warning System Analysis

We have seen that it is on the mobile phone where we found larger errors in positioning. Therefore,
we analyzed the effect on our proposed algorithms of positioning errors in the mobile phone. For this
analysis, we address the six scenarios in Figures 1–4, which define key situations for the behavior of
the algorithms of the warning system. To replicate the scenarios, we defined four test configurations
involving a vehicle and a static pedestrian (see the testbed architecture in Figure 6). Table 2 shows the
configurations used in the experiments. In each test, the vehicle followed a straight line, first arriving
at the pedestrian location, afterwards at the crossing, and then leaving the crossing behind. Depending
on the configuration, i.e., the distance between the pedestrian and the crossing, the activation and
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deactivation points of the alerts triggered by the different algorithms of our system were different.
In these tests, we considered that thad is 10 m. This threshold is much lower than the values that
we would use in practice, but this fact simplified the tests and, as we were interested in studying
the impact on the system of positioning errors, this low thad highlighted the effects of those errors.
More practical distances were used in our simulations to reproduce real potential scenarios, but these
tests provided upper limits for errors in physical implementations.
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Table 2. Test configurations.

Configuration Distance between Pedestrian and Crossing (m) 1 Scenario Defined in Section 3

1 25 1,2
2 15 3
3 0 4,5
4 5 6

1 The pedestrian was placed before the crossing in the vehicle movement direction.

In all tests, the crossing was located using a communication module (the same type as the one
used in the vehicle). The position of the pedestrian was obtained using a mobile phone and the DGPS
receiver, which allowed us to compare the location provided by the mobile phone with an accurate
reference (see Figure 6). For each configuration, we analyzed when each of the algorithms had alerts
activated if the pedestrian was located using the mobile phone, as well as if the pedestrian was located
using the DGPS receiver. Each test configuration was repeated 30 times. It should also be noted that,
in the same test, by having the positions of the different GPS receivers, it was possible to determine the
activations of alerts by each of the four algorithms. Figure 7 shows an example of the system operation.
It displays the position of the crossing, the position of the pedestrian (provided by mobile phone
and DGPS receiver), the vehicle path, and when the different types of alerts are active. In this figure,
when an alert is indicated as active, all the alerts with lower number are also active. For example, the
“Algorithm 3 alert” label implies that Algorithms 0–2, alerts are also active; and the change from label
“Algorithm 3 alert” to “Algorithm 2 alert” implies that the alert of Algorithm 3 has been deactivated.
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Table 3 shows the results obtained in the set of 30 trials. We observed a high reliability of the
algorithms, with low dependence on the errors of the mobile phone positioning. These errors (deviation
DGPS-mobile phone in Table 3) were smaller than 2 m except in the case of Configuration 2, where
we recorded deviations greater than 5 m. We evaluated how these deviations influenced the alerts
generated by each of the algorithms, comparing the results with the mobile phone and the reference
provided by the DGPS receiver. Table 3 shows the differences detected in the amount of time alerts
were active for the different algorithms and test configurations. Specifically, it shows, for each type of
alert (algorithm): the total duration of alerts accumulated in all tests in the same configuration, the
sum of times when the alerts using the DGPS receiver and using the mobile phone were different
(discrepancies in alerts), and the maximum time of this difference recorded for any of the tests.

We can see in Table 3 that, in Configuration 1, which includes Scenarios 1 and 2 where only
Algorithm 0 activates alerts but not the others, we obtained the expected results. In Scenario 3, no
discrepancies were detected either.

Table 3. Results of the warning system performance under real positioning conditions.

