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Abstract: Considering coherently-distributed (CD) sources are correlated with each other, a
two-dimensional (2D) coherent CD source model is proposed according to the characteristics
of an underwater acoustic channel. Under the assumption of small angular spreads, rotational
invariance relationships within and between subarrays of double parallel linear arrays are derived.
As the covariance matrix of spatial smoothing obtained from receive vectors expressed by rotational
invariance relationships is proven to be full rank, decoherence of the 2D coherent CD source is
proposed by spatial smoothing of the double parallel linear arrays. A propagator method base on
spatial smoothing (SS-PM) and estimation of signal parameters via rotational invariance techniques
(ESPRIT) base on spatial smoothing (SS-ESPRIT) method established by covariance matrix of spatial
smoothing are proposed. The proposed methods do not require peak-searching, angles matching
and information of deterministic angular signal distribution function. Simulations are conducted to
verify the effectiveness of the proposed methods.

Keywords: direction-of-arrival; double parallel linear arrays; spatial smoothing; coherently-
distributed sources

1. Introduction

In the field of array signal processing, traditional direction-of-arrival (DOA) estimation assumes
that a target is a point source. As for underwater acoustic detection, due to multipath propagations
between a receive array and a target, especially with the reduction of the distance between the target
and the receive array, as many parts of the target reflect signals, the spatial scattering characteristics
of the target cannot be ignored. The assumptions of point source models are no longer valid, and
distributed source models are presented in such conditions [1]. A distributed source can be regarded
as an assembly of point sources which can be called scatterers within a spatial distribution. The shape
of spatial distribution is related to geometry and surface property of a target in underwater detection
for instance.

Distributed sources are mainly classified as incoherent distributed (ID) and coherent distributed
(CD) sources according to the coherence of scatterers. It’s assumed that the scatterers of an ID source are
incoherent, while those of a CD source are coherent. According to the spatial distribution dimension,
distributed sources can be classified as one-dimensional (1D) distributed source and two-dimensional
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(2D) distributed source. 2D distributed source assumes scatterers of a target and receive array are not
in same plane, which is more general and accordant with practical circumstances. In this paper, CD
sources are considered.

Spatial distributions are characterized by deterministic angular signal distribution function
(ASDF), which can be generally modeled as Gaussian, uniform and any other distribution. Parameters
of ASDF of a 1D CD source consist of nominal angle and angular spread. With more parameters, ASDF
of a 2D source is described by nominal azimuth, nominal elevation, azimuth spread and elevation
spread. Nominal azimuth and nominal elevation collectively called nominal angles can also be
expressed as nominal DOA representing the center of target. Azimuth spread and elevation spread are
collectively called angular spreads denoting the spatial extension of target.

As for ID sources, utilizing different array configurations estimators have been proposed in [2–5].
As for CD sources, distributed signal parameter estimator (DSPE) [1], dispersed signal parametric
estimation (DISPARE) [6] and vec-multiple signal classification (vec-MUSIC) [7] have been developed
from the classical point sources estimation technique MUSIC, where parameters are obtained by
2D spectral searching. A MUSIC like approach has been proposed in [8] for the DOA estimation
of CD sources consisting of both circular and noncircular signals. In [9], another classical point
sources estimation technique ESPRIT has been extended for distributed sources, where the total least
square-ESPRIT (TLS-ESPRIT) algorithm is used to estimate nominal angles of sources firstly, and
then angular spreads are obtained by 1D spectral searching. The authors of [10] have developed an
efficient DSPE algorithm and proposed a generalized beamforming estimator for CD sources in [11].
Generally, the parameters of CD sources are approximate solutions under the assumption of small
angular spreads, the performance of DSPE algorithm is analyzed in [12]. All these methods are based
on 1D CD source models, which assume that scatterers and arrays are in the same plane. However,
scatterers and arrays are not in the same plane but in a three-dimensional space practically. Involving
more parameters, 2D CD sources estimation problem is more complicated.

Based on DSPE, several spectral searching methods for 2D CD sources have been proposed.
In [13], an algorithm for exponential CD sources has been presented under nested arrays. The authors
of [14] have proposed an estimator for 2D CD sources under L-shape arrays. Several low-complexity
algorithms have been presented in [15–20] utilizing two closely spaced parallel linear arrays, treble
parallel linear arrays and conformal arrays. It is a common characteristic that utilizing rotational
invariance relationships derived by Taylor approximation to generalized steering vectors, the nominal
elevation and azimuth are solved under ESPRIT or modified propagator framework. The authors
of [21] have proposed a method using a centro-symmetric crossed array, where DOAs are obtained
through the symmetric properties of the special array. Utilizing two closely spaced parallel linear
arrays and L-shape arrays, two estimators for CD noncircular signals are proposed in [22,23] which
exhibit better accuracy and resolution compared with circular signals.

