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Abstract: In this paper, we propose a novel speech enhancement method based on dual-tree 

complex wavelet transforms (DTCWT) and nonnegative matrix factorization (NMF) that exploits 

the subband smooth ratio mask (ssRM) through a joint learning process. The discrete wavelet 

packet transform (DWPT) suffers the absence of shift invariance, due to downsampling after the 

filtering process, resulting in a reconstructed signal with significant noise. The redundant 

stationary wavelet transform (SWT) can solve this shift invariance problem. In this respect, we use 

efficient DTCWT with a shift invariance property and limited redundancy and calculate the ratio 

masks (RMs) between the clean training speech and noisy speech (i.e., training noise mixed with 

clean speech). We also compute RMs between the noise and noisy speech and then learn both RMs 

with their corresponding clean training clean speech and noise. The auto-regressive moving 

average (ARMA) filtering process is applied before NMF in previously generated matrices for 

smooth decomposition. An ssRM is proposed to exploit the advantage of the joint use of the 

standard ratio mask (sRM) and square root ratio mask (srRM). In short, the DTCWT produces a set 

of subband signals employing the time-domain signal. Subsequently, the framing scheme is 

applied to each subband signal to form matrices and calculates the RMs before concatenation with 

the previously generated matrices. The ARMA filter is implemented in the nonnegative matrix, 

which is formed by considering the absolute value. Through ssRM, speech components are 

detected using NMF in each newly formed matrix. Finally, the enhanced speech signal is obtained 

via the inverse DTCWT (IDTCWT). The performances are evaluated by considering an IEEE 

corpus, the GRID audio-visual corpus, and different types of noises. The proposed approach 

significantly improves objective speech quality and intelligibility and outperforms the 

conventional STFT-NMF, DWPT-NMF, and DNN-IRM methods. 

Keywords: Dual-tree complex wavelet transform (DTCWT); discrete wavelet packet transform 

(DWPT); stationary wavelet transform (SWT); speech enhancement (SE) 

 

1. Introduction 

Speech quality and intelligibility are degraded due to the presence of different types of noise. It 

is also worsened when environmental and background noises are present. A speech enhancement 

(SE) approach is developed to reduce the effect of noise, boosting the perceived quality and 

intelligibility of speech. In the literature, different SE approaches have been formulated based on 
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speech and noise characteristics. Some of them are spectral subtraction [1,2], maximum likelihood 

spectral amplitude estimation [3], maximum a posteriori spectral amplitude estimation [4], statistical 

model-based estimation [5], sparseness and temporal gradient regularization method [6], Wiener 

filtering [7], subband forward algorithm [8], and subspace method [9]. These methods consist of two 

parts: Noise tracking and signal gain estimation. The noise tracking part tracks the background noise 

power, whereas the signal gain estimation part estimates the clean speech. Recently, there have been 

many advances in SE, such as deep neural networks [10,11], deep denoising auto-encoder [12], 

sparse coding [13–17], and non-negative matrix factorization [18,19]. Most of these methods contain 

training and testing phases for SE. The training phase prepares a model to characterize the 

correlation between clean speech and noise; this model is then adopted in the testing phase to 

recover the clean signal.  

Most of the existing methods are based on the short time fourier transforms (STFT). These 

methods show two problems, including the time-frequency resolution problem, and estimation of 

the speech signal from the enhanced magnitude spectrum and the noisy phase [20]. Nowadays, 

some of the research is focused on wavelet-based transforms, such as continuous wavelet transforms 

(CWT), discrete wavelet transforms (DWT) [21,22], discrete wavelet packet transforms (DWPT) [23–

26], and stationary wavelet transforms (SWT) [27]. The CWT provides enormous redundant 

information and requires a significant amount of computation time and resources. The DWT does 

not give a better estimation of the critical subband decomposition. The DWPT provides sufficient 

information both for analysis and synthesis of the original signal, with a significant reduction in the 

computation time. Moreover, this transform suffers from a lack of shift invariance. Specifically, small 

shifts in the input signal can cause significant variations in the distribution of energy between 

coefficients at different levels, resulting in signal reconstruction errors [27]. Both the DWT and 

DWPT coefficients in each level will be downsampled after filtering. The SWT eliminates the 

downsampling process at each level to obtain the shift invariance property; furthermore, it is a very 

redundant transform [27]. In this paper, we focus on the dual-tree complex wavelet transform 

(DTCWT) based method for speech enhancement. The reason is that it has a shift-invariant property 

with limited redundancy.  

Recently, the authors in [28] proposed an efficient method based on the ratio mask (RM) 

(continuously valued mask) to overcome outliers (i.e., outlier means the estimate speech magnitude 

is larger than the mixture’s), and adverse magnitude problems. Here, the RM for speech/noise refers 

to the ratio between the speech/noise magnitude and their combinations in the time-frequency 

domain. The authors in [28,29] showed that the RM significantly improves speech quality and 

intelligibility. The objective of the paper is to concatenate a clean subband signal with its RM for 

decomposing through the NMF. To the best of our knowledge, this has not been studied yet. It is 

noted that we measure the ideal RMs (IRMs) for clean speech and noise from their mixtures in the 

training phase, whereas the enhanced RMs (ERMs) of speech are measured in the enhancement 

phase. NMF was directly applied to the matrix of the subband signal in the wavelet domain, similar 

to [24]. As a result, some errors occur during decompositions of the signal using NMF.  

