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Abstract: Today’s mobility management (MM) architectures, such as Mobile Internet Protocol (IP)
and Proxy Mobile IP, feature integration of data and control planes, as well as centralized mobility
control. In the existing architecture, however, the tight integration of the data and control planes
can induce a non-optimal routing path, because data packets are delivered via a central mobility
agent, such as Home Agent and Local Mobility Anchor. Furthermore, the centralized mobility control
mechanism tends to increase traffic overhead due to the processing of both data and control packets
at a central agent. To address these problems, a new Internet architecture for the future mobile
network was proposed, named Mobile-Oriented Future Internet (MOFI). The MOFI architecture was
mainly designed as follows: (1) separation of data and control planes for getting an optimal data
path; (2) distributed identifier-locator mapping control for alleviating traffic overhead at a central
agent. In this article, we investigate the validity of the MOFI architecture through implementation
and experimentations over the European Union (EU)-Korea testbed network. For this purpose, the
MOFI architecture is implemented using OpenFlow and Click Modular Router over a Linux platform,
and then it is evaluated over the locally and internationally configured EU-Korea testbed network.
In particular, we operate two realistic communication scenarios over the EU-Korea testbed network.
From the experimentation results, we can see that the proposed MOFI architecture can not only
provide the mobility management efficiently, but also support the backward compatibility for the
current IP version 6 (IPv6) applications and an Internet Protocol network.

Keywords: mobility management; architecture; implementation; experimentation; EU-Korea testbed

1. Introduction

As the current Internet architecture was designed for fixed network environments regardless of
mobile network environments, future Internet architectures for the emerging network environments
are widely discussed in recent research. Of those discussed, the incremental and clean-state approaches
mainly dominate the future Internet research. In the incremental approach, one state is moved to
another state with incremental patches, while, in the clean-slate approach, all the network stacks are
redesigned from scratch to offer better abstractions and improved performance, as well as providing
similar functionality based on new core principles [1]. In the past, Internet was wildly successful
using the incremental approach. However, due to the rapidly emerging mobility technologies, today’s
Internet architecture faces many challenges. As a result, the clean-slate approach began receiving much
attention to design the future Internet for mobile environments. However, applying the clean-slate
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approach to the current Internet infrastructure still incurs a deployment burden that requires the
replacement or update of all network devices including routers, switches, and even hosts. As a result,
in South Korea, research activities on future Internet architectures focus on Mobile-Oriented Future
Internet (MOFI) [2], which is a new mobility management architecture based on the incremental
approach. The great advantage of employing the incremental approach is that the new architecture
and Internet services developed on the new architecture can be easily deployed over the current
Internet infrastructure.

The MOFI architecture has three architectural components as follows: (1) host identifier and local
locator (HILL), (2) query-first data delivery (QFDD), and (3) dynamic and distributed mapping system
(DMS). Specifically, in HILL, each host has a globally unique host identifier (HID) for end-to-end
communications, whereas the locator (LOC) of a network router is locally used for packet delivery.
In QFDD, a location query is first executed before data delivery to obtain an optimal path between
two connected hosts. In DMS, the mapping information between hosts is managed in a dynamic,
distributed way. In order to provide compatibility with the existing Internet infrastructure, a host’s IP
address becomes a host identifier, and an access router’s IP address is used as a locator.

Because the MOFI architecture only modifies the network devices used as a switch and a regional
gateway for the data plane and a controller for the control plane, this design choice has a great
advantage for deployment. Specifically, the proposed MOFI architecture can operate in the existing
Internet Protocol version 6 (IPv6) Internet environment without any modification of the existing
network infrastructure through LOC-based communications. Moreover, HID-based application
services also can be used as is by utilizing the existing network infrastructure. As a result, while other
architectures based on the clean-slate approach require the development and deployment burden
of necessary devices and application services, the newly proposed MOFI architecture based on the
incremental approach does not require any development of necessary application services and devices,
thereby enabling fast deployment of Internet services in the new Internet infrastructure.

To evaluate the superiority of the newly proposed architecture, the architecture needs to be
assessed through a set of simulations using NS3 [3] or OPNET [4] or real experiments on testbeds.
Considering the scale of the Internet, the architecture needs to be evaluated on large-scale testbeds
rather than simulations. Furthermore, because the MOFI architecture was developed in an incremental
way, it must ensure that the new architecture can provide compatibility between existing Internet
protocol stacks. To that end, we implemented the MOFI architecture on top of a Linux platform
and then constructed a testbed across Korea and the European Union (EU) for the evaluation. More
specifically, the data plane of the MOFI architecture was implemented using OpenFlow [5] and the
Click Modular Router [6]. The control plane of the MOFI architecture was implemented using the
OpenFlow, Click Modular Router, and UDP (User Datagram Protocol). This global testbed was
established for the verification of the MOFI architecture.

The rest of this article is organized as follows: Section 2 presents the technical background that
motivates our research. Section 3 summarizes an overview of the MOFI architecture. Section 4 presents
the implementation details of the MOFI architecture and the globally constructed testbed between EU
and Korea. Section 5 describes service scenarios and discusses the result demonstrated on the testbed.
Section 6 concludes this article.

2. Background

In the last decade, both incremental and clean-state approaches dominated the future Internet
research. In the incremental approach, a future Internet architecture is developed step by step based on
the prior Internet architecture and infrastructure and, thus, existing Internet infrastructures and services
can be used without any modification. The Internet was wildly successful using the incremental
approach, as shown in the example of Mobile IP [7,8].

On the other hand, in the clean-state approach, an Internet architecture is newly designed and
developed so as to maximize performance benefits. For example, the following research activities,
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including 4WARD [9-11], FIND (Future Internet Design) [12], MobilityFirst [13-15], GENI 9 (Global
Environment for Network Innovations) [16], NDN (Named Data Networking) [17] were conducted
based-on the clean-slate approach. 4WARD is an EU-initiated project that employed the concept of
network virtualization, and a total of 37 partners were involved. FIND and GENI are NSF (National
Science Foundation)-initiated projects to develop a new future Internet architecture. Through the GENI
project, a new infrastructure was provided, and, through the FIND project, the proposed architectures
were implemented and tested. To support new Internet features such as multicast, anycast, multi-path,
and context-aware services, the MobilityFirst architecture employed a clean-slate approach. More
recently, the NDN project was proposed to overcome the weakness of the current Internet architecture
and to provide emerging communication patterns.