Configuration

1 2 3 4

Deviation DGPS-mobile phone (m)
Average value 1.01 2.83 1.20 1.61

Standard deviation 0.37 1.01 0.31 0.29

Total duration of alerts (s)

Algorithm 0 33.15 30.30 30.15 27.45

Algorithm 1 0 17.70 26.85 24.30

Algorithm 2 0 14.55 9.45 7.65

Algorithm 3 0 2.55 9.45 7.35

Total (s) 0 2.73 0 0.75

Discrepancies in alerts Total (%) 0 4.19 0 1.12

Maximum (s) 0 0.22 0 0.14

In Configuration 2, the deviations in the positioning were higher than in the other cases, as
previously discussed. In this scenario, alerts with Algorithms 0–2, but not with Algorithm 3 should
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have been recorded. However, we observed that alerts with Algorithm 3 were activated for a total
of 2.55 s (false positive). In any case, the discrepancies in the duration of the alerts did not exceed
1 s in this scenario; despite the high error in the positioning, the longest discrepancy was 0.22 s for a
specific test. Figure 8 shows one of the trials in which a false positive occurred. The figure shows the
trajectory of the vehicle, and the position of the pedestrian and the crossing. As it can be appreciated,
the positioning errors for the smartphone were very high so that, although the configuration was
according to Configuration 2, in which the pedestrian was 15 m from the crossing, the data provided
by the phone resembled more Configuration 4, with the pedestrian at 5 m. In this way, with an accurate
positioning, Algorithm 3 would not raise an alert in this test, since the pedestrian and the crossing
could not be simultaneously located less than 10 m away from the vehicle and in front of it at any
moment. However, the positioning error for the smartphone caused the system to consider that both
elements were in front of the vehicle in a radius of 10 m, thus the alert was triggered.

Finally, in Configuration 4, discrepancies in the alerts were recorded for 0.75 s, representing 1.12%
of their total duration. Figure 9 shows the differences in alert generation between the smartphone
GPS and the DGPS for a trial of Configuration 4, in which the duration of the alert of Algorithm 3
considering the positioning of the smartphone was longer than with the positioning of the DGPS
receiver. However, the discrepancy was very small and negligible in a practical application because a
driver in practice could not notice the maximum discrepancies.
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In the tests, we found that, despite the positioning errors, the system generated a low percentage
of false positives (i.e., instances in which the system triggers an alert but the conditions defined in the
algorithm to raise alerts have not really happened). Besides, it did not have false negatives (i.e., there
were no instances in which the system omitted alerts when it should have triggered one). Even in a set
of tests in which recorded positioning errors were quite high (higher than what static and dynamic
positioning tests have provided previously), the warnings were only slightly influenced. Therefore,
we can conclude that the defined algorithms are robust against positioning inaccuracies, and their
practical implementation is viable even on basic equipment such as mobile phones and communication
modules in vehicles.

5. Evaluation of the Behavior of the Algorithms Using Simulation

In this section, we analyze the behavior of our proposed four algorithms. We focus on the number
and duration of alerts that were generated, which is related to the mental load that the warning
system produces on drivers. These aspects must be studied in a large-scale deployment to accurately
represent the interactions of many vehicles and pedestrians as they travel through a city. Large-scale
deployments in the real world are difficult and expensive, and it is hard to achieve proper conditions
at any time, thus a good approach is to use simulations. However, to guarantee the validity of the
results, it is of crucial importance to use realistic traffic simulators.