Furthermore, we use the auto-regressive moving average (ARMA) filtering process in the 

wavelet domain of smooth decomposition. Different types of RM have been studied in the literature 

to increase the quality of the estimated signal, such as an ideal or standard ratio mask (iRM or sRM), 

square root ratio mask (srRM), and binary ratio mask (bRM). The bRM provides a hard decision, i.e., 

its mask value is 0 if it is dominated by noise, whereas a mask value is 1 when it is dominated by 

speech. As a result, it removes the background noise imperfectly from the subband signal dominated 

by the speech, severely degrading the hearing quality. Contrarily, the sRM in [29] considered the soft 

decision where the mask values continuously vary from 0 to 1 instead of the hard decision by the 

bRM. The srRM has shown a better enhancing performance over the bRM in [30] because srRM is 

more suitable than sRM to keep both the speech and noise energy, and provides a higher mask value 

in the range of 0 to 1 than sRM. The higher mask value has a comparatively weakened ability to 

mask the noise; besides, it has an excellent ability to keep the speech components. To this place, we 
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apply the subband smooth ratio mask (ssRM) to take advantage of the combined use of the sRM and 

srRM. The key contributions of this work can be summarized as follows:  

Firstly, we propose a novel speech enhancement approach that adheres to the DTCWT and 

NMF with the Kullback-Leibler (KL) divergence cost function. Secondly, we derive the new matrix 

by applying the framing scheme, where the row corresponds to the frame number and the column to 

the frame length. Thirdly, we calculate the RMs for speech and noise from their mixtures and 

concatenate them with the previously formed matrix of speech and noise, respectively. Then, we 

take the absolute value and employ the ARMA filter to obtain smooth decomposition instead of 

direct use of the NMF. Finally, we propose the new ssRM by combining the sRM and srRM to 

enhance the performance of the speech signal.  

The rest of this paper is organized as follows. Section 2 provides the formulated model of the 

proposed method. In Section 3, a short overview of NMF with cost functions is given. In Section 4, a 

brief explanation about DTCWT is presented. Section 5 provides a brief description of the 

DTCWT-NMF based speech enhancement method. Section 6 presents speech and noise databases 

with experimental conditions and discussion. Section 7 concludes the paper followed by the 

references.  

2. Problem Formulation 

Let us consider the observed speech signal, x(t), as  

x(t) = s(t) + n(t) (1) 

where s(t) is a clean speech signal and n(t) is a noise signal. Then, the DTCWT of the noisy signal 

in Equation (1) can be written as: 

DTCWT{x(t)} = DTCWT{s(t)} + DTCWT{n(t)} (2) 

DTcwt� = DTcwt� + DTcwt� (3) 

where DTCWT represents the dual-tree complex wavelet transforms, DTcwt� signifies the RMs of 

the wavelet coefficients of the observed signal, DTcwt� denotes the RMs of the wavelet coefficients 

of the clean speech signal, and DTcwt� indicates the RMs of the wavelet coefficients of the noise. 

Here, DTcwt� and DTcwt� are unknown RMs of the wavelet coefficients and need to be estimated 

using the RMs of the noisy wavelet coefficients and the RMs of the clean training speech and the 

noise wavelet coefficients via NMF and the subband smooth ratio mask. Then, the enhanced time 

domain speech signal is obtained as: 

s�(t) = DTCWT��(��� ����) (4) 

where s�(t) is the estimated time domain clean speech signal, DTCWT�� represents the IDTCWT, 

and ��� ���� is the estimated clean speech RMs of the wavelet coefficients. 

3. Non-Negative Matrix Factorization (NMF) 

NMF is an approach that is used for decomposing any nonnegative matrix, X , into a 

non-negative basis matrix, W, and a nonnegative weight matrix, H. Thus, we have: 

X = WH (5) 

where each column vector of matrix X is estimated by a weighted linear combination of the basis 

vectors, which are the columns of  W and the weights for the basis vectors that appear in the 

corresponding columns of H. Nonnegative basis vectors of matrix W are optimized to allow the data 

matrix, X, to be estimated as a positive linear combination of its constituent vectors. The matrices, W 

and H, are approximated by using the following optimization problem as: 

min C(X||WH) (6) 
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where both matrices, W  and H , are nonnegative. C  represents the cost function, which 

approximates the distance between X and  WH. Two types of cost function are reported in [31]. The 

first one is the Euclidean distance (ED) cost function, given as follows: 

  

C�� = min (||X − WH||�
�) (7) 

= �(X�,� − (WH)�,�)
�

�,�

 (8) 

The matrices, W and H, can be computed through the following iterative updates as: 

W ← W
XH�

WHH�
 (9) 

H ← H
W�X

W�WH
 (10) 

The second one is the KL divergence cost function, given as follows: 

C�� = min D(X||WH) (11) 

= �(X�,�log
X�,�

(WH)�,�
�,�

−  X�,� + (WH)�,�) (12) 

The KL cost function works well in audio source separation, and therefore, we will consider it 

in our new approach. The matrices, � and �, are obtained through the following iterative updates: 

W ← W ⊗  

X
WH

H�

1H�
 (13) 

H ← H ⊗  
W� X

WH
W�1

 (14) 

where 1 represents a matrix of ones with the same size as  X, and the division and the operator, ⊗, 

are element-wise division and multiplication, respectively. 