However, applying the clean-slate approach to the current Internet infrastructure requires
additional development and deployment efforts. Thus, when moving toward future Internet, it
is challenging to determine the transitioning time that meets all the requirements of a newly designed
Internet architecture. In this article, we report our effort to construct a realistic testbed across the EU
and South Korea. In addition, we tested the MOFI architecture implemented in an incremental way. In
the discussion below, we describe our MOFI implementation and testbed construction in detail.

3. MOFI Architecture: Overview

3.1. Architectural Features

The Mobile-Oriented Future Internet (MOFI) architecture is an enhanced mobility management
architecture that solves the problems that the current Internet faces. Table 1 shows the comparison of
the current Internet’s problems and MOFI design principles.

Table 1. Internet problems versus Mobile-Oriented Future Internet (MOFI) design principles.

MOFI
Problems of Current Internet : . -
Design Principles Functional Blocks
Internet Protocol (IP) address as both Separation of host ID (HID) and ) »
identifier (ID) and locator (LOC) locator (LOC) Host identifier (HID) and
local locator (LOC
Address-based communication and HID-based communication and oca (Olfﬁ{){)( )
global routing LOC-based local routing
Data-driven packet delivery with LOC query before data delivery Query-first data delivery
non-optimal routes for optimal routes (QFDD)
Static and centralized ID-LOC Distributed HID-LOC mapping D1str1b151tes(t:le$appmg
mapping system management (l};MS)

In the identifier-locator structure, the MOFI architecture uses the IP address of a host as host ID
(HID), the media access control (MAC) address of the switch (SW), and the IP address of the regional
gateway (R-GW), in which the host is attached as a locator (LOC).

Figure 1 shows a protocol model for the data delivery in MOFL. In this figure, the network layer
of MOFI is divided into the communication and delivery layer. The communication layer can be
implemented as a shim layer protocol between the transport and network layer. The HID field used
for end-to-end communication between two end hosts is contained in the identity header. The delivery
layer is divided into access delivery protocol (ADP) and backbone delivery protocol (BDP), which are
used to deliver data packets between end hosts. For intra-domain data delivery, each SW translates
ADPs. During this process, the identity header containing source and destination HIDs can be referred
to by the SW, in which the LOC query operation of DMS is executed. For the inter-domain data
delivery across different domains, each R-GW translates ADP to BDP. During this process, the identity
header is referred to by R-GW, in which the LOC query operation of DMS is performed.
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Figure 1. Protocol model for data delivery.

The data-driven packet delivery model used by current mobility protocols can induce non-optimal
routes. In MOF], therefore, we adopted the query-first data delivery approach, in which the LOC
query operation is performed before transmitting data to find an optimal route between the two
communicating hosts. Figure 2 compares the data-driven packet delivery and the query-first data
delivery used in our approach.

DMS

(HID:LOC)
A ’ ‘\
Access 1V LOC (CoA) S LOC LOC
Router E Update / Query Internet Update °,
.
i Data
@ Foreign Switch
Agent
Correspondent
Host @ @ @
Mobile H ost Correspondent Host Mobile H ost
(a) Data-driven Packet Delivery with Non-optimal Route (b) Query-First Data Delivery with Optimal Route

Figure 2. Data-driven packet delivery versus query-first data delivery.

In the data-driven packet delivery depicted in Figure 2a a mobile host (MH) updates its care
of address (CoA) with LOC at the home agent (HA), when attached to a foreign agent (FA). The
correspondent host (CH) sends data packets to the HA, which forwards these packets to the MH via
the FA. However, this delivery mechanism can induce a non-optimal route. In Figure 2b, the HID and
LOC of the MH are registered with DMS in the mobile environment. When the CH sends a data packet
to the MH, a switch on the CH’s side finds the LOC of the MH using the LOC query operation with
DMS. Then, finally, the data packet is directly delivered to the MH. This data delivery mechanism
provides better routing paths.

Figure 3 shows a hash-based distributed HID-LOC mapping management model used in the
MOFI architecture. In the figure, each domain has its distributed mobility controller (DMC) for the
mapping management information of mobile hosts. A selected DMC (S-DMC) is determined for each
host using a hash function; for example, a simple modulo operation (%) can be used to determine the
S-DMC for a host, such as “(HID of the host) % (the number of DMCs in the Internet)”. Once S-DMC
is determined for a specific host, the associated HID-LOC mapping information for the host will be
maintained by the S-DMC.
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Figure 3. Distributed host identifier-locator (HID-LOC) mapping management in Mobile-Oriented
Future Internet (MOFI) architecture.

Table 2 gives an overview of caches and registers used in MOFI. For each data and control plane,
MOFI uses the following caches and registers: local binding cache (LBC), data forwarding cache
(DEC), local mapping register (LMR), and serving mapping register (SMR). In the control plane, DMC
maintains an HID-LOC mapping table (i.e., LMR) for its local host and SMR containing the domain
information associated with each HID. In the data plane, SW and R-GW maintain the DFC that is
updated by an LOC query operation for data forwarding. To operate HID-LOC mapping control, the
operation is classified into the two operations: HID-LOC binding operations and LOC query operation
for data delivery. These operations are described in the upcoming sections.

Table 2. Caches and registers. SW-—switch; R-GW—regional gateway; DMC—distributed
mobility controller.