5.1. Simulation Tool

For representing a realistic urban scenario, we chose the SUMO (Simulation of Urban MObility)
road traffic simulator [35,36]. SUMO provides an accurate modeling of microscopic vehicular traffic,
simulating the behavior of pedestrians and vehicles. SUMO provides several models, with different
parameters, for representing vehicles’ behavior. Our simulations used the default models and
parameters in SUMO version 0.30.0. The key components were the car-following model, which was the
SUMO extended Krauss model [36]; and the lane changing model, which was the one described in [37].
The interaction of vehicles and pedestrians at crossings was regulated by the SUMO pedestrians’
model. In this model, using what is called crossings without priority in SUMO, pedestrians wait to
cross if they do not have enough time to do so before any approaching vehicle reaches the crossing,
but vehicles stop at crossings if any pedestrian is crossing.
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In our simulations, vehicles were controlled by SUMO. They did not react to the alerts; SUMO
by itself avoids accidents, although it can be quite aggressive allowing vehicles to get very close to
pedestrians. The aim was to study if the warning system helped to detect situations that represent
a real risk for pedestrians. For this reason, in our simulations, we did not want to use alerts to stop
vehicles. In this way, we could evaluate whether each alert was correct (i.e., necessary). For the same
reason, we chose to use crossings without priority for pedestrians, thus SUMO did not try to stop
vehicles to allow pedestrians to cross. In our SUMO simulations, it was the pedestrian who stopped to
avoid a collision (to allow the vehicle to pass) but, if the pedestrian had to stop, our evaluation detected
this as a risky situation (i.e., there would have been an accident if the pedestrian had not stopped).

The other key component of our simulation framework was MASON [38,39]. MASON is a
multi-agent simulation toolkit that allows efficiently implementing applications with many individual
entities that interact with each other. We used MASON to control the SUMO simulation, which means
that MASON started and decided when to advance each step of the SUMO simulation. Each vehicle
and pedestrian in SUMO was represented by an agent in MASON. SUMO provided the behavior of
vehicles and pedestrians from the point of view of traffic interactions. MASON, in each step of the
simulation (100 ms of time in the simulation), obtained the current state from SUMO, with all the
information about vehicles and pedestrians. The sending and reception of beacons, processing of the
alert algorithms, and statistics collection were done in MASON.

The integration of SUMO and MASON was done using TraCI (Traffic Control Interface), provided
by SUMO. TraCI is a protocol that allows access to a SUMO running simulation. We used TraCI4J [40],
a Java implementation of TraCI (MASON is a Java program). TraCI also allows the external program,
MASON in our case, to send commands at any point in time to control individual vehicles. MASON,
using TraCI, can instruct vehicles in SUMO to react to alerts (for example, by braking). However, as
explained above, in our simulations, vehicles did not react to alerts and, therefore, we did not use this
TraCI functionality.

5.2. Urban Area Map

The simulations took place in an urban area (800 m × 700 m) of the city of Madrid (Spain). The map
is shown in Figure 10. The size of the urban area, and the presence of different types of streets, allowed
us to study multiple interactions between vehicles and pedestrians in diverse situations. The map was
obtained from OpenStreetMap (OSM) [41]. We used JOSM [42], a Java editor for OpenStreetMap, to
extract the desired area, and to verify the junctions and connections. Finally, using the NETCONVERT
tool of SUMO, the map was converted to the XML format that SUMO requires (containing information
about roads, traffic signs, junctions, crossings, etc.).

The legal speed limit of the roads of the map is 50 km/h. The maximum speed of a vehicle in the
simulations was obtained from a normal distribution centered on the speed limit, with deviation equal
to 0.1, and capped at 20% and 200% of the speed limit. This means that, in any simulation, 95.44% of
the vehicles had a maximum speed between 40 km/h and 60 km/h, and no vehicle had a maximum
speed below 10 km/h or above 100 km/h. Besides, vehicles try to adapt their speeds to the traffic
conditions according to the vehicle model in SUMO (e.g., reducing the speed when approaching an
intersection or when the vehicle in front is slower and overtaking is not possible).
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The target speed of pedestrians was 5.76 km/h (1.6 m/s). This value is consistent with [43], a
study measuring the walking speed in different countries that found that it is between 3.93 km/h and
5.92 km/h. In SUMO, pedestrians try to walk at the target speed, but they adapt their movement
to the traffic conditions, and they also decelerate randomly, at each step, a maximum of 0.2 of the
target speed. This is according to the SUMO pedestrian model, and it achieves a natural behavior
in which pedestrians walk at a varying speed close to the target speed. Pedestrians walked along
the sidewalks available on all streets on the map. Pedestrians could only cross the roads using the
pedestrian crossings available at every intersection. As mentioned above, none of the crossings on the
map had traffic lights to give priority to pedestrians.