Estimation techniques for CD sources mentioned above assume that the sources are incoherent
no matter whether they are 1D or 2D sources. In the field of underwater acoustic detection, the
general process of detection is by first emitting narrow-band pulse acoustic signal, then receiving
the target backscatter signal, whereby target information is obtained the by analyzing the echo.
Therefore, different CD sources are considered as coherent, which is more reasonable on account of
the coherent multipath characteristics of underwater acoustic channel. Supposing that signals from
different CD sources are coherent, sample covariance matrices are rank defect. Thus, subspace-based
algorithms [1,6–14] and ESPRIT class algorithms [15,16] which are based on eigendecomposition
of sample covariance matrices cannot be applied for DOA estimation of distributed sources.
Subspace-based algorithms and ESPRIT class algorithms are based on decomposition of covariance
matrix. As to the proposed 2D coherent CD sources, the rank of covariance matrix is less than the
source number. Thus, signal and noise subspace cannot be obtained correctly by decomposition
of covariance matrix. PM class algorithms [17–20] based on linear operation of full rank sample
covariance matrices are also no longer applicable. Considering signals from different CD sources are
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coherent, the authors of [24] proposed a DOA estimator by virtue of Toeplitz operation of sample
covariance matrices, which deal with 1D CD sources.

In this paper, considering 2D CD sources to be coherent with each other, 2D coherent CD sources
are modelled first. Then, utilizing double parallel linear arrays, the rotational invariance relationships
within and between subarrays have been derived under the assumption of small angular spreads. Next,
the decoherence of CD sources can be realized by virtue of 2D spatial smoothing of covariance matrices
of receive vectors. Afterwards, two estimators for 2D coherent CD sources are proposed. SS-PM
method is proposed base on propagator of sample covariance matrix of spatial smoothing, which is
constructed according to the rotational invariance relationships between receive vectors of subarrays.
SS-ESPRIT method is established on eigendecomposition of sample covariance matrix of spatial
smoothing. The presented methods can estimate DOAs of 2D coherent CD sources effectively without
peak-searching, angles matching and information of deterministic ASDF. To show the contributions of
this paper clearly, the main differences between the state-of-the-art methods and our work are listed
as follows

• In [1,6–23], CD sources have been regarded as uncorrelated with each other; estimators cannot
be applied for CD sources which are correlated. In [24], though 1D CD sources correlated with
each other are discussed, but the general model of coherent CD sources has not been presented.
While in this paper, general 2D coherent CD sources is modelled which consider CD sources as
correlated according to characteristics of underwater acoustic channel and general process of
underwater acoustic detection.

• Though decoherence by spatial smoothing is mature technique with respect to point source
model [25], the proof and conclusion are not applicable to 2D coherent CD source model. In this
paper, decoherence with respect to 2D coherent CD sources by spatial smoothing is proposed
based on parallel linear arrays. According to receive vectors of subarrays expressed by rotational
invariance relationships, the covariance matrix of spatial smoothing is obtained and proven to be
full rank.

• As for the proposed 2D coherent CD sources model, based on double parallel linear arrays, SS-PM
method base on propagator of covariance matrix of spatial smoothing and SS-ESPRIT method
established on eigendecomposition of covariance matrix of spatial smoothing are proposed
and compared.

The paper is organized as follows. Section 2 introduces the proposed 2D coherent CD sources
model and the receive vectors of double parallel linear arrays. In Section 3, rotational invariance
relationships within and between subarrays and expressions of the receive vectors of subarrays are
derived; spatial smoothing method and covariance matrix of spatial smoothing are introduced; SS-PM
and SS-ESPRIT are detailed. In Section 4, simulation results are given and discussed. Finally, the
conclusion is drawn in Section 5.

Notations: Scalar variables are denoted by italic letters, while vectors and matrices are denoted by
bold letters. E[•] denotes expectation operation. (•)T denotes the transpose. (•)H denotes the Hermitian
transpose. (•)+ denotes pseudo-inverse operator. (./) denotes element-wise division operation. angle(•)
denotes phase of a complex number.

2. Arrays Configuration and Signal Model

The array configuration is shown in Figure 1, double parallel linear arrays consist of array X and
array Y located on xoz plane. Array X consists of M sensors on x axis separated by d meters; array Y
parallels to x axis and consists of M-1 sensors separated by d meters. The distance between array Y
and array X is also d. It’s assumed that there are q narrow-band 2D CD sources with wavelength of
λ impinging the array with nominal angles (θi, ϕi) (i = 1, 2, . . . , k), where θi is the nominal azimuth
of the ith CD source, ϕi is the nominal elevation of the ith source, θi ∈ [0, π], ϕi ∈ [0, π]. The noise is
assumed to be additive Gaussian white and uncorrelated with signal.
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Figure 1. The double parallel linear arrays.

Denote xk(t) and yk(t) as the signal received by kth sensors in arrays X and Y, which can be
expressed as follows

xk(t) =
q

∑
i=1

vi(t)
iL

∑
il=1

αilej2πd(k−1) cos θil sin ϕil/λ + nxk(t), (1)

yk(t) =
q

∑
i=1

vi(t)
iL

∑
il=1

αilej2πd(k−1) cos θi l sin ϕil/λej2πd cos ϕil /λ + nyk(t), (2)

where vi(t) is the impinging signal to the ith CD source, iL is number of scatterers of the ith source. (θil,
ϕil) is the azimuth and elevation of the ilth scatterer of the ith source. Suppose different scatterers of
the same source differ by one phase delay and a random amplitude gain. αil is complex gain of the ilth
scatterer reflecting the reflection coefficient. E(αil) =αi. nxk(t) and nyk(t) are noises received.

Define g(θ,ϕ;ui) as ASDF which reflects the distribution of scatterers of the ith source. ASDF can
be modeled as 2D Gaussian and uniform or any other distribution function. ui = [θi,φi,σθi, σφi] is the
parameter set of ASDF of the ith source denoting the nominal azimuth, nominal elevation, azimuth
spread and elevation spread respectively.