Category Entity Cache/Register Usage
Local binding cache (LBC) Data forwarding (Host <+ SW)
Data plane SW Data forwarding cache (DFC) Data forwarding (SW <> SW, SW < R-GW)
R-GW Data forwarding cache (DFC) Data forwarding (R-GW <+ R-GW)
Local mapping register (LMR) HID-LOC mapping control (intra)

Control plane DMC

Serving mapping register (SMR) HID-LOC mapping control (hash-based)

3.2. HID-LOC Mapping Control Operations

In MOFI, the HID-LOC mapping control is divided into two operations including HID-LOC
binding and LOC query. Furthermore, the LOC query operates in two modes—intra- and inter-domain.
Thus, in this article, we discuss the three following cases: an HID-LOC binding operation, an LOC
query operation in intra-domain, and an LOC query operation in inter-domain.

With the network attachment of a host, the HID-LOC binding operation is initiated. As described
in Figure 4, during the binding operation, the HID of the host is registered with the SW attached to the
host. Then, the SW updates the LBC with a message received from the host to record the HID of the
host. Then, the SW sends an HID binding request (HBR) message to the DMC that the host belongs
to. At the same time, the DMC receives the HBR message from the SW. The DMC updates its LMR
and finds the selected DMC (S-DMC) that is selected for the host. In the case that the DMC becomes
the S-DMC, the DMC sends an HBR message to the S-DMC. This HBR message contains the HID of
the host and the LOC of SW. After successful HID-LOC binding, the S-DMC updates its SMR and
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responds to the DMC with an HID binding acknowledgement (ACK) (HBA) message, which is also
forwarded to the host through the SW.

SwW

-----------------.>
HBR (HID)

Eo-mmmmmmmcceeaaaan

> LBC update (HID)

=>0> Hash operation
LMR update (HID:SW)

B L L LT E R P R D

o -cccccmccccccccccccccccccee

DMC@A

HBR (HID:SW)

*1In the figure, DFC(X:Y) represents DFC(HID:LOC)

Control Path using Socket
OpenFlow Control Path

S-DMC

HBR (HID:DMC@A)

Eeeeccomcccccccccccccccae

P> SMR Update
(HID:DMC@A)

Figure 4. HID-LOC binding operations.

Figure 5 shows the intra-domain LOC query operations for data delivery. Once a data packet
arrives from send host (SH), the SW (SW@A-1) sends an LOC query request (LQR) message to the
DMC. Then, the DMC finds the receive host (RH)’s S-DMC using a hash function, and forwards the
LQOR message to the S-DMC. Upon receiving the LQR message from the DMC, the S-DMC looks up the
SMR and responds to the DMC using the LOC query ACK (LQA) message. When the DMC receives
the LQA message from the S-DMC, the DMC forwards it to the SW (SW@A-3) which belongs to the
RH. When the SW of the RH receives the LOR message from the SW of the SH, the SW of the RH
updates its DFC and looks up the LBC. After the LBC look-up, the SW of the RH responds to the SW
of the SH through the DMC. When receiving the LQA message, the SW of the SH updates its DFC.
Finally, the SW of the SH can exchange data packets with the SW of the RH through an optimal path.

SH

—

Data packets

DFC update <4
(RH:SW@3)

LOC Query Request
(SH:SW@l)

LOC Query ACK

LOC Qujery ACK
(RH:YW@3)

Data packets
(OpenFlow)

DFC lookup

DMC@A S-DMC SW@A-3 RH
- HIDLOC Binding— [~ HID-LOC Binding3)
%> Hash Operation
------------------ > SMR looku
LOC Query Request > P
(SH:SW@I)
< LOC Query ACK
(SH:SW@l,
RH:DMC@A)
----------------------------------- S»¢> LBC lookup
LOC Query| Request DFC update
(SH:SW@l)

(SH:SW@l)

> LBC lookup

Data packets

LBC lookup <—<<

Data packets

Data packets
(OpenFlow)

*1In the figure, DFC(X:Y) represents DFC(HID:LOC)

Control Path using Socket
OpenFlow Control Path

Figure 5. Intra-domain LOC query operations for data delivery.

Figure 6 shows inter-domain LOC query operations for data delivery, in which the RH exists in
its own network domain with the S-DMC. The inter-domain LOC query operation is the same as the
intra-domain LOC query operation until the SH’s DMC sends an LQR message to the S-DMC. On
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receiving the LQR message, the S-DMC looks up the LMR and recognizes the existence of the RH
in the same network. In this case, the S-DMC is the same as the DMC of the RH and sends an LQR
message to the RH’s SW. Receiving the LQR message from the RH’s DMC, RH’s SW looks up the LBC
and updates the DFC with the received LQR message. The RH’s SW responds to the LQA message
to the RH’s DMC. When the RH’s DMC receives the LOA message, the RH’s DMC sends an LOC
update request (LUR) message to its R-GW to update the R-GW’s DFC. Then, the R-GW updates its
DFC and responds to its DMC by sending an LOC update ACK (LUA) message. As a result, both data
and control planes can be completely separated. Then, the RH’s DMC sends an LQA message to the
SH’s DMC. Once the SH’s DMC receives the LQA message, the SH’s DMC can exchange the LUR and
LQA messages with its GW to update the DFC. After that, the SH'’s DMC sends the LQA message to
the SH’s SW. Upon receiving the LOA message, the SH’s SW updates its DFC. Finally, the SH’s SW can
exchange data packets being sent to the RH’s SW through the optimal path that includes the R-GWs.

’ SW@A-1 ’ DMC@A R-GW@A R-GW@B ‘ ’ DMC@B ‘ ’ SW@B-1 ‘
I U w |
Data packets LQR HID-LOC Binding HID-LOC Binding
SH:SW@A-1
( It N AN SRR 4> LMR lookup
LQR fesecccccccccaaDeP> LBC looku
W () - p
(SH:R-GW@A) LQR DFC update
(SH:R-GW@B) (SH:R-GW@B)
DFC update«( ................. <. ...............
(SH:R-GW@A, LUR LQA
RH:SW@B-1) (SH:R-GW @A, (RH:SW@B-1)
RH:SW@B-1)
LUA
LQA
................. %> DFC update (RH:R-GW @B)
LUR (SH: SW@A-1),
(SH:SW@A-1, RH:R-GW@B)
RH:R-GW @B)
DFC update «@@€eecccccccccccaad R s
(RH:R-GW @A) LQA LUA
(RH:R-GW @A)
>D—> DFC lookup
Data|packets
[ »»» DFC lookup
Data packets
>>—> LBC lookup
Data|packets
I
Data packets
DFC lookup «_
DFC lookup <4 Data packets
Data|packets
DFC lookup <& —————————
Data packets
LBC lookup «<
‘ Data|packets
Data packets

*1In the figure, DFC(X:Y) represents DFC(HID:LOC)
............. Control Path using Socket
............. OpenFlow Control Path

Figure 6. Inter-domain LOC query operations for data delivery (case 1).