We also needed information about buildings in the scenario, since buildings can interfere with the
reception of beacons sent by pedestrians. We generated the buildings manually. We used a custom
developed tool, and created a building filling each block of the map. This is a harder environment
than the reality, where there are no buildings in some of the blocks, or the buildings do not cover
all the surface of a block between roads. Figure 11 presents the map as seen by MASON, with the
information of buildings (in blue) and crossings (small red lines in intersections). The borders of the
map were imported from SUMO via TraCI. The coordinate system used in SUMO was mapped to the
map in MASON.
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Figure 11. Representation of the map in MASON.

5.3. Traffic Conditions

Using SUMO tools, we defined some vehicular and pedestrian traffic. The arrival processes were
based on a binomial distribution. During an hour, each second an arrival happened with probability

1
inter arrival time . The inter arrival time of vehicles entering the simulation was 7.2 s (therefore, on
average, 500 vehicles participated in each simulation). Each vehicle had a trip associated, i.e., it had to
go from one random point in the map to another (separated by at least 600 m). Pedestrians also entered
the scenario during an hour. We explored different pedestrian densities: inter arrival times of 12 s
(300 pedestrians, on average, in the simulation), 7.2 s (500 pedestrians), and 5.13 s (700 pedestrians).
Each pedestrian also had a trip associated, i.e., she/he had to go from one random point in the map to
another separated at most 1000 m.

The routes, i.e., how to go from the origin to the destination defined in the trips, were calculated
using the DUAROUTER tool provided by SUMO. It applied the Dynamic User Assignment (DUA)
algorithm [44,45] to calculate the routes in such a way that it was not possible to reduce the travel cost
of any of the routes by going through another path. The DUA algorithm calculated these routes using
an iterative process that we limited to 30 repetitions. With this process, we obtained the starting time,
the starting position in the map, and the intended route for each vehicle and pedestrian participating
in the simulations (see Supplementary Materials, The SUMO map, the SUMO configuration file for
each simulation, the trips, and the routes are available at http://www.it.uc3m.es/isoto/protection_of_
VRU.zip. We hope that other researchers might be able to use the scenarios as a test case to compare
different systems to protect VRUs). During the simulations, to travel the routes, SUMO applied the
microscopic traffic model, realistically simulating the behavior of vehicles and pedestrians.

To characterize the traffic in our simulations, we calculated the average stay time of a vehicle in
the scenario, which was 134.92 s, and the average stay time of a pedestrian, which was 344.82 s.

5.4. Beacon System

Our four algorithms for the warning system (Table 1) are based on the use of beacons sent by
pedestrians to announce their locations. In our simulations, pedestrians sent beacons each 300 ms.

http://www.it.uc3m.es/isoto/protection_of_VRU.zip
http://www.it.uc3m.es/isoto/protection_of_VRU.zip
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This period must be low enough to allow a reasonable update of the pedestrians’ position, thus
pedestrians should not be able to walk a significant distance in that period.

We did not use a radio propagation model; instead, we limited the range of beacons to 100 m
and direct line of sight. Therefore, beacons were received in vehicles within 100 m of the pedestrians
sending them, but only if there was a direct line of sight between the pedestrian and the vehicle.
This means that, in our simulations, beacons did not travel through buildings although, in reality,
buildings decreased the range of propagation of beacons and this does not necessarily translate into a
lost beacon.

The timer that we used to deactivate alerts was initialized to 1 s. Therefore, after 1 s without
receiving a beacon confirming an alert, the alert was deactivated. This value protected the system
from wrongly deactivating alerts when, for example, beacons were lost. In our configuration, with
300 ms between beacons, with 1 s, we gave time to receive three beacons updating the location of the
pedestrian before deactivating an alert (we could lose two consecutive beacons). The timer also meant
that alerts remain active longer than would be needed, while the system confirmed that the alert was
not valid anymore, but this additional time is negligible.