For a Gaussian CD source, deterministic ASDF can be expressed as

gi(θ, ϕ; ui) =
1

2πσθiσϕi
exp

−0.5

( θ − θi
σθi

)2
+

(
ϕ− ϕi

σϕi

)2
. (3)

For a Uniform CD source, deterministic ASDF can be expressed as

gi(θ, ϕ; ui) =

{
1

4σθiσϕi
|θ − θi| ≤ σθi and |ϕ− ϕi| ≤ σϕi

0 |θ − θi| ≥ σθi or |ϕ− ϕi| ≥ σϕi
. (4)
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Then xk(t) and yk(t) can be expressed as follows (see Appendix A)

xk(t) =
q

∑
i=1

si(t)
x

ej2πd(k−1) cos θ sin ϕ/λgi(θ, ϕ; ui)dθdϕ + nxk(t), (5)

yk(t) =
q

∑
i=1

si(t)
x

ej2πd(k−1) cos θ sin ϕ/λej2πd cos ϕ/λgi(θ, ϕ; ui)dθdϕ + nyk(t), (6)

where si(t) = vi(t)iLαi is reflected signal of the ith CD source. Define γ(θ,ϕ) are M × 1 dimensional
steering vectors of array X with respect to point source, which can be written as follows

γ(θ, ϕ) =
[
1, ej2πd cos θ sin ϕ/λ, · · · , ej2π(M−1)d cos θ sin ϕ/λ

]T
. (7)

Then the (M − 1) × 1 dimensional steering vector of array Y with respect to point sources can be
written as follows

η(θ, ϕ) =
[
I(M−1)×(M−1)

∣∣∣0(M−1)×1

]
γ(θ, ϕ)ej2πd cos ϕ/λ, (8)

where I(M−1)×(M−1) is (M − 1) × (M − 1) dimensional identical matrix, 0(M−1)×1 is (M − 1) × 1
dimensional matrix with all elements as 0.

In the point source model case, steering vectors are used to describe the response of an array.
Nevertheless, generalized steering vectors or generalized steering matrices represent the responses of
arrays to distribute sources. Generalized signal vectors of array X and array Y reflecting response of
arrays to the ith source can be expressed as follows

a(θi, ϕi) =
x

γ(θ, ϕ)gi(θ, ϕ; ui)dθdϕ, (9)

b(θi, ϕi) =
x

η(θ, ϕ)gi(θ, ϕ; ui)dθdϕ. (10)

Generalized steering matrices of array X and array Y representing response of arrays to all sources
can be written as

A(θ, ϕ) = [a(θ1, ϕ1), a(θ2, ϕ2), · · · , a(θq, ϕq)], (11)

B(θ, ϕ) = [b(θ1, ϕ1), b(θ2, ϕ2), · · · , b(θq, ϕq)]. (12)

Thus, the M × 1 dimensional receive vector of array X and the (M − 1) × 1 dimensional receive
vector of array Y can be expressed as follows{

X(t) = A(θ, ϕ)s(t) + nX(t)
Y(t) = B(θ, ϕ)s(t) + nY(t)

, (13)

where s(t) = [s1(t), s2(t), . . . , sq(t)]T is the signal vector. nX(t) and nY(t) are the receive noise vectors,
which can be expressed as follows

nX(t) = [nx1(t), nx2(t), · · · , nxM(t)], (14)

nY(t) = [ny1(t), ny2(t), · · · , ny(M−1)(t)]. (15)

Most CD source models assume that scatterers within a source are coherent, but scatterers between
different sources are uncorrelated. According to characteristics of underwater acoustic channel and
general process of underwater acoustic detection, supposing signals impinging to different sources are
from same emission arrays. Thus, the impinging signals of different sources are correlated and differ
by phase delay and a random amplitude gain. Considering the difference between the reflected signal
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and the imping signals of the ith CD source lies in a constant complex coefficient iLαi, then the signal
vector can be written as follows:

s(t) = s1(t)ρ, (16)

where ρ = [1, ρ2, . . . , ρq]T is the coherence coefficient vector, ρi is the coherence coefficient between
the 1th source and the ith source.

The receive vectors of array X and array Y can be written as{
X(t) = A(θ, ϕ)s1(t)ρ+ nX(t)
Y(t) = B(θ, ϕ)s1(t)ρ+ nY(t)

, (17)

3. Proposed Method

As the proposed 2D coherent CD sources are correlated with each other. The covariance matrices
of receive vectors of array X and Y are rank defect. Then traditional estimators established on full rank
sample covariance matrices are invalid. Spatial smoothing for 2D coherent CD sources is proposed in
this section. This section consists of four parts. First of all, receive vectors of subarrays are expressed
with the rotational invariance relationships of generalized steering matrices. Then, covariance matrices
of spatial smoothing are derived, which is proved to be full rank. Next SS-PM and SS-ESPRIT methods
are proposed. Lastly computational procedure is summarized.