4. Dual-Tree Complex Wavelet Transform (DTCWT) 

The DWT has been well adopted in recent decades in many signal processing applications. This 

is due to its ability to provide an efficient time-frequency analysis of signals. However, despite these 

efficiencies, the DWT suffers from the following drawbacks: 

 Shift variance. 

 Oscillation. 

 Aliasing. 

 Lack of orientation. 

The SWT solves the lack of shift invariance problem by eliminating downsampling operators, 

but it is a very highly redundant transform. It represents a redundancy as much as N × J (N is the 

length of the input signal and J is the maximum number of decomposition levels) and, as a result, 

denoising procedures consume considerable computation time. One solution for the shift-invariant 

wavelet transform without high redundancy is the complex wavelet transform, which takes 

advantage of complex-valued filters instead of real ones. For perfect reconstruction properties, the 

complex filters must be analytic. However, the successful design of an analytic complex-valued filter 

for implementation in filter banks is difficult. Kingsbury introduced a more computationally 

efficient approach for a shift invariance transform; the DTCWT has the following properties [32]: 

 Approximate shift invariance. 

 Perfect reconstruction. 

 Limited redundancy, independent of the number of levels, it has 2:1 redundancy. 



Electronics 2019, 8, 353 5 of 18 

 

 Efficient order—N computation, only twice the DWT. 

The two real wavelet transforms use two different sets of filters, with each satisfying the PR 

conditions. The two sets of filters are jointly designed so that the overall transform is approximately 

analytic [33]. According to its name, the DTCWT uses two wavelet trees. The input signal is applied 

to the two trees, and it is decomposed into four subbands.  r�(n), r�(n) (real part) and i�(n), i�(n) 

(imaginary part) are the low pass and high pass filters of the two wavelet trees, respectively. The 

two-level decomposition of the DTCWT is shown in Figure 1a, and the filter bank for implementing 

the inverse of DTCWT (IDTCWT) is shown in Figure 1b. For the implementation of the DTCWT, no 

complex arithmetic is needed because the filters themselves are real. The number of coefficients in 

the DTCWT at each level is two times DWT so that the DTCWT is a redundancy, and compared with 

SWT it is small. So, to analyze and synthesize speech signals, the DTCWT is a powerful 

mathematical tool. 

S
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↓2 �0(�)
���1

↓2
���2 �0(�)

↓2
���2
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���1
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S
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(a) (b) 

Figure 1. The two-level filter bank implementation of (a) DTCWT and (b) IDTCWT. 

5. DT-CWT-NMF Based Speech Enhancement System 

The STFT-NMF and DWPT-NMF based speech enhancement systems were studied in [24,34]. 

The DNN that is used to estimate the ideal ratio mask (IRM) for speech separation (DNN-IRM) was 

studied in [29]. The DNN has three hidden layers, each having 1024 rectified linear (ReLU) hidden 

units. The input layer is given the following set of complementary features that are extracted from a 

64-channel Gammatone filterbank: Amplitude modulation spectrogram (AMS), relative spectral 

transform, and perceptual linear prediction (RASTA-PLP); mel-frequency cepstral coefficients 

(MFCC); and the cochleagram response, as well as their deltas. The standard backpropagation 

algorithm coupled with dropout regularization (dropout rate 0.2) is used to train the networks and 

the adaptive gradient descent is also used along with a momentum term as the optimization 

technique. A momentum rate of 0.5 is used for the first five epochs, after which the rate increases to 

and is kept at 0.9. The DNNs are trained to predict the desired outputs across all frequency bands, 

and the mean squared error (MSE) is used as the cost (loss) function. In this paper, we propose a 

novel speech enhancement system that adopts DTCWT and NMF with ssRM. Figure 2 depicts the 

main structure of our proposed speech enhancement system, and it consists of two phases: The 

training phase and test phase. 

5.1. Training Phase  

In the training phase, the clean speech signal,  s(t), noise, n(t), and noisy speech, sn(t), pass 

through the DTCWT and yield a set of subband signals, i.e., {s�,�
�

}, {n�,�
�

}, and {sn�,�
�

}, where J 

represents the level of DTCWT, b denotes the subband index, and t indicates the tree level. The 

standard deviation of each subband signal is calculated and preserved. The overlapping framing 

scheme is implemented in each subband signal to create the subband signal matrix, where the 
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column corresponds to the frame number and the row corresponds to the frame length, i.e., S�,�
������

, 

N�,�
������

, and SN�,�
������

.  

 

Figure 2. Block diagram of the proposed speech enhancement system. 