Figure 7 shows inter-domain LOC query operations for data delivery. In this case, the RH and
S-DMC exist in different network domains. The inter-domain LOC query operation is the same as the
intra-domain LOC query operation until the SH’s DMC receives an LQA message from the S-DMC.
Upon receiving the LQA message, the SH’s DMC sends an LQR message to the RH’s DMC. When
the RH’s DMC receives the LQR message from the SH’s DMC, it is the same as the inter-domain LOC
query operations, in which the RH exists in its own network with the S-DMC.

3.3. Data and Control Packets

In MOF], the HID is constructed with 2 bytes of a prefix, 4 bytes of a domain identifier, and
10 bytes of a subscriber identifier, as shown in Figure 8. The prefix field is not used in the current
implementation. The domain identifier field is used for identifying a domain associated with the HID
or a host. MOFI uses an autonomous system number (ASN) as a domain ID. For a 4-byte representation
of a legacy 2-byte ASN, the first 2 bytes are set to “0” [18]. A subscriber identifier is allocated to each
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host by a domain administrator. Each domain can use this field as a “sub-domain ID” depending on
its policy for HID management.

SH ‘ SW@A-1 ‘ ‘ DMC@A ‘ ‘ R-GW@A ‘ S-DMC ‘ ‘ R-GW@B ‘ ‘ DMC@B ‘ ‘ SW@B-1 ‘ RH
--------------- "> operation oo
> 4> DHT operati | ‘ o e
Data packets LQR HID-LOC Binding HID-LOC Binding | HID-LOC Binding
(SH:SW@a-1) bececcmccceccccaccafaacaacaaaacaa338> SMR lookup
LQR
(SH:R-GW (@A)
R F AR
LQA
(RH:DMC@B)
USROS PO ARSI S S T
ooku
LQR .-......p.......->>—> LBC lookup
(SH:R-GW @A) LQR DFC update
(SH:R-GW@B) SH:R-GW
DFC update ® V@)
(SH:R- €€ oenmccnnccncoodonomnnaaannaand
GW @A, LUR LQA
RH:SW@B- (SH:R-GW @A, (RH:SW@B-1)
1,) RH:SW@B-1)
LUA
e T T
S>¢» DFC upd Loa
.................. > ~ update RH:R-GW@
LUR (SH:SW@A-1, ( @
(SH:SW@a-1, RH:R-GW@B)
RH:R-GW@B)
DFC update <«e€---ccccnncaaaany €C--eeemmmmecaaaand
(RH:R-GW @A) LQA LUA
(RH:R-GW @A)
»—> DF C lookup
Data|packets
»—> DF C lookup
Data|packets
> LBC lookup
Data [packets N
Data packets v
DFC lookup <4
DFC lookup < Data packets
DFC lookup <4 Data|packets
Data [packets
LBC lookup <4
Data|packets
Data packets

*1In the figure, DFC(X:Y) represents DFC(HID:LOC)
---- - Control Path using Socket
OpenFlow Control Path

Figure 7. Inter-domain LOC query operations for data delivery (case 2).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Prefix (2) Domain Identifier (4) Subscriber Identifier (10)

Figure 8. HID format.

The identity header is newly defined for the end-to-end data communication between two hosts.
It is not responsible for data delivery or routing. That is, the HID contained in the identity header is
not used for routing data packets in the network. Instead, it is used for the end-to-end communication
using an upper layer transport layer protocol and a socket interface with an application program. In
MOF], the identity header format was designed to provide backward compatibility with the current
IPv6 header, as shown in Figure 9.

0 4 16 24 31

Version Reserved

Payload Length Next Header Reserved

Source HID (128 bits)

Destination HID (128 bits)

Figure 9. Identity header format.
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The identity header is similar to the current IPv6 header. The only difference is the absence of a
traffic class, flow label, and hop limit. Instead, those fields are reserved. The version field is compatible
with the current IP version. Next, the reserved field is set to 0. The payload length field is the length of
the payload (in bytes) following this identity header. The next header field is the same with the next
header of thIPv6 header. Furthermore, the second reserved field is reserved for the future use. The
source HID and destination HID fields are used for HIDs of the source and destination.

Figure 10 shows the structure of data packets. For data delivery, each host constructs a data
packet with the identity. For intra-domain access network delivery, an original packet is encapsulated
by adding the ADP header. For inter-domain backbone network delivery, each R-GW translates an
ADP header into a BDP header. In this article, the format of the ADP header is a MAC header, while
the format of the BDP header is an IPv4 header.

Original data packet

Identity Header Upper-layer

(S-HID, D-HID) Headers Data

Packet Encapsulation for ADP (Host—SW, SWoR-GW)

ADP Header (MAC) | Identity Header Upper-layer

(S-LOC, D-LOC) | (S-HID, D-HID) Hleaders Data

Header (LOC) translation from ADP to BDP (R-GWoR-GW)

BDP Header (IPv4) | Identity Header Upper-layer

(S-LOC, D-LOC) (S-HID, D-HID) Headers Data

Figure 10. Structure of data packets.

In the control plane, there are six packets for HID-LOC mapping control. Table 3 shows the list of
the control messages used in MOFI.

Table 3. Control messages. ACK—acknowledgement.