3.1. Subarray Signal Model

As shown in Figure 1, the first (D + 1) sensors of array X constitute the array X1 while the first
D sensors of array Y constitute the array Y1. Array X1 and array Y1 collectively make up the first
subarray of the double parallel linear arrays. The receive vectors of the first subarray can be expressed
as follows: {

X1(t) = A1(θ, ϕ)s1(t)ρ+ nX1(t)
Y1(t) = B1(θ, ϕ)s1(t)ρ+ nY1(t)

, (18)

where A1(θ,ϕ) is the generalized steering matrix of array X1, which actually is the first (D + 1) rows of
A1(θ,ϕ), B1(θ,ϕ) is the generalized steering matrix of array Y1, which is the first D rows of B(θ,ϕ). A1(θ, ϕ) =

[
I(D+1)×(D+1)

∣∣∣0(D+1)×(M−D−1)

]
A(θ, ϕ)

B1(θ, ϕ) =
[
ID×D

∣∣∣0D×(M−1−D)

]
B(θ, ϕ)

. (19)

The space smoothing direction is shown in Figure 1. Each subarray consists of (D+1) sensors of
array X and D sensors of array Y. Then the receive vectors of the pth subarray can be written as{

Xp(t) = Ap(θ, ϕ)s1(t)ρ+ nXp(t)
Yp(t) = Bp(θ, ϕ)s1(t)ρ+ nYp(t)

, (20)

where the generalized steering matrices Ap(θ,ϕ) and Bp(θ,ϕ) can be expressed as Ap(θ, ϕ) =
[
0(D+1)×(p−1)

∣∣∣I(D+1)×(D+1)

∣∣∣0(D+1)×(M−D−p)

]
A(θ, ϕ)

Bp(θ, ϕ) =
[
0D×(p−1)

∣∣∣ID×D

∣∣∣0D×(M−D−p)

]
B(θ, ϕ)

. (21)

As shown in Figure 1, we define array composed of the first D sensors in array X1 as Xa, array
composed of the last D sensors in array X1 as Xb. The receive vectors of Xa and Xb can be expressed as{

Xa(t) = Aa(θ, ϕ)s1(t)ρ+ na(t)
Xb(t) = Ab(θ, ϕ)s1(t)ρ+ nb(t)

, (22)
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where the generalized steering matrices of array Xa and Xb can be expressed as Aa(θ, ϕ) =
[
ID×D

∣∣∣0D×(M−D)

]
A(θ, ϕ)

Ab(θ, ϕ) =
[
0D×1

∣∣∣ID×D

∣∣∣0D×(M−D−1)

]
A(θ, ϕ)

. (23)

When the angular spreads of 2D CD sources are small and d/λ = 1/2, the following rotational
invariance relationships can be obtained (see Appendix B).

[a(θi, ϕi)]m ≈ ejπ cos θi sin ϕi [a(θi, ϕi)]m−1

[b(θi, ϕi)]m ≈ ejπ cos θi sin ϕi [b(θi, ϕi)]m−1

[b(θi, ϕi)]m ≈ [a(θi, ϕi)]mejπ cos ϕi

, (24)

where [•]m is the mth element of the vector. Rotational invariance relationship of generalized steering
matrices within the first subarray can be obtained as{

Ab(θ, ϕ) ≈ Aa(θ, ϕ)ΦX
B1(θ, ϕ) ≈ Aa(θ, ϕ)ΦY

. (25)

Rotational invariance relationship of generalized steering matrices between the first and the pth
subarray can be obtained as {

Ap(θ, ϕ) ≈ A1(θ, ϕ)Φ
p−1
X

Bp(θ, ϕ) ≈ B1(θ, ϕ)Φ
p−1
X

, (26)

where ΦX and ΦY are the rotational matrices, which can be expressed as{
ΦX = diag(ejπ cos θ1 sin ϕ1 , ejπ cos θ2 sin ϕ2 , · · · , ejπ cos θq sin ϕq)

ΦY = diag(ejπ cos ϕ1 , ejπ cos ϕ2 , · · · , ejπ cos ϕq)
. (27)

Then the receive vectors of pth subarray can also be written as

Zp(t) =

[
A1(θ, ϕ)

B1(θ, ϕ)

]
Φ

p−1
X s1(t)ρ+ np(t) , (28)

where

np(t) =

[
nXp(t)
nYp(t)

]
. (29)

Denote σ2
1 = E[s1(t)2] as the power of first CD source σ2

n as the power of the noise. The covariance
matrix of pth subarray can be expressed as

Rp = σ2
1

[
Ap(θ, ϕ)

Bp(θ, ϕ)

]
ρρH

[
Ap(θ, ϕ)

Bp(θ, ϕ)

]H

+ σ2
nI2D+1

= σ2
1

[
A1(θ, ϕ)

B1(θ, ϕ)

]
Φ

p−1
X ρρHΦ

1−p
X

[
A1(θ, ϕ)

B1(θ, ϕ)

]H

+ σ2
nI2D+1

. (30)

Suppose there are P subarrays within the parallel linear arrays, which means that the subarray
can smooth P times. Then, the covariance matrix of spatial smoothing R is obtained through taking
average of P covariance matrices of subarrays, which can be written as

R =
1
P

P

∑
p=1

Rp = σ2
1

[
A1(θ, ϕ)

B1(θ, ϕ)

]
Rs

[
A1(θ, ϕ)

B1(θ, ϕ)

]H

+ σ2
nI2D+1, (31)
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where

Rs =
1
P

P

∑
p=1

Φ
p−1
X ρρHΦ

1−p
X . (32)

It can be proven that R is a full rank matrix when P ≥ q (see Appendix C).