We calculate the RMs for speech, Rs�,�
������

, and noise, Rn�,�
������

, from their mixture, SN�,�
������

, by 

using Equations (15) and (16). Then, the RMs are concatenated with their corresponding speech, 

S�,�
������

, and noise, N�,�
������

, by using Equations (17) and (18): 

Rs�,�
������

= S�,�
������

./SN�,�
������

 (15) 

Rn�,�
������

= N�,�
������

./ SN�,�
������

 (16) 

SRs�,�
������

= �
S�,�

������

Rs�,�
������� (17) 

NRn�,�
������

= �
N�,�

������

Rn�,�
������

� (18) 

We consider only the absolute value of these concatenated matrices to removing negativity, i.e., 

|SRs�,�
������

| and |NRn�,�
������

|. Instead of using NMF directly, to decompose the nonnegative matrices, 

 |SRs�,�
������

| and |NRn�,�
������

|, we generate the new matrices by applying the second-order ARMA 

filtering scheme reported in [35] to the nonnegative matrices for smooth decomposition. We then 

analyzed the matrix, SRs�,�
������

, via NMF, such that SRs�,�
������

≈  W���
�,� H���

�,� , where the initial values of 

  W���
�,�  and H���

�,�  are initialized by positive random numbers. The clean speech basis matrix,   W���
�,�  

(i.e.,  W�
�,� for the subband speech signal and   W��

�,� for the subband speech ratio mask are learned 
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jointly via NMF) can be approximated by minimizing the distance between SRs�,�
������

 and  W���
�,� H���

�,�  

using Equation (12) with the help of Equations (13) and (14). Similarly, the noise basis matrix, W���
�,�  

(i.e., W�
�,� for subband noise and   W��

�,� for the subband noise ratio mask are learned jointly via 

NMF), associated with the subband b is derived by using the noise in the training data set. Finally, 

these matrices are concatenated and obtain the final concatenated matrix as follows: 

 W������
�,� = [W�

�,� W�
�,�  W��

�,�  W��
�,�] (19) 

The proposed algorithm for the training phase is as follows: 

a) Calculate the wavelet coefficients, {s�,�
�

}  and {n�,�
�

}, from the speech and noise training 

data via DTCWT, as well as the wavelet coefficients, {sn�,�
�

}, of the train noisy signal. 

b) Apply the framing scheme on the wavelet coefficients and obtain the matrices,  S�,�
�

, N�,�
�

, 

and SN�,�
�

, for training speech, noise, and noisy signal, respectively. 

c) Calculate Rs�,�
������

 and Rn�,�
������

 according to Equations (15) and (16) and arrange the 

speech, SRs�,�
������

, and noise, NRn�,�
������

, training sets according to Equations (17) and (18). 

d) Take the absolute value and apply the ARMA filter to the SRs�,�
������

 and NRn�,�
������

. 

e) Decompose the matrices,  I�,�
������

≈ W�
�,�H�

�,�, for I = SRs, NRn using NMF with the KL cost 

function and prepare the matrix,  W������
�,� , using Equation (19). 

5.2. Test Phase 

In the test phase, the noisy speech signal, x(t), passes through the DTCWT and provides a set of 

noisy subband signals, i.e., {x�,�
�

}. Applying the process above, we obtain the nonnegative matrix as: 

 XRx�,�
�����

= � X�,�
�����

 Rx�,�
�����

� (20) 

where  Rx�,�
�����

 is the one matrix defined test ratio mask and is the same size as the matrix, X�,�
�����

. The 

NMF is used again to decompose the nonnegative matrix,  XRx�,�
�����

, such that  XRx�,�
�����

≈

 W������
�,� H������

�,� = W�
�,�H�

�,� + W�
�,�H�

�,� + W��
�,�H��

�,� + W��
�,�H��

�,� , where  H������
�,�  represents the 

activation matrix, and H�
�,�, H�

�,�, H��
�,�, and H��

�,�  denote the speech, noise, speech ratio mask, and 

noise ratio mask portions of H������
�,� , respectively. The activation matrix, H������ 

�,� (i.e., H�
�,�, H�

�,�, 

H��
�,�, and H��

�,�  matrices are learned jointly via NMF), can be approximated by applying Equations 

(12) and (14), where the initial value of H������ 
�,�  is initialized by a positive random number and the 

value of  W������
�,�  is fixed, as generated during the training phase. We obtain the rough estimate of 

the clean speech signal, (Ss� �,�
�

), in the noisy test signal, (X�,�
�

), by multiplying the enhanced subband 

speech basis matrix, (W�
�,�), with its corresponding activation matrix, (H�

�,�), and the rough estimate of 

the clean speech signal, RM (Sr� �,�
�

), in the noisy test signal, (X�,�
�

), by multiplying the enhanced RM 

subband basis matrix, (W��
�,�), with its corresponding activation matrix, (H��

�,�), as: 

Ss� �,�
�

= W�
�,�H�

�,� (21) 

Sr� �,�
�

= W��
�,�H��

�,� (22) 

Similarly, we get rough estimates of the noise, (Nn����
�,�
�

), and noise ratio mask, (Nr���
�,�
�

), in the noisy 

test signal,  (X�,�
�

), as: 

Nn����
�,�
�

= W�
�,�H�

�,� (23) 

Nr���
�,�
�

= W��
�,�H��

�,�  (24) 
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The algorithm for the test phase is as follows: 

a) Extract the wavelet coefficients, {x�,�
�

}, from the noisy test signal via DTCWT. 