Message Full Name Encoding From To
HBR HID Binding Request 0000 0000 Host or R-GW  R-GW or DMC
HBA HID Binding ACK 0000 0001 DMC or R-GW  R-GW or Host
LOR LOC Query Request 0000 0010 SW or DMC DMC or SW
LQA LOC Query ACK 0000 0011 SW or DMC DMC or SW
LUR LOC Update Request 0000 0100 DMC R-GW
LUA LOC Update ACK 0000 0101 R-GW DMC

In MOFIL, HBR and HBA messages are used for updating HID binding information between a host
and R-GW. The LOR and LQA messages are used for LOC query operations for finding an optimal
route. The LUR and LUA messages are used for updating the DFC for data delivery.

Each control message is encapsulated into a transport layer protocol that has a 20-byte common
header and variable length parameters, as illustrated in Figure 11.

Common Header (20-byte) Parameters (Variable Length)

Figure 11. Structure of the control message.

Figure 12 shows the common header format. The message type is an encoding value of the
message shown in Table 3. The flag is used for various flags, which are described for each message.
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The total length field is the length of the message in bytes, including a common header and parameters.
The HID field is the HID of the host associated with the corresponding message.

0 8 16 24 31

Message Type Flags Total Length

HID (16 bytes)

Figure 12. Common header format (20 bytes).

Each control message has a parameter, depending on the case. If there is a parameter in the control
message, its type-length-value (TLV) format is as shown in Figure 13.

0 8 16 24 31

Parameter Type Priority Parameter Length

Parameter Value (HID, LOC)

Figure 13. Parameter type-length-value (TLV) format.

In the figure, the parameter type field is an encoding value of the parameter that has either an
HID (0000 0000) or LOC (0000 0001). The priority field indicates the priority of this parameter when
two or more parameters are contained. Specifically, “0” represents that no priority is given, and “1”
represents the highest priority, whereas “255” is the lowest one. The parameter length field is the
length of this parameter in bytes. Finally, the parameter value has an assigned variable size for the
HID or LOC.

4. MOFI Implementation

We implemented the MOFI architecture using OpenFlow [16] and Click Modular Router [17] over
a Linux platform. Next, we describe implementation details.

4.1. Host

Firstly, we set up two hosts. One was a personal computer (PC)-based host and the other was an
Android-based host. Due to the page limitations, however, we only describe the PC-based host in this
article. Figure 14 shows a protocol stack and its connection with other entities.

App/Trans

Identity

Locator
(MAC)

PHY trum’ & Data
y
} SW/(AR)

Host Host

Figure 14. Protocol stack of host and connection with other entities.

In the figure, the host reuses the IPv6 protocol stack as an identity stack for backward compatibility.
Thus, it is possible to use traditional socket interfaces for application programming. The locator field is
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used for packet delivery between a host and SW, which is used by a traditional MAC protocol stack.
The host exchanges the data packet and HID binding operation with the SW. We implemented the
HBR and HBA messages using raw socket APIs for the Internet Control Message Protocol version 6
(ICMPv6) protocol.

4.2. Switch

For the implementation of the SW, we used OpenFlow that was built on top of OpenVSwitch.
Figure 15 shows the protocol stack of the SW and its connection with other entities.

OpenFlow
Controller

Protocol (LOC) pmc

translation

OpenFlow
Network
MAC MAC (Conttrol)
OpenFlow
Network
PHY PHY i ICMPV6 & Data (Data & HBR)
& NG -G

Switch Host

Figure 15. Protocol stack of the switch (SW) and connection with other entities.

SW translates a protocol (LOC) by changing the MAC header and uses an OpenFlow network.
The SW exchanges the HID binding update operation and sends data packets to the R-GW through
the OpenFlow network and performs the LOC query operation for the DMC through the OpenFlow
control channel. In the OpenFlow network, the LOC query operation is replaced by the packet-in and
packet-out messages.

4.3. R-GW

For the implementation of the R-GW, we used OpenFlow and Click Modular Router. Figure 16
shows the protocol stack of the R-GW and its connection with other entities.

OpenFlow
Controller
Protocol (LOC)
translation DMC
Locator Locator OpenFlow
(MAC) (IPv4) Network
(Control)
& UDP
PHY MAC/PHY OpenFlow

Network Internet
R-GW (Data & ICMPV6) (Data)
Gw) S \&cw x

Figure 16. Protocol stack of the regional gateway (R-GW) and connection with other entities.

The R-GW translates the protocol (LOC) by changing the MAC and an IPv4 headers and uses an
OpenFlow network with the SW and DMC. The R-GW exchanges the HID binding update operation,
sends data packets to the SW through the OpenFlow network, and performs the LOC query operation
and HID binding update operation for the DMC through the UDP socket API. We used Click Modular
Router to translate the LOC header of data packets, as well as to encapsulate and de-capsulate the HID
binding update and LOC query message to a UDP packet.

Figure 17 shows how a packet of the Click Modular Router at the R-GW is processed. In this
figure, the R-GW has three network interfaces named INT I/F, Control I/F, and EXT I/E INT I/F
stands for an internal interface, which is connected to SWs via an OpenFlow data channel using an
IPv6 network. Control I/F stands for a control interface, which is connected to the DMC through the
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OpenFlow control channel using the IPv4 network. Finally, EXT I/F stands for an external interface,
which is connected to other R-GWs through the Internet. Upon receiving a packet from the SW, the
INT I/F forwards it to the Classifier(), which classifies the packet to an IPv6 Neighbor Discovery
Solicitation (IPv6 NDS), IPv6 Neighbor Advertisement (IPv6 NDA), IPv4, or IPv6 packet. An IPv6
NDS packet is forwarded to the IP6NDadvertisement element, while an IPv6 NDA packet is forwarded
to the IP6NDSolicitor element. Then, they return to the INT I/F. An IPv4 packet is stripped to the
MAC header and IPv4 header by the Strip(). After that, Click Modular Router adds an IP and a
UDP header through UDPIPEncap (). To construct and encapsulate a MAC header, the packet is sent to
ARPQuerier() and the DMC through the Control I/E.