5.5. Configuration of the Simulations

For each pedestrian density (300, 500, and 700 pedestrians), we had five different sets of trips of
pedestrians and vehicles. This allowed us to have five different simulations for each scenario, to get
averages and 95% confidence intervals.

We evaluated each algorithm defined in Section 3. The other parameter that we explored is
the threshold of the distance between a vehicle and a pedestrian to trigger alerts (the alert distance
threshold, thad). As discussed in Section 3.3, we considered three different values for this threshold:
100 m, 70 m, and 40 m. With lower thresholds, we had fewer alerts but also less time to react to a
potential risk situation.

In Algorithm 3, we also have the pedestrian safety threshold, thps, which we set equal to 10 m, as
discussed in Section 3.3.

5.6. Simulation Results

To validate the correct behavior of the warning algorithms, we first needed to verify that they
created alerts for any situation that results in a danger to a pedestrian, i.e., that the filtered alerts were
really unnecessary alerts. We tested this by defining, in our simulations, a dangerous situation as one
in which a pedestrian was at a crossing or within 1 m of the endpoints of it, and a vehicle was close and
approaching (the distance between the pedestrian and the vehicle was less than 5 m and decreasing).
We counted the number of times a dangerous situation happened (on average, we had 174 dangerous
situations in the simulations with 300 pedestrians, 285 in those with 500 pedestrians, and 379 in those
with 700 pedestrians). These numbers were measured using real distances in the simulator to avoid
potential interference due to lost beacons (thus, it was the real number of dangerous situations). Then,
for each dangerous situation detected, we checked, for each algorithm, if an alert was active for that
dangerous situation. All algorithms achieved a 100% detection rate of dangerous situations, i.e., each
algorithm had an active alert for each dangerous situation. Therefore, the algorithms did not have
false negatives.

Once we verified that the algorithms did not lose real dangerous situations, we analyze their
performance. First, we look at the average number of alerts triggered in each vehicle during its travel
(Table 4). An excessive number of alerts means overloading the driver, thus the alerts lose their
usefulness. As we can see in Table 4, an appropriate algorithm could result in a significant saving in
the number of alerts. More specifically, Algorithm 3 triggered at least 50% fewer alerts than the other
algorithms for the same alert distance threshold. It is interesting also that Algorithms 1 and 2 failed to
reduce the number of alerts, and Algorithm 2 even increased it in many cases. We tracked the reason in
the simulations and, to show it, we describe next an example of a typical situation of vehicle–pedestrian
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interaction. A pedestrian is at half distance between two crossings (at a distance shorter than thad from
each of them). The two crossings are separated by a distance longer than thad. A vehicle moves from
one place ahead of the first crossing to another behind the second crossing. In this scenario, Algorithm
0 would have just one alert (around the location of the pedestrian). Algorithm 1 would also have one
alert (as the two crossings are separated by a distance shorter than two times thad, the vehicle has one
crossing or the other within a distance equal to thad). Algorithm 2 would have two alerts (the first
one finishes after passing the first crossing, and the new one activates when reaching a distance to
the second crossing equal to the thad). Finally, Algorithm 3 would have none (if the pedestrian is not
within a distance equal to thps of any of the crossings) or just one.

Even more interesting than the number of alerts is the amount of time that a vehicle is in an alert
condition during the simulation. This is shown in Table 5. We defined an alert condition as a situation
in which the vehicle has one or more active alerts. Therefore, the amount of time in alert condition is
the amount of time in which the vehicle had at least one active alert. These times must be compared
with the total time a vehicle spends in the simulation (on average 134.92 s). We can see once again that
a good algorithm can reduce the amount of time drivers are subjected to the stress of alert signals and,
in particular, Algorithm 3 achieved a significantly shorter amount of time in alert condition compared
with the other algorithms. Note also, that even if Algorithm 2 resulted in a slight increase in number
of alerts compared to Algorithm 1, it reduced the time in alert condition. Going back to the example,
Algorithm 2 creates two alerts for one alert in Algorithm 0, but the time in alert condition is reduced as
the first alert ends after passing the first crossing, while in Algorithm 0 the alert remains active.