b) Apply the framing scheme on the wavelet coefficients, {x�,�
�

}, and obtain the matrices, 

 X�,�
�����

.  

c) Prepare the noisy test matrix, XRx�,�
�����

, using the concatenation and ARMA filtering 

operations on the matrix,  X�,�
�����

, and RM matrix, Rx�,�
�����

 (i.e., Rx�,�
�����

 is the one's matrix 

and is the same size as the matrix, X�,�
�����

). 

d)  Learn the weight matrix, H������
�,� , jointly from the noisy test signal, XRx�,�

�����

, while 

keeping the basis matrix,  W������
�,� , fixed:  XRx�,�

�����

≈  W������
�,� H������

�,� .  

e) Find the rough estimate of speech, speech RM, noise, and noise RM in the noisy test 

signal as  I�̅,�
�

≈ W�
�,�H�

�,� since I = Ss, Sr, Nn, Nr and K = S, Rs, N, Rn. 

5.3. Subband Smooth Ratio Mask (ssRM) 

We can directly use the rough estimate of speech, Ss� �,�
�

, and noise, Nn����
�,�
�

, or speech RM, Sr� �,�
�

 , 

and noise RM, Nr���
�,�
�

, but the noisy signal,  X�,�
�

, is not exactly equal to the sum of the above two 

estimates. To make it error free, the mask for speech, Ms�,�
�

, and speech RM, Msrm�,�
�

, are measured 

as follows: 

Ms�,�
�

= (Ss� �,�
�

)�./((Ss� �,�
�

)� + (Nn����
�,�
�

)�) (25) 

Msrm�,�
�

= (Sr� �,�
�

)�./((Sr� �,�
�

)� + (Nr���
�,�
�

)�) (26) 

where p is a parameter, which possesses values greater than zero. The elements of matrices, Ms�,�
�

 

and Msrm�,�
�

, vary from zero to one, and different values of p indicate different types of masks. 

Thus, the sRM Ms�,�
����

 and srRM Ms�,�
�����

 for speech are defined in Equations (27) and (28), 

respectively. Additionally, the sRM Mr�,�
����

 and srRM Mr�,�
�����

 for speech RM are defined in 

Equations (29) and (30), respectively: 

Ms�,�
����

= Ss� �,�
�

./(Ss� �,�
�

+ Nn����
�,�
�

) (27) 

Ms�,�
�����

= �Ss� �,�
�

./(�Ss� �,�
�

+ �Nn����
�,�
�

) (28) 

Mr�,�
����

= Sr� �,�
�

./(Sr� �,�
�

+ Nr���
�,�
�

) (29) 

Mr�,�
�����

= �Sr� �,�
�

./(�Sr� �,�
�

+ �Nr���
�,�
�

) (30) 

where “√.” and “./” represent the element-wise square root and division operators, respectively. 

Since the sRM provides a soft decision, where the mask values continuously vary from 0 to 1, 

contrarily, the bRM gives a hard decision. In contrast, the srRM yields higher mask values than the 

sRM, i.e., the srRM preserves more speech and noise energy than the sRM. To take the advantages of 

both RMs, the sRM, Ms�,�
����

, and srRM, Ms�,�
�����

, are combined to form ssRM, Ms�,�
�����

, for the speech 

in Equation (31) and similarly, the ssRM, Mr�,�
�����

, for the speech RM is formed by combining the 

sRM, Mr�,�
����

, and srRM, Mr�,�
�����

, in Equation (32) as follows: 

Ms�,�
�����

= α. Ms�,�
����

+ (1 − α). Ms�,�
�����

   (31) 

Mr�,�
�����

= α. Mr�,�
����

+ (1 − α). Mr�,�
�����

 (32) 

Then, the de-framing process is applied to Ms�,�
�����

 in Equation (31) and Mr�,�
�����

 in Equation 

(32) to obtain a speech sequence, ms�,�
�����

, and a speech RM sequence, mr�,�
�����

, where both 
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sequences have the same length as the original subband signal,  s�,�
�

. So, we estimate the subband 

speech signal, s��,�
�

, in two ways as: 

s��,�
�

= x�,�
�

.× ms�,�
�����

 (33) 

s��,�
�

= x�,�
�

.× mr�,�
�����

 (34) 

5.4. Subband Power Normalization 

A power normalization scheme is applied to the estimated subband signal, s��,�
�

, in Equation (33) 

or (34) to obtain the power normalized subband signal,  s��,�
�

, as: 

s��,�
�

=
σ�,�,�

σ�,�

s��,�
�

 (35) 

where  σ�,�,� represents the standard deviation of the clean speech utterance, which is calculated in 

the training phase, and σ�,� denotes the standard deviation of the estimated subband signal,  s��,�
�

. 

Finally, the enhanced speech signal, s�(t) , can be obtained by applying the inverse DTCWT 

(IDTCWT) to the power normalized subband signal,  s��,�
�

, in Equation (35).  

6. Experiments and Discussion 

Firstly, the experimental setup and evaluation techniques are introduced briefly. Secondly, the 

efficiency of our proposed method is diagnosed with STOI scores. Thirdly, the effects of the ARMA 

filter and ssRM are inspected. Fourthly, we compare the overall performance of our proposed 

method with the baseline (noisy data), STFT-NMF, and DWPT-NMF regarding HASQI and HASPI. 