DMC

(Ryu Controller)

IP6NDAdvertisement
<nda>

IP6NDSolicitor

Control I/F
<eth1>

ARP Querier
<arpql>

Classifier
<c_con>

. I/F
(OpenVSwitch) <br0>

I 1Pv4 ARP/L IPV4‘

<c_int>

| (ICMBVE, Strip(14)

Classifier

Pv6 " E
Strip(14) LOCQuerier(1sec)

—{ GetIP6Address(24) H Strip(48)

Figure 17. Processing a packet at the R-GW using Click Modular Router.

UDPIPEncap
(SRC, 6002, DST, 7001)
ARP Querier
<arpq0>

EXT

F KN RGW

<eth0>
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An IPv6 packet is also stripped to the MAC header by Strip(). After that, if it is a data packet,
it is forwarded to LOCQuerier() that is implemented for performing the LOC query operation and
encapsulating the packet to IPv4 to forward another R-GW through the Internet. LOCQuerier()
searches the DFC to find the LOC of RH. If there is no RH LOC at the DFC, it performs the LOC
query operation for the DMC. To perform the LOC query operation, LOCQuerier() makes the LQR
message and forwards it to UDPIPEncap() to construct the IP and UDP header. Then, the message is
forwarded to the DMC through the Control I/F. DMC processes the LQR message and relays the LQA
message to the R-GW through the Control I/E. The Control I/F forwards all receiving packets to the
Classifier(), which classifies the packet into IPv4 ARP and others. The ARP packet is forwarded
to ARPQuerier(). An LQA message is forwarded to LOCQuerier(). When receiving an LQA message,
LOCQuerier() records the RH’s HID and the RH’s LOC to the DMC. At the same time, it constructs and
encapsulates a MAC header. If the RH’s LOC exists at the DFC, the LOC query operation is omitted and
LOCQuerier() is performed to construct and encapsulate a data packet. Then, the constructed packet
is sent to ARPQuerier() and to another R-GW through the EXT I/F. Contrariwise, receiving a packet
from another R-GW, EXT I/F forwards it to the Classifier(), which classifies the packet as IPv4
ARP and others. The ARP packet is forwarded to ARPQuerier (). Another packet is classified by the
IPClassifier() into data, or ICMPv6 or IPv6 packets. The data packet is stripped to the encapsulated
header at Strip(). Then, through GetIP6Address(), its IPv6 header is marked. To construct and
encapsulate an MAC header, the packet is sent to the IP6DNSolicitor() element and it is sent to the
SW through the INT I/FE.
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In the R-GW, we implemented LOCQuerier(), which maintains its DFC using cache
memory, performs an LOC query operation, and encapsulates data packets. Figure 18 shows
LOCQuerier()’s architecture.

Stripped
Data Inter Data
’ . " LQR
lqa | LOCQuerier (Timeout 1sec) ————
—_— Intra Data

Figure 18. LOCQuerier() element’s architecture.

To implement LOCQuerier(), we referred the ARPQuerier() element that handles all the data
packets arriving at the R-GW. The argument timeout should be the timer of the DFC cache expiration.
There are two input ports and three output ports. Packets arriving at input 0 should be stripped data
packets and must have a destination HID. If a DFC cache for the destination HID already exists, the
data packets are sent to the inter-domain or intra-domain in accordance with their destination HID. If
a DFC cache does not exist, data packets are saved and an LQR message is sent instead. Then, an LQA
message should include the LOC of the destination. At the same time, a DFC cache is created, and
it saves HID-LOC mapping information. The DFC cache is automatically deleted after one second
because of the expiration timeout.

For inter-domain communications, a data packet is encapsulated by L0CQuerier() into an IPv4
header and is encapsulated by ARPQuerier() into a MAC header.

4.4. DMC

For the implementation of the DMC, we used OpenFlow, which uses a Ryu controller because of
the IPv6 support. Figure 19 shows the connection of the DMC with other entities.

DMC

DMC
OpenFlow OpenFlow
Controller Controller

)

@

openFlow _ | upp

Network

(Control) UDP &
OpenFlow
Network
(Control)

Figure 19. Connection of the distributed mobility controller (DMC) with other entities.

DMC exchanges an HID binding update and an LOC query operation to the R-GW using UDP
through an OpenFlow control channel and an LOC query operation to the SW through an OpenFlow
control channel, which is located in the intra-domain. Within the DMC, they exchange an HID binding
update and an LOC query operation through the UDP. If the DMC receives an HBR/LQR, it determines
the destination of the packet, which may be itself or another DMC. Then, the HBR/LQR message
is forwarded to the determined destination. In the HBR message’s case, the DMC updates its SMR
table and creates an HBA message to notify the result of the HBR message. In the case of an LQR
message, the DMC searches an SMR table to find the HID-LOC mapping information and creates an
LQA message containing the HID-LOC mapping information. At that time, the DMC sends the LQA
messages in response to the LQR message.

In MOFI, we assigned OpenFlow entities to the MOFI register and cache because they perform
the same role in a network. Table 4 summarizes the entity mapping between OpenFlow and the
MOFI implementation.
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Table 4. Entity mapping between OpenFlow and the MOFI implementation.

OpenFlow MOFI Implementation
Flow table

(OpenVSwitch) DFC@SW
Flow table MR

(Ryu controller)

LQR/LQA

Packet-in/out/Flow Mod (Intra-domain)

The flow table of the Ryu controller is mapped to the DMC’s LMR and the flow table of
OpenVSwitch is mapped to the DEC of the SW. In the OpenFlow network, the packet-in, packet-out,
and flow-mod message set up the route to deliver a data path and, hence, we use these messages to
perform the LOC query operation in the MOFI architecture. Through this process, we can reduce
the consumption of network resources by avoiding duplicated operations, as well as by reducing the
programming burden.

5. MOFI Experimentations on EU-Korea Testbed

The interconnection of Europe and South Korea takes advantage of the GEANT [19] network in
Europe, while the respective KOREN [20] and KREONET [21] are used in South Korea. The GEANT
and KOREN/KREONET are interconnected via TEIN3 [22] and TEIN4 [23].