Summarizing, Algorithm 3 achieved important savings in both the number of alerts triggered and
the amount of time in alert condition. Algorithms 1 and 2, even being more elaborate than Algorithm 0,
failed to achieve the expected improvements. The important point here is that algorithms with good
properties, when evaluated locally, could result in poor behavior in the multiple interactions that
happen while travelling through a city.

Finally, we tested if the algorithms, and more specifically Algorithm 3, still warned drivers with
enough time to react to a dangerous situation. In Table 6, we show the average distance between
a vehicle and a pedestrian when alerts were triggered (the alert trigger distance) for the different
algorithms and the different thad. Comparing the alert trigger distance with the thad is a good measure
of the effect of the algorithm on the time provided to the driver to deal with the alert. The maximum
possible alert trigger distance is thad, because the different algorithms never trigger an alert when the
distance between the vehicle and the pedestrian is longer than the threshold. Therefore, ideally, we
would like the alert trigger distance to be equal to thad. However, the alert trigger distance ended up
being shorter than the threshold due to lost beacons, to conditions in the algorithms that did not allow
an alert even when the distance between the vehicle and the pedestrian was lower than thad, and to
the times when vehicles or pedestrians entered the scenario.

Algorithm 3 achieved a good trigger distance in alerts. It was usually close to thad (between 82%
and 90% of the threshold) and comparable to, or better than the alert trigger distance of the other
algorithms. Only Algorithm 0 achieved longer trigger distances in alerts for all scenarios. However,
note that it is better (in terms of fewer alerts generated, less time in alert condition, and longer trigger
distances) to use Algorithm 3 with a longer thad (e.g., 100 m) than to decrease the thad of Algorithm 0
(e.g., to 70 m or even 40 m).
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Table 4. Average and Confidence Intervals (95%) of the number of alerts triggered per vehicle for different pedestrian densities and thad.
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To perform a more detailed analysis of how Algorithm 3 behaved in terms of providing sufficient
margin to drivers to avoid accidents, we next studied the decelerations needed to stop vehicles in time
to avoid accidents for each alert of Algorithm 3. This analysis was similar to the reasoning presented
in Section 3.3 to configure the thresholds used in the algorithms, but we used real distances and speeds
measured in the simulations instead of the theoretical objectives utilized to define the thresholds.
The aim of this analysis was to verify that, for all alerts, the deceleration needed to avoid an accident
was within the limits of what can be achieved with current cars. Modern cars can achieve deceleration
rates of more than 9 m/s2 [33] therefore we used this value as a reference. Algorithm 3 controlled two
different aspects to guarantee the protection of a pedestrian: the distance between the vehicle and
the pedestrian and the distance between the pedestrian and the crossing. If a pedestrian is far from
a crossing, it does not really matter if the vehicle is close to the pedestrian, as there is no risk until
the pedestrian reaches the crossing. Therefore, for a particular alert, the deceleration needed to avoid
an accident, decel, is the minimum of two values: the deceleration needed to stop the vehicle before
reaching the pedestrian location and the deceleration needed to stop the vehicle before the pedestrian
reaches the crossing. In both cases, we considered a reaction time of the driver to the alert of 0.5 s [34].
Therefore:

decel = min

{
0.5 ×

(
siveh

)2

dvp − tr × siveh

,
siveh

tpc − tr

}
(4)

where

tpc =
dpc

sped
(5)

and siveh is the initial speed of the vehicle when the alert was triggered (measured in the simulation);
dvp is the distance between the vehicle and the pedestrian when the alert was triggered (measured in
the simulation); tpc is the time that the pedestrian needed to walk the distance dpc; dpc is the distance
between the pedestrian and the crossing when the alert was triggered (also measured in the simulation);
sped is the speed of the pedestrian; and tr is the driver reaction time to the alert. For sped, we used
the expected maximum speed of pedestrians (1.6 m/s) instead of the actual speed of the pedestrian
measured in the simulation when the alert was triggered, because the speed of the pedestrian could
increase after the alert, given that the pedestrian may not be aware of the danger of an accident.