Fifthly, the overall performance of the DTCWT-NMF with the previous three methods and the 

DNN-IRM are examined. Sixth, the unseen noise case of DTCWT-NMF with the unseen noise case of 

the baseline, STFT-NMF, DWPT-NMF, and DNN-IRM methods are compared concerning STOI and 

PESQ scores. Seventhly, we consider a multi-speaker dataset and compare our proposed method 

with the DNN-IRM and the DWPT-NMF regarding STOI and PESQ. Finally, we show the 

spectrograms of the clean speech, noisy speech, estimated speech through STFT-NMF, estimated 

speech through DWPT-NMF, estimated speech through DNN-IRM, and estimated speech through 

our proposed method. 

6.1. Experimental Setup 

For the experiment, an IEEE corpus [36] spoken by a single male speaker with 720 utterances at 

a sampling rate of 25 kHz is utilized to train, tune, and test our proposed system. We consider only 

300 utterances for the training set by choosing randomly from 1 to 400, 100 utterances for the tuning 

set by selecting from 400 to 550, and another 100 utterances for the test set by choosing randomly 

from 551 to 720. Every utterance is downsampled at 16 kHz, and the length of these utterances is 

around 2 to 3 s. Eleven types of noises (e.g., stationary, non-stationary, quasi-stationary, and 

speech-shaped noises) are used for training, tuning, and testing purposes: Babble, birds, cafe, car, 

casino, factory, keyboard, machine gun, PC fan, speech-shaped noise (SSN), and street, which are 

drawn from different databases, such as the Aurora-2 database [37] and NOISEX-92 dataset [38]. 

Each noise is artificially added to the clean training, tuning, and test signals to generate the training, 

tuning and test noisy signals at five signal-to-noise ratios (SNRs) ranging from 10 dB to –10 dB with 

a 5 dB interval. Each noise length is around 30 s. Also, a random cut from the first 15 s of each noise 

is mixed with each training (tuning) utterance to generate the training (tuning) set. A random cut 

from the last 15 s of each noise is combined with each testing utterance to create the testing mixtures. 

Dividing the noise into two halves ensures that the testing noise segments are unseen during 

training. The applied magnitude spectrograms for STFT-NMF are computed by using a 1024 sample 

hamming window with 50% overlapping. The number of frames of the basis matrix is 40 for all the 

methods, the frame size is 1024 samples, and the frameshift is 20 samples followed in [24] for the 
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DWPT-NMF and DTCWT-NMF methods, respectively. Furthermore, the level of the wavelet is 3, 

the mother wavelet functions are Daubechies16 (db16) for DWPT/IDWPT and dtf2 for 

DTCWT/IDTCWT, and the iterations for training and testing are 100 and 50, respectively.  

6.2. Evaluation Methods 

We used the hearing aid’s speech quality index (HASQI) [39], the hearing aid’s speech 

perception index (HASPI) [40], the perceptual evaluation of speech quality (PESQ) [41], and the 

short-time objective intelligibility (STOI) [42] to evaluate the speech quality and intelligibility. Both 

of the HASQI and HASPI scores range from 0 to 1, and higher scores correspond to better sound 

quality and intelligibility, respectively. The PESQ is chosen as the objective quality test. It is widely 

used to assess the objective quality of speech signals. It gives scores in the range of −0.5 to 4.5, where 

higher scores correspond to better speech quality. STOI returns scores between 0 and 1, where 

higher STOI values imply better intelligibility. Besides, we calculated the performance of these 

enhancement methods (STFT-NMF, DWPT-NMF, DNN-IRM, and DTCWT-NMF) using the 

aforementioned metric scores by averaging over 100 test signals and 11 types of noises. The 

experiments 6.3 to 6.6 are handled by using the training set and the tuning set for the training stage 

and test stage, respectively. The best methods or parameters are then used to test the overall 

performance in experiment 6.7 by using the test set for the test stage. 

6.3. The Efficiency of the Proposed System 

In this subsection, we study the impact of the proposed method over the DWPT-NMF method 

with the ED and KL cost functions regarding STOI scores at different SNR levels. Figure 3 shows the 

performance comparison between the proposed method and the other methods, including the 

DWPT-NMF-ED, DWPT-NMF-KL, and DTCWT-NMF-ED methods, where the test signal is mixed 

with babble noise. Figure 3 shows that the proposed method, DTCWT-NMF-KL, has higher STOI 

values compared to the other methods except for the noise level of 5 dB. Therefore, we employed the 

DTCWT-NMF-KL method (referred to this paper as DTCWT-NMF) in the overall performance 

evaluation section. 

 

Figure 3. Comparison between DTCWT-NMF and DWPT-NMF methods with ED and KL. 

6.4. The Effect of Speech and Noise Ratio Mask  



Electronics 2019, 8, 353 11 of 18 

 

We investigated the effect of speech and noise RMs that are learned jointly with the speech and 

noise training data considering four noises at five SNR levels as shown in Figure 4. According to 

Figure 4, we can achieve higher STOI values in all given noises and SNR levels based on speech and 

noise RMs. Also, we observed that the improvements of the STOI values in low SNR cases are 

gradually higher than high SNR cases. So, we exploited the speech and noise RMs in the overall 

performance evaluation section.  