The first pilot evaluated in this paper was an identity-based communication. Physically
distributed sensors across European countries continuously generate data and then they are streamed
to South Korea. Because sensors are highly mobile (e.g., portable sensors attached to moving hosts),
they cannot be identified using the traditional IP addressing mechanism. The communications between
Europe and South Korea sites are achieved using a host identifier, while IP addresses are only used
in an inter-domain area. When a host enters the range of a new switch (SW), the sensor data are
forwarded to the new SW by a location management function operated by OpenFlow controller. Each
host is able to start a sensor data streaming service with every host, whether located in Europe or South
Korea, where the sensor data can be forwarded constantly and seamlessly. This service is orchestrated
by another OpenFlow controller. In this scenario, the OpenFlow controller is named a distributed
mobility controller (DMC).

Another pilot was a content-based communication. In this scenario, a content-based architecture
was implemented using SDN technologies on top of Europe and South Korea testbeds. The
utilized resources were interconnected including Layer 2 intercontinental virtual links, based on
GEANT-GLORAID-KREONET services. Wireless devices laying in the Europe testbed are connected
to a content-based network in South Korea, and content identifiers are used instead of IPs. The goal
of this innovation is to use identifiers only to specify the content itself, unlike an IP address which
specifies the location of a content. Each content is placed on multiple sides of the South Korea testbed.
The target of the content-based architecture follows the content from the most appropriate side to
the requesting wireless device, while the streaming over the Europe wireless mesh is based on a
backpressure routing scheme.

In the following section, we discuss the identity-based communication scenario that uses the
MOFI architecture in detail. Then, we evaluate the MOFI architecture by constructing the testbeds in
Europe and South Korea.

5.1. Testbed Configuration

In the discussion below, we describe the experiments conducted over the testbed.
Figure 20 shows testbed configurations for the experiments. There were three network domains
as follows: one was located at KNU (Kyungpook National University), another was located at
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ETRI (Electronics and Telecommunications Research Institute), and the last one was located at UMU
(Universidad de Murcia). On the Korea side, KNU and ETRI sites are connected via KOREN [20] and
KREONET [21]. On the EU side, UMU uses the GAIA network. Korea and the EU are connected via
TEIN4 [23]. For the experiments, we used Ubuntu 12.04 and Linux kernel 3.5.0.23-generic version.
To support the MOFI HID, we used OpenFlow 1.3 version, OpenVswitch, and Ryu controller. Each
domain has a unique AS (Autonomous System) number. KNU was assigned to 0 x 2744, and ETRI
was assigned to 0 x 0EA4. However, because the UMU site was not assigned yet, it used ETRI's AS
number temporarily.

OpenFlow
Switch

----------- OpenFlow

OpenFlow S _»—"6|;enFIow Switch
Switch OpenFlow., " Controller
Controller ™., EU-FIRE
@UMU

KOREA-KOREN/
KOREA-KREONET

OpenFlo
Switc|
----------------- Control Path
Data Path i 0
_________________ OpenFlow Host 3
Control Path @KNU

Figure 20. Testbed configuration for the MOFI evaluation.

Each domain had the same intra-domain network architecture except for hardware specifications,
as shown in Figure 21. The host had a globally unique HID that was connected to the SW through
an IPv6 network to deliver data packets and HID binding messages. To support a wireless network,
we used an access point, and the SW also supported multiple hosts. The SW used OpenVSwitch
and had three interfaces. The first interface was the OpenFlow controller of this domain, which was
connected to the DMC. It used an IPv4 network to transmit an OpenFlow control message instead of
an LOC query operation, in which the interface used a 192.168.1.2 IP address. Otherwise, the other two
interfaces used an IPv6 network to forward data packets and HID binding messages to other entities.
These interfaces did not have an IPv6 address because they configured the OpenFlow network. One
interface was connected to the host, while another one was connected to the R-GW to communicate
between other domain hosts and to perform an HID binding operation, which used a MAC header
as the LOC. The R-GW used OpenVSwitch and Click Modular Router and also had three interfaces.
One was connected to the DMC and used an IPv4 network to transmit OpenFlow control messages,
HID binding messages, and LOC query messages. It used an IP address of 192.168.1.3. To perform
an HID binding operation and an LOC query operation, it used a Click Modular router to translate
HID binding messages and to send LOC query messages. The other interface used an IPv6 network
to transmit the data packets and HID binding messages to the SW, the interface of which had an
IPv6 address of 2020::99:99:99:99 as a default gateway. The last interface used a public IPv4 network
to transmit data packets to other domains. These communications could be achieved by the LOC
translation using the Click Modular router. The DMC had two interfaces. One was connected to the SW
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and R-GW to transmit OpenFlow control messages, HID binding messages, and LOC query messages.
The other was connected to other DMCs belonging in a different domain. Thus, it used a public IPv4
network. To transmit HID binding messages and LOC query messages, the DMC used a UDP socket.

Control Path
Data Path

OpenFlow
Control Path

192.168.1.2
IPv6

OpenFlow
Switch

Host

Figure 21. Intra-domain network architecture.

To evaluate our MOFI implementation, each domain had different testbed configurations. KNU
and UMU sites consisted of PCs as the SW, R-GW, and DMC. Otherwise, the ETRI site consisted
of blade servers to construct the SW, R-GW, and DMC. The hosts located at KNU and ETRI used a
laptop-based host. On the other hand, UMU used a PC-based host. In addition, ETRI use smartphone-,
tablet-, and TV-based hosts to demonstrate an N-Screen scenario.

5.2. Validation of MOFI Implementations

For the validation of MOFI, we constructed a small testbed locally located at KNU and
experimented on the implemented MOFI architecture. Some test scenarios were used for the evaluation.
Firstly, Host 1 and Host 2 were attached to each domain. Two applications were used for the
validation. One was a UDP echo server/client. Another was a video streaming service. In the
UDP echo server/client, Host 1 was a UDP echo server and Host 2 was a UDP echo client. For the
streaming service, Host 2 begins receiving the video data traffic from Host 1. To validate the MOFI
implementation, we captured the data and control packets that flew in the testbed network using
Wireshark [24]. Figure 22 shows the testbed configuration for validation. There were two domains
inter-connected by the KOREN backbone network.