3.2. Propagator Method Base on Spatial Smoothing

Combine generalized steering matrices A1(θ,ϕ) and B1(θ,ϕ) of the first subarray into

C =

[
A1(θ, ϕ)

B1(θ, ϕ)

]
=

[
C1

C2

]
. (33)

Denote C1 as a matrix of the first qth rows of C and C2 as a matrix of the last (2D + 1 − q)th rows
of C. There exists a (2D + 1 − q) × q dimensional propagator operator Ep satisfying C2 = EpC1

Define a (2D + 1) × q dimensional matrix E

E =

[
Iq

Ep

]
. (34)

We have

EC1 =

[
A1(θ, ϕ)

B1(θ, ϕ)

]
=

 Aa(θ, ϕ)

the (D + 1)th row
B1(θ, ϕ)

 =

 the f irst row
Ab(θ, ϕ)

B1(θ, ϕ)

. (35)

Divide E into three matrices E1, E2 and E3. E1 selects elements of the first D rows of E, E2 contains
elements from 2th to (D + 1)th rows of E, E3 selects elements of last D rows of E. We have

E =

 E1

the (D + 1)th row
E3

 =

 the f irst row
E2

E3

. (36)

From Equations (35) and (36) and rotational invariance relationships described by (25) and (26)
we have the following relationship {

E2C1 = E1C1ΦX

E3C1 = E1C1ΦY
. (37)

Then we have {
E+

1 E2C1 = C1ΦX

E+
1 E3C1 = C1ΦY

. (38)

Covariance matrix of the pth subarray can be replaced by the sample covariance matrix with N
snapshots, which can be written as

R̂p =
1
N

N

∑
t=1

Zp(t)ZH
p (t). (39)

Then the covariance matrix of spatial smoothing can be replaced by

R̂ =
1
P

P

∑
p=1

R̂p. (40)
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Divide R̂ into R̂ = [GH], where G is the first qth columns of R̂ and H is the last (2D + 1 − q)th
columns of R̂. Then Ep can be expressed as Ep = [G+H]

H . We can obtain eigenvalue µi (i = 1, 2, . . . ,
q) and it’s corresponding eigenvectors ξi of E+

1 E2 by means of eigendecomposition of E+
1 E2. From

Equations (37) and (38) we can conclude that corresponding eigenvalues of E+
1 E2 and E+

1 E3 have the
same eigenvector; so without angle matching, the eigenvector of E+

1 E3 can be obtained as follows

νi =
1
q

11×q·[E+
1 E3ξi./ξi]. (41)

where 11×q is 1 × q dimensional vector with all elements as 1. When d/λ = 1/2, nominal azimuth θi
and nominal elevation ϕi can be obtained as follows{

ϕi = arccos angle(νi)
π

θi = arccos angle(µi)
π sin ϕi

i = 1, 2, · · · , q. (42)

3.3. ESPRIT Base on Spatial Smoothing

As the q × q dimensional covariance matrix of spatial smoothing Rs is full rank, according to
Equation (32), we can obtain Rs = RH

s . Thus, Rs is a positive definite Herimitain matrix. Through
eigendecomposition, a positive definite Herimitain matrix can be expressed as follows:

Rs = FΛFH , (43)

where diagonal matrix Λ = diag(ω1, ω2, . . . , ωq). ωi (i = 1, 2, . . . , q) is eigenvalues of Rs, which are all
positive real number. F is a k × k dimensional nonsingular matrix. Then R can be expressed as

R =

[
A1(θ, ϕ)

B1(θ, ϕ)

]
FΛFH

[
A1(θ, ϕ)

B1(θ, ϕ)

]H

+ σ2
nI2D+1. (44)

From Equation (44), it can be found that through eigendecomposition of R, there exists a q × q
dimensional nonsingular matrix T satisfying the following relationship:

U =

[
A1(θ, ϕ)

B1(θ, ϕ)

]
FT, (45)

where U = [σ1, σ2, . . . , σq] is sub-space constituted by eigenvectors of R corresponding to the q largest
eigenvalues. As both F and T are nonsingular matrices, FT is also a nonsingular matrix. Thus, U can
be divided into U1, U2 and U3. U1 selects elements of the first D rows of U, U2 contains elements from
2th to (D + 1)th rows of U, U3 selects elements of last D rows of U.

U =

 U1

the (D + 1)th row
U3

 =

 the f irst row
U2

U3

. (46)

According to the invariance rotational relationships described by (25) and (26), we have{
U2 = U1(FT)−1ΦXFT
U3 = U1(FT)−1ΦYFT

(47)

Then, the following relationships can be obtained:{
U+

1 U2 = (FT)−1ΦXFT
U+

1 U3 = (FT)−1ΦYFT
(48)
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As similar to SS-PM, eigenvalue µi (i = 1, 2, . . . , q) and its corresponding eigenvectors ξi of
U+

1 U2 can be obtained by eigendecomposition of U+
1 U2. From Equation (48) we can conclude that

corresponding eigenvalues of U+
1 U2 and U+

1 U3 have the same eigenvectors; so, the eigenvector of
U+

1 U3 can be obtained from Equation (41). Then, θi and ϕi can be obtained from Equation (42).

3.4. Computational Procedure Complexity Analysis

Now, procedure of SS-PM can be summarized as follows
Step1: Compute sample covariance matrix of spatial smoothing R̂ using Equations (39) and (40).
Step2: Divide R̂ into R̂ = [GH] and estimate the propagator operator Ep using Equation Ep

= [G+H]
H . Construct E using Equation (34) and divide E into E1, E2 and E3 from Equation (36).