 

Figure 4. The effect of the speech and noise RM over speech and noise. 

6.5. The Effect of the ARMA Filter 

We observed and compared the outcomes of an ARMA filter in the system performances 

concerning STOI scores for four noises at five SNR cases. As we can see from Figure 5, it delivers a 

better impact on the system performance compared with the system performance without using the 

ARMA filter. So, we used the ARMA filter in the overall performance evaluation.  
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Figure 5. The impact of using the ARMA filter before decomposition via NMF. 

6.6. Impact of the Proposed Subband Smooth Ratio Mask 

Finally, we analyzed the impact of ssRM on STOI values at different SNR conditions. Figure 6 

illustrates the ssRM at different α values. If we consider α = 0.8, it has a better STOI value in almost 

all SNR conditions than the other two α values as can be seen in Figure 6. So, the value of α is 

considered 0.8 in Equations (31) and (32). 

 

Figure 6. Effect of ssRM regarding the value of α. 

6.7. Overall Performance Evaluation 

Based on the HASQI and HASPI metrics, we compared the performance of the proposed 

method with the baseline (unprocessed noisy speech), STFT-NMF, and DWPT-NMF methods. 

Tables 1 and 2 show the experimental results of five SNR cases. According to Tables 1 and 2, we 

confirmed that the proposed method provides better HASQI and HASPI scores than the STFT-NMF, 

DWPT-NMF, and baseline methods for all SNR cases. For this consequence, we presume that the 

DTCWT-NMF method improves the performance significantly concerning the quality and 

intelligibility of the speech signal. We also find that the HASQI scores are gradually improved from 
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high to low SNR cases of the DTCWT-NMF method, whereas the HASPI scores are abruptly 

improved in low SNR cases than high SNR. Ultimately, we speculate that the proposed method 

works well in low SNR cases based on HASPI values. 

Table 1. The HASQI results in five SNR cases. 

Method –10 –5 0 5 10 

Baseline 0.058 0.079 0.110 0.143 0.180 

STFT-NMF 0.053 0.086 0.139 0.183 0.204 

DWPT-NMF 0.067 0.127 0.216 0.298 0.359 

DTCWT-NMF 0.121 0.216 0.354 0.505 0.633 

Table 2. The HASPI results in five SNR cases. 

Method –10 –5 0 5 10 

Baseline 0.307 0.398 0.571 0.731 0.848 

STFT-NMF 0.269 0.468 0.763 0.933 0.970 

DWPT-NMF 0.333 0.596 0.886 0.978 0.993 

DTCWT-NMF 0.547 0.787 0.970 0.997 0.999 

Tables 3 and 4 list the PESQ and STOI values of different methods, including the baseline, 

STFT-NMF, DWPT-NMF, DNN-IRM, and DTCWT-NMF methods, under five SNR conditions. From 

Table 3, it can be seen that the DTCWT-NMF yields better PESQ values than the baseline, 

STFT-NMF, and DWPT-NMF methods in all SNR conditions. Contrarily, the DTCWT-NMF method 

outperforms the DNN-IRM for PESQ values under low SNR conditions. Similar performance trends 

can be observed from Table 4 for STOI values.   

Table 3. The PESQ values under five SNR cases. 

Method –10 –5 0 5 10 

Baseline 1.435 1.539 1.709 1.899 2.035 

STFT-NMF 1.463 1.559 1.733 1.930 2.053 

DWPT-NMF 1.493 1.659 1.851 2.041 2.216 

DNN-IRM 1.520 1.716 2.031 2.465 2.761 

DTCWT-NMF 1.551 1.725 2.006 2.298 2.614 

   Table 4. The STOI results in five SNR cases. 

Method –10 –5 0 5 10 

Baseline 0.533 0.591 0.652 0.717 0.784 

STFT-NMF 0.451 0.504 0.578 0.632 0.677 

DWPT-NMF 0.522 0.623 0.717 0.787 0.835 

DNN-IRM 0.547 0.654 0.757 0.844 0.905 

DTCWT-NMF 0.572 0.660 0.757 0.841 0.903 

In the unseen noise case, we considered five types of noises: Babble, birds, cafe, car, and casino 

for training and six types of noises: Factory, keyboard, machine gun, pc fan, speech-shaped noise 
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(SSN), and street for testing. Moreover, we calculated the performance of the baseline, U-STFT-NMF, 

U-DWPT-NMF, U-DNN-IRM, and U-DTCWT-NMF methods using the STOI and PESQ metrics by 

averaging over 100 test signals and six types of noises. It is noted that the prefix, U, of these methods 

indicates the unseen noise case of the STFT-NMF, DWPT-NMF, DNN-IRM, and DTCWT-NMF 

methods. Table 5 compares the performance of the U-DTCWT-NMF method with the other three 

techniques, including U-STFT-NMF, U-DNN-IRM, and U-DWPT-NMF, and the baseline at five SNR 

conditions. By observing Table 5, it can be seen that the U-DTCWT-NMF method outperforms the 

U-STFT-NMF and U-DWPT-NMF regarding STOI and PESQ in all SNR cases, whereas the 

U-DTCWT-NMF outperforms the U-DNN-IRM method in low SNR cases. Thus, it confirms our 

previous conclusion that the performance of the proposed method is better than the other three 

methods, including STFT-NMF, DWPT-NMF, and DNN-IRM, and the baseline in low SNR cases.  