In this analysis, we ignored the alerts triggered just when a vehicle or pedestrian entered the
simulation, as this could happen at any distance from pedestrians to vehicles. In Figure 12, we show,
for any other alert triggered by Algorithm 3 in the five simulations with 700 pedestrians and thad equal
to 40 m, the deceleration that would be needed to avoid an accident. In the worst case, the deceleration
was 6.03 m/s2, which is within the braking possibilities of modern cars.
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5.7. Discussion

Algorithm 3 bases the decision to trigger an alert on the distance between the vehicle and the
pedestrian, but considering only situations that happen in front of the vehicle and in places where
pedestrians can cross the road. We showed that the algorithm did a good job of identifying situations
in which a vehicle can become a danger to a pedestrian, that the alerts were generated with enough
time to deal with the situation in a safe way, and that the load generated in drivers with unnecessary
alerts was significantly reduced compared with other algorithms.

Although the behavior of Algorithm 3 achieved our initial objectives, there are potential
improvements that we plan to analyze in our future research. The weakest property of the algorithm
is the control of the worst case of the safety margin within which alerts are activated (measured
as distance, or deceleration needed to stop the vehicle in time). The alert distance threshold, thad,
controls the average safety margin and influences the worst case. However, because of the angle
check to generate the alerts, which is used to consider only what happens in front of the vehicle, it is
possible that certain maneuvers (e.g., a U-turn) could result in situations in which an alert is triggered
at distances below thad. We saw this effect in the simulations, in which the worst case required a
deceleration rate to stop the vehicle in time that was reasonable, but was bigger than the one for which
the thad was configured. Note that the kind of maneuvers that lead to these situations imply a major
change of direction, so they are low-speed maneuvers, which improves the safety margin even with
lower distances. Thus, as shown in the simulations, they did not create practical problems, i.e., the
worst-case safety margin was still good enough. However, to offer guarantees, we would need some
additional mechanism in the algorithm. For example, we could add a mechanism to inhibit the angle
check when the pedestrian is too close to the vehicle (some distance below the alert distance threshold,
but enough to guarantee some worst case of the safety margin). On the downside, a mechanism such
as this would also imply more and longer alerts.

We could also enhance the algorithm by considering the speed of the vehicles to define a dynamic
thad. This could further improve the filtering of alerts (reducing unnecessary alerts), allowing to delay
the triggering of an alert for some time when a vehicle is moving slowly, which could even end in
an alert not triggered if the vehicle or the pedestrian moves away. In principle, we are not thinking
of directly using the speed of vehicles to predict collisions, as this could affect the robustness of the
algorithm against inaccuracies in location information and sudden changes in the speed of vehicles,
generating false negatives. Another possibility is to consider the speed and the direction of movement
of pedestrians, but given that they can change direction and speed very quickly, we do not believe this
would be a good approach.
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Furthermore, in our simulations, the maximum speed of pedestrians was 1.6 m/s, which is
considered a realistic speed for pedestrians. This speed means that there is plenty of room to increase
the beacon period (we used 300 ms) for any reasonable speed of pedestrians (and even bicycles) while
keeping accurate location information, even accounting for potential lost beacons. The advantage of
increasing the beacon period is the saving in battery consumption in the pedestrian device and the
reduction of network congestion [18]. For the same reason, we could use communications systems
with more latency without that affecting the performance of the system.