Step3: Calculate eigenvalue µi (i = 1, 2, . . . , q) and it’s corresponding eigenvectors ξi through
eigendecomposition of E+

1 E2.
Step4: Obtain eigenvalue νi of E+

1 E3 from Equation (41).
Step5: Calculate the nominal azimuth θi and nominal elevation ϕi from Equation (42).
Procedure of SS-ESPRIT can be summarized as follows
Step1: Compute sample covariance matrix of spatial smoothing R̂ using Equations (39) and (40).
Step2: Find the eigenvectors σi (i = 1, 2, . . . , q) corresponding to the largest q eigenvectors through

eigendecomposition of R̂.
Step3: Constitute sub-space U = [σ1, σ2, . . . , σq] and divide U into U1, U2 and U3 from

Equation (46).
Step4: Find eigenvalue µi (i = 1, 2, . . . , q) and it’s corresponding eigenvectors ξi through

eigendecomposition of U+
1 U2.

Step5: Obtain eigenvalue νi of U+
1 U3 from Equation (41).

Step6: Calculate the nominal azimuth θi and nominal elevation ϕi from Equation (42).
The computational complexity of SS-PM includes three parts. Calculation the sample covariance

matrix R̂, which is O[PN(2D + 1)2]. Calculation the propagator operator Ep, which is O [q3 + q2(2D +
1) + q(2D + 1)(2D + 1)]. Eigendecomposition of E+

1 E2 and E+
1 E3, which is O(q3). The computational

complexity of SS-ESPRIT also mainly includes three parts. Calculation the sample covariance matrix
R̂, which is O[PN(2D + 1)2. Eigendecomposition of R̂, which is O[(2D + 1)3]. Eigendecomposition of
U+

1 U2 and U+
1 U3, which is O(q3). Obviously, when D > q, the computational complexity of SS-ESPRIT

is higher than that of SS-PM.

4. Simulation Results

In this section, five simulation experiments are conducted to verify the effectiveness of the
algorithms we proposed. All simulation experiments are based on array configuration shown in
Figure 1. The distance of adjacent sensor d is set at λ/2.

RMSEi denoting root mean squared error (RMSE) of the ith source can be expressed as

RMSEi =

√
1

Mc

Mc

∑
τ

(θ̂τ
i − θi)

2
+

1
Mc

Mc

∑
τ

(ϕ̂τ
i − ϕi)

2, (49)

where Mc is the Monte Carlo simulations number which is set at 100. θ̂τ
i and ϕ̂τ

i is the estimated
nominal azimuth and nominal elevation of ith source in τth Monte Carlo simulation.

In the first example, we investigate the performance of the proposed methods versus three
traditional 2D CD sources which are uncorrelated with each other. The first source is Gaussian CD
source with parameter sets [30◦, 45◦, 2◦, 2◦]. The second and third sources are uniform with parameter
sets [50◦, 45◦, 2◦, 2◦] and [50◦, 60◦, 2◦, 2◦]. The number of snapshots is set at 400. The sensor number
parameter is D = 4 and the number of subarrays is P = 4. RMSE takes the mean RMSEi of three sources.
Sources are also estimated by DSPE [14] method using L shaped arrays composed of 7 sensors in
both x axis and z axis and ESPRIT [16] method using double parallel linear arrays with each subarray
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containing 7 sensors; the distance of adjacent sensor d are all set at λ/2. As shown in Figure 2, the
proposed method presents better estimation as SNR increases. It can be concluded that the proposed
method is effective for DOA estimation with respect to traditional 2D CD sources. As utilizing
spatial smoothing technique, the proposed two methods shows better performance compared with
traditional estimators.
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In the second example, we investigate the estimation of the proposed methods for 2D coherent
CD sources. We consider two fully coherent sources with equal power. The first source is Gaussian
with parameter set [30◦, 45◦, 2◦, 2◦]. The second and third source is uniform with parameter sets [50◦,
45◦, 2◦, 2◦] and [50◦, 60◦, 2◦, 2◦]. The sensor number parameter is D = 4 and the number of subarrays
is P = 4. Figure 3a shows estimated RMSE with SNR ranging from 0 to 30 dB, while the number of
snapshots is set at 400. Figure 3b shows estimated RMSE with number of snapshots ranging from
100 to 1000 while SNR is set at 15 dB. Figure 3 also show that estimation of the proposed sources by
DSPE [14] and ESPRIT [16]. As can be seen in Figure 3, in the case of low SNR and the lower number of
snapshots, the estimation performance of SS-PM is better than SS-ESPRIT. When SNR and number of
snapshots are at low levels, larger errors may exist in eigendecomposition process of sample covariance
matrix of spatial smoothing. Thus, SS-PM show better performance than SS-ESPRIT which is based on
eigendecomposition. It can be observed that the proposed two algorithms perform better as SNR or
number of snapshots increases. There is no significant difference between SS-ESPRIT and SS-PM when
SNR and number of snapshots are at high levels. Nevertheless, the DSPE [14] and ESPRIT [16] present
big errors as shown in Figure 3. As the three CD sources are correlated with each other, the rank
of signal subspace is one. DSPE [14] and ESPRIT [16] take eigenvector corresponding to the largest
eigenvalue as the signal subspace. Both methods can only detect one source, no matter what level the
SNR is at. Therefore, errors are big and varieties are not obvious in Figure 3. It can be concluded that
utilizing traditional methods is invalid but SS-ESPRIT and SS-PM are effective for DOA estimation
with respect to 2D coherent CD sources.
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estimated by three methods for 2D coherent CD sources versus number of snapshots.