Table 5. Comparison between the U-DTCWT-NMF and the other three unseen noise case methods. 

Method -10 -5 0 5 10 

 STOI/PESQ STOI/PESQ STOI/PESQ STOI/PESQ STOI/PESQ 

Baseline 0.551/1.352 0.641/1.646 0.734/1.901 0.829/2.256 0.902/2.540 

U-STFT-NMF 0.477/1.349 0.545/1.553 0.609/1.775 0.682/1.987 0.728/2.188 

U-DWPT-NMF 0.534/1.407 0.623/1.666 0.716/1.962 0.789/2.307 0.847/2.584 

U-DNN-IRM 0.542/1.427 0.652/1.681 0.764/1.970 0.855/2.343 0.917/2.692 

U-DTCWT-NMF 0.569/1.437 0.667/1.707 0.765/1.973 0.849/2.323 0.909/2.642 

In the multi-speaker case, we collected the speech signals and non-stationary noises from the 

GRID audio-visual corpus [43] and the NOISEX-92 corpus [38], respectively. The noise types include 

factory floor noise, tank noise, military vehicle noise, and speech babble. Ten male and ten female 

speakers’ utterances were used to form an experimental group for each noise type under each input 

SNR of –10 dB, –5 dB, 0 dB, 5 dB, and 10 dB. In each group, we used the speech and noise segments 

of 60 seconds for training and the mixture segment of 10 seconds for testing. Meanwhile, the results 

of 20 speakers in each group were averaged for every noise type under one input SNR. Table 6 

comprises the comparison of the performances for the DWPT-NMF, DNN-IRM, and DTCWT-NMF 

regarding STOI and PESQ metrics under five SNR cases. As shown in Table 6, the proposed method 

outperforms the other two methods at low SNR conditions concerning STOI and PESQ.  

Table 6. Performance comparison among three methods across five SNR cases. 

Method –10 –5 0 5 10 

 STOI/PESQ STOI/PESQ STOI/PESQ STOI/PESQ STOI/PESQ 

DWPT-NMF 0.495/1.37 0.572/1.591 0.665/1.782 0.724/2.041 0.796/2.216 

DNN-IRM 0.522/1.481 0.614/1.686 0.731/1.985 0.832/2.381 0.912/2.653 

DTCWT-NMF 0.531/1.551 0.632/1.702 0.729/1.981 0.829/2.195 0.892/2.46 

The noisy spectrogram is displayed in Figure 7b, which is a mixture of clean speech as 

illustrated in Figure 7a and babble noise at 0 dB SNR. The spectrograms of the enhanced speech 

signals applying the STFT-NMF, DWPT-NMF, DNN-IRM, and DTCWT-NMF methods are 

visualized in Figures 7c–f, respectively. These figures depict that the STFT-NMF and DWPT-NMF 

methods show higher speech distortion than the DTCWT-NMT method when the frequency is high. 

Thus, the proposed method successfully eliminates the background noise from the mixed signal 

even when the noise level is high and concurrently obtains a better estimation of the speech signal 

with fewer distortions (red circles in the figures indicate the location).  
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                          (a)                                      (b)  

 
                       (c)                                      (d)  

 
                       (e)                                      (f)  

Figure 7. Spectrogram of (a) clean speech, (b) noisy, (c) STFT-NMF, (d) DWPT-NMF, (e) DNN-IRM, 

and (f) DTCWT-NMF where the x-axis corresponds to the time in seconds and the y-axis 

corresponds to the frequency in kHz. 

7. Conclusion 

In this study, we proposed a novel speech enhancement method that adheres to the DTCWT 

and NMF with the KL cost function to achieve better performance of speech signal from noisy signal. 

The main focuses of our research were the development of the wavelet-based speech enhancement 

method over the STFT based method, estimation of RMs through the joint learning process, 

application of an ARMA filter to achieve better decomposition results in NMF, and the adoption of 

ssRM. Furthermore, better results were achieved by considering small training data, less iterations, 

and maintaining redundancy at an acceptable level. Systematic evaluation using objective metrics 

indicated that the proposed method should improve speech quality and intelligibility in a wide 

range of noisy conditions. The interesting point is that the proposed method works better than the 

DNN-IRM method concerning STOI and PESQ metrics at low SNR conditions, since the DTCWT 

decomposes the time-domain signal into a set of subband signals and obtains a good time-frequency 

resolution (i.e., good time-frequency resolution means high-frequency components of a signal have 

good time resolutions and low-frequency components of a signal have good frequency resolutions). 
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Subsequently, the noise can be properly eliminated from the noisy signal via NMF. In the case of 

unseen noise, the proposed method significantly outperforms the baseline, STFT-NMF, 

DWPT-NMF, and DNN-IRM methods in low SNR conditions as shown in the experimental results. 

In the future, we intend to consider better mother wavelets to improve this algorithm and a deep 

neural network (DNN) for secondary estimation.  
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