6. Conclusions

In this paper, we have explored how to create a warning system to protect pedestrians in urban
scenarios using a communication system that sends the location of pedestrians to vehicles. The main
focus of our research was how to avoid the generation of too many unnecessary alerts in the system.
The problem with unnecessary alerts is that they overload drivers, thus they stop paying attention to
alerts. This problem cannot be studied by defining a limited scenario to test the system (e.g., a junction
with a small number of pedestrians). The load generated by the alerts must be tested in a large-scale
urban scenario, so any potential situation will eventually come up. It is on trips around a city where we
can realistically study how pedestrians and vehicles interact, and how alerts are triggered. Therefore,
and due to the practical limitations of performing these kinds of tests in the real world, we proposed a
realistic simulation framework based on a well-known accurate traffic simulator, SUMO.

We designed four different alternative algorithms to define when to trigger alerts in the warning
system. The algorithms use local information available in each vehicle, and the location of pedestrians
obtained through the communication system. Alerts warn drivers on vehicles that they can become
a danger to a pedestrian. The four algorithms use different strategies to determine when an alert is
needed in a vehicle.

We implemented the algorithms using real equipment: a communication and location module
in vehicles, and a mobile phone with an application in pedestrians. Our experiments with these
implementations validated that it is possible to generate the alerts in the real world as defined by the
algorithms, and that the errors introduced when using real equipment do not prevent the algorithms
from working as expected. In particular, we showed that the performance of the algorithms was robust
against errors in determining the location in the mobile phone.

It should be noted that the system requires a constantly updated pedestrian location. This is a
feasible approach in a hyperconnected world (e.g., IoT solutions or smartphones), but it is important
to acknowledge that initial deployment of this kind of systems, which requires many users to be
useful, is not straightforward. Other types of systems could use the same algorithms but based
on different equipment. For example, an alternative is to equip crossings with devices that detect
pedestrians with sensors or cameras, and send messages to vehicles. This would facilitate the initial
deployment. Another deployment opportunity is to use dedicated devices for special interest groups
such as children or the elderly. Privacy is another concern, so the communications should not use
permanent identifiers that could allow long-term or repeated tracking of users.

Although the four proposed algorithms generated the alerts as expected in a small-scale setup with
real-equipment, our simulation experiments showed that their behavior in a large-scale deployment
is much more difficult to predict. More specifically, increasing the complexity of the algorithms to
try to better capture the real situations of danger for pedestrians does not always result in significant
gains in the number of unnecessary alerts successfully filtered. In fact, algorithms that seem to achieve
similar results when tested in a small-scale setup can have very different behavior in terms of number
of unnecessary alerts that they generate. Therefore, to study the feasibility of a warning system to
protect pedestrian is of paramount importance to evaluate the load on drivers generated by the alerts
of the system, and study it when using the system in typical travels around an urban area.

Finally, one of the algorithms that we proposed (Algorithm 3) has proven to be a good first step to
build a warning system to protect pedestrians in urban areas. Algorithm 3 is based on triggering alerts
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considering the distance between the vehicle and the pedestrian, but focusing only on situations that
happen in front of the vehicle and in places where the pedestrians are more probably going to cross
the road. The algorithm is realistically implementable with current technology, it does not lose any
real alerts, and it does a good job filtering unnecessary alerts. Our algorithm only protects pedestrians
at crossings or special interest places (e.g., intersections), but, even so, the time drivers spent under
alerts is not negligible. This fact gives the hint that realistic pedestrian protection systems for an urban
environment cannot warn about all pedestrians in vehicles’ surroundings. A better approach is to
focus on places where pedestrians are more likely to cross the road. Our algorithm could be updated
to warn about pedestrians leaving the sidewalk and entering the road when more precise location
systems became available on pedestrians’ devices.

Our ongoing research includes improvements to the algorithm, for example using the speed of
vehicles to define a dynamic thad. We also plan to investigate alternatives for the implementation of
the mechanisms required by the algorithm (e.g., how to obtain the location of pedestrians), and the
evaluation of practical strategies for deployment.
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