In the third example, we investigate the performance of the proposed methods versus angular
spreads. We consider two scenarios. One scenario has two fully coherent Gaussian sources with equal
power and the nominal angles are (30◦, 45◦), and (50◦, 60◦). The other has two uniform sources with
the same nominal angles as the first scenario. To simplify analysis, we assume that azimuth spread is
equal to elevation spread in each source and angular spreads of two sources are the same; σ is used to
replace σθi and σϕi for convenience. The number of snapshots is set at 400 and SNR is 15 dB. D = 4 and
P = 4. RMSE of the two trails is defined as the mean RMSEi of two sources. From Figure 4, it can be
observed that estimation errors increase as angular spread increase with respect to both Gaussian and
uniform sources. RMSE reaches 0.2◦ as angular spread increasing to 5◦; RMSE reaches 0.51◦ as angular
spread increasing to 10◦. As the receive vector of subarrays are all expressed based on the assumption
of small angular spreads. The experiment shows that the two algorithms have satisfactory performance
for DOA estimation of 2D coherent CD sources under the condition of small angular spreads
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In the fourth example, we investigate the influence of the number of subarrays and sensor number
of subarrays on estimation. Considering three fully coherent 2D coherent CD sources with parameter
sets as [30◦, 45◦, 2◦, 2◦], [70◦, 25◦, 2◦, 3◦] and [50◦, 60◦, 2◦, 2◦], the first two are uniform and the third
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one is Gaussian. RMSE takes the mean RMSEi of three distribution sources. The experimental settings
are as follows: the number of snapshots is 400 and SNR is 15 dB. Figure 5a shows the estimation of
two algorithms with the number of subarrays varying from 3 to 10 when the sensor number parameter
D = 4. Figure 5b shows the estimation of the two algorithms with the sensor number parameter of
subarrays D ranging from 4 to 10 while the subarrays number P is set at 4. The experiment shows that
both algorithms can estimate effectively when D > q and P ≥ q. Estimation performance of the two
algorithms will be improved with the increasing of the number of subarrays P when sensor number
of subarrays is fixed and the number of subarrays P is at a low level. As P increases to a certain
extent, the estimation effect will not change significantly. Similarly, the estimation performance of the
two algorithms will improve with the increasing of the sensor number of subarrays as the subarrays
number P is fixed, but when the sensor number increases to a certain extent, the improvement of
estimation effect is not obvious.
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In the fifth experiment, considering both algorithms assume that q is a priori knowledge, we
examine the influence of misestimating of q on both estimators. For point sources, estimation of the
number of sources is a prerequisite for most DOA estimators. When the estimation of the number of
sources is wrong, the performance of DOA estimation algorithm will degrade or even fail. Considering
point source model, there are some classical estimation algorithms with regard to source number such
as information theoretical criterion and minimum description length criterion [26–28]. To the best of
our knowledge, there are no algorithms of source number estimation for CD sources. Therefor we
consider different q with respect to given number of 2D coherent CD source. Two fully coherent 2D
coherent CD sources with parameter sets as [30◦, 45◦, 2◦, 2◦] and [70◦, 25◦, 2◦, 3◦] are investigated. The
number of snapshots is set at 400 and SNR is 15 dB. D = 4 and P = 4. Estimation is regarded as effective

when the estimated angles satisfying
√
(θ̂i − θi)

2
+ (ϕ̂i − ϕi)

2 ≤ 3
◦
. Define detection probability as

Nd/2Mc where Nd is the number of sources which are estimated effectively. As can be seen from
Figure 6, when q = 1, SS-ESPRIT can estimate one of the sources as SNR exceeding 5 dB. As to SS-PM,
the probability of effective estimation with respect to one of the sources is at a lower level. When q = 2,
which means source number is correct, both algorithms can estimate normally. When q = 3, neither
SS-ESPRIT nor SS-PM can estimate DOA of sources accurately. Performance of SS-ESPRIT becomes
worse than q = 2 while SS-PM is completely invalid. It can be concluded that the prior knowledge q
has a great influence on both algorithms. For SS-ESPRIT, when q is less than the true value, a source
can be estimated. But for SS-PM, when q is not consistent with the true value, the estimation will fail.
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5. Conclusions

In this paper, a 2D coherent CD source model is proposed and two DOA estimation algorithms
based on spatial smoothing for 2D coherent CD sources are proposed using double parallel linear arrays.
The rotational invariance relationships between and within subarrays of are derived based on small
angular spreads assumption. Decoherence of covariance matrices of receive vectors can be realized by
virtue of spatial smoothing of double parallel linear arrays. A SS-PM method based on propagator of
covariance matrix of spatial smoothing, and a SS-ESPRIT method based on eigendecomposition of
covariance matrix of spatial smoothing, have been introduced in detail. Investigating 2D coherent CD
sources and traditional CD sources, the influence of different experiment conditions, angular spreads
and array configuration, the simulation results show that the two proposed estimation methods are
effective for the DOA estimation of 2D coherent CD sources.
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Appendix A

Take xk(t) which is signal received by kth sensors in arrayX for example. Considering Equation (1),
angle (θil, ϕil) which is DOA of ilth scatterer of the ith source can be regarded as 2D random

variables, when iL is a large number, 1
iL

iL
∑

il=1
αilej2πd(k−1) cos θil sin ϕil/λ converges to mean value of

αilej2πd(k−1) cos θil sin ϕil /λ according to law of large numbers. Then we have

E[αilej2πd(k−1) cos θil sin ϕil/λ] = αlE[ej2πd(k−1) cos θil sin ϕil/λ], (A1)

As the scatterers of the ith source subject to the density distribution g(θ,ϕ;ui,)

E[ej2πd(k−1) cos θil sin ϕil /λ] =
x

ej2πd(k−1) cos θ sin ϕ/λgi(θ, ϕ; ui)dθdϕ (A2)
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Then xk(t) can be expressed as

xk(t) =
q

∑
i=1

si(t)
x

ej2πd(k−1) cos θ sin ϕ/λgi(θ, ϕ; ui)dθdϕ + nxk(t) (A3)

Appendix B

Change the variables (θi + θ̃) for θ and (φi + φ̃) for ϕ, where θ̃ and φ̃ are the small deviations of θi
and ϕi. Thus, cosθsinϕ and cosθ can be approximated by the first term in the Taylor series expansions.
Consider the relationship between [a(θi, ϕi)]m and [a(θi, ϕi)]m−1

[a(θi, ϕi)]m =
s

gi(θ, ϕ; ui)ej2πd(m−1) cos θ sin ϕ/λdθ̃dϕ̃

≈
s

gi(θ, ϕ; ui)ejπ(m−1)(cos θi sin ϕi+cos θi cos ϕi ϕ̃−sin θi sin ϕi θ̃)dθ̃dϕ̃

= ejπ(m−1) cos θi sin ϕi
s

gi(θ, ϕ; ui)ejπ(m−1)(cos θi cos ϕi ϕ̃−sin θi sin ϕi θ̃)dθ̃dϕ̃

, (A4)

[a(θi, ϕi)]m−1 =
s

gi(θ, ϕ; ui)ej2πd(m−2) cos θ sin ϕ/λdθ̃dϕ̃

≈
s

gi(θ, ϕ; ui)ejπ(m−2)(cosθi sin ϕi+cos θi cos ϕi ϕ̃−sin θi sin ϕi θ̃)dθ̃dϕ̃

= ejπ(m−2) cos θi sin ϕi
s

gi(θ, ϕ; ui)ejπ(sin θi sin ϕi θ̃−cos θi cos ϕi ϕ̃)ejπ(m−1)(cos θi cos ϕi ϕ̃−sin θi sin ϕi θ̃)dθ̃dϕ̃

, (A5)

Because of the following relationship

ejπ(sin θi sin ϕi θ̃−cos θi cos ϕi ϕ̃) ≈ 1. (A6)

We have
[a(θi, ϕi)]m ≈ ejπ cos θi sin ϕi [a(θi, ϕi)]m−1. (A7)

Similarly, we have
[b(θi, ϕi)]m ≈ ejπ cos θi sin ϕi [b(θi, ϕi)]m−1. (A8)

Consider the relationship between [a(θi, ϕi)]m and [b(θi, ϕi)]m

[b(θi, ϕi)]m =
s

gi(θ, ϕ; ui)ej2πd(m−1) cos θ sin ϕ/λej2πd cos ϕ/λdθ̃dϕ̃

≈
s

gi(θ, ϕ; ui)ejπ(m−1)(cos θi sin ϕi+cos θi cos ϕi ϕ̃−sin θi sin ϕi θ̃)ejπ(cos ϕi−sin ϕi ϕ̃)dθ̃dϕ̃

= ejπ(m−1) cos θi sin ϕi ejπ cos θi
s

gi(θ, ϕ; ui)ejπ(m−1)(cos θi cos ϕi ϕ̃−sin θi sin ϕi θ̃)ejπ(− sin ϕi ϕ̃)dθ̃dϕ̃

. (A9)

Noticing the following relationship

ejπ(− sin ϕi ϕ̃) ≈ 1. (A10)

So we have
[b(θi, ϕi)]m ≈ [a(θi, ϕi)]mej2πd cos ϕi/λ. (A11)

Appendix C

Rs is a q × q dimensional full rank matrix, which can be expressed as follows

Rs =
1
P

P
∑

p=1
Φp−1

X ρρHΦ1−p
X

= 1
P [ρ, ΦXρ, Φ2

Xρ, · · · , Φ
p−1
X ρ][ρ, ΦXρ, Φ2

Xρ, · · · , Φ
p−1
X ρ]H

= 1
P ΩΩH

. (A12)
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Ω can be expressed as follows

Ω = ∆Ψ

=


1 0 · · · 0
0 ρ2 · · · 0
...

...
. . .

...
0 0 · · · ρq




1 ejπ cos θ1 sin ϕ1 · · · ejπ(P−1) cos θ1 sin ϕ1

1 ejπ cos θ2 sin ϕ2 · · · ejπ(P−1) cos θ2 sin ϕ2

...
...

. . .
...

1 ejπ cos θq sin ϕq · · · ejπ(P−1) cos θq sin ϕq

 . (A13)

Apparently, ∆ is full rank. Ψ is a Vandermonde matrix, which is full rank when P ≥ q.
Thus, Rs is a q × q dimensional full rank matrix when P ≥ q. As the rank of combination matrix

of generalized steering matrices A1(θ,ϕ) and B1(θ,ϕ) in Equation (31) are q, we can obtain that the R is
a full rank matrix.
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