In the testbed network, Host 1 was a video streaming server and Host 2 was a VLC player [25].
Host 1 and 2 used 2014::11:11:11:11 and 2014::22:22:22:22 for their HIDs, respectively. As for the LOC,
an MAC address was used for the intra-domain communication. On the other hand, a public IPv4
address (155.230.23.183 and 155.230.23.186) was used as the LOC for inter-domain communications.
For an OpenFlow control path, we used a private IPv4 address (192.168.1.x). On the other hand, the
control path between DMCs used public IPv4 addresses (155.230.23.184 and 155.230.23.185). In the
figure, the control path represents the route used for HID-LOC binding and LOC update operations in
the MOFI architecture. Figure 23 shows a snapshot of the testbed described in Figure 22.
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———  Control Path

—_— Data Path
OpenFlow

Control Path

OpenFlow OpenfFlo

Switch
=) g Switch

&)
@' 2014::99:99:99:99 f
192.168.1. 4%

OpenFlow
OpenFlow i
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Figure 22. Validation testbed network configuration.

Figure 23. Testbed snapshot for validation.

With this testbed, we validated our MOFI implementation. In the figure, the left side is domain 1
and the right side is domain 2. They had similar network configurations with one mobile host (MH),
SW, R-GW, and DMC in each domain. R-GWs and DMCs were interconnected by the KOREN network
for inter-domain communications. Each domain was an OpenFlow network.

Figure 24 shows packet capturing results flowing from Host 2 at domain 2. In this figure, Host 1
and 2 use 2014::11:11:11:11 and 2014::22:22:22:22. The HID header is represented as an IPv6 header
because Wireshark does not support the MOFI architecture. However, we can know that the MOFI
HID header and IPv6 header are interoperable between each other at the application layer, and they
use a similar packet format. Moreover, we can know that the application program is compatible with
both the MOFI architecture and an IPv6 network.

Figure 25 shows the packet capturing result flowing from the R-GW of domain 1 to the R-GW of
domain 2. In this figure, we can see that LOCs were translated along the path since the Click Modular
Router of R-GW performed the protocol translation by encapsulating the LOC header. While MAC and
IPv6 headers were used as LOC and HID, respectively, R-GWs used 155.230.23.186 and 155.230.23.183
as LOCs (public IP addresses). Furthermore, the packet size was larger than the Pv4 header size (20
bytes) because R-GW encapsulated an IPv4 header into an LOC header. We can also see that a MAC
header was successfully translated. In the meantime, HIDs of Host 1 and Host 2 did not change during
the data delivery.
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No. Time Source Destinatiol Protocol Length Info
1 0.0000080 2014::22:22:22:22 40

> Frame 1: 67 bytes on wire (536 bits), 67 bytes captured (536 bits)

» Ethernet II, Src: Sony 87:4c:f2 (54:42:49:87:4c:f2), Dst: EfmNetwo 44:6e:4f (00:26:66:44:6e:4T)

» Internet Protocol Version 6, Src: 2014::22:22:22:22 (2014::22:22:22:22), Dst: 2014::11:11:11:11 (2014::11:11:11:1
> User Datagram Protocol, Src Port: 46297 (46297), Dst Port: 8854 (8854)

> Data (5 bytes)

Figure 24. Packet capture (at host 2).

No. Time Source Destination Protocol Length Info
48 9.933930 2014::22:22:22:22 2014::11:11:11:11 upp 87 Source port: 46297 Destination port: 8854

> Frame 48: B7 bytes on wire (696 bits), 87 bytes captured (696 bits)

> Ethernet II, Src: MarvellS 80:10:c1 (08:50:43:080:10:cl), Dst: EdimaxTe_fa:58:3f (8@:1f:1f:fa:50:3f)

> Internet Protocol Version 4, Src: 155.2360.23.186 (155.230.23.186), Dst: 155.230.23.183 (155.230.23.183)

> Internet Protocol Version 6, Src: 2014::22:22:22:22 (2014::22:22:22:22), Dst: 2014::11:11:11:11 (2614::11:11:11:11)
- User Datagram Protocol, Src Port: 46297 (46297), Dst Port: 8854 (8854)

- Data (5 bytes)

Figure 25. Packet capture (at the R-GW of domain 1).

To validate the control plane operation, we used Wireshark to capture control packets at the R-GW
and DMC. Figure 26 shows the packet capturing result for the LOC query operations between the
R-GW and DMC.

No. Time Source Destination Protocol Length Info

> Frame 1: 138 bytes on wire (1104 bits), 138 bytes captured (1104 bits)

» Ethernet II, 5rc: Dell @@:8c:15 (18:03:73:00:8c:15), Dst: Dell e@:e4:89 (bB:ac:6T:e@:e4:89)
> Internet Protocol Version 4, Src: 192.168.1.3 (192.168.1.3), Dst: 192.168.1.4 (192.168.1.4)
> User Datagram Protocol, Src Port: x11-2 (6002), Dst Port: afs3-callback (7001)

> Data (96 bytes)

Figure 26. Packet capture (between the R-GW and DMC).

In the figure, we can see that the source address and port number was 192.168.1.3:6002, and
the destination address and port number was 192.168.1.4:7001. Then, the message used UDP. This
means that the messages were generated by the Click Modular Router of the R-GW for the LOC query
operation, while the OpenFlow control messages used transmission control protocol (TCP). The packet
involved LQR messages to query the LOC of the RH to the designated DMC of the RH.
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Figure 27 shows the packet capturing result between DMCs. From the figure, a packet is
transmitted from the DMC of domain 2 (155.230.23.185) to the DMC of domain 1 (155.230.23.184). We
realized that all the packets were LQA messages because Host 1 sent data packets to Host 2 in the test
scenario and, thus, the LOC query operation was performed for the DMC of domain 1 to the DMC of
domain 2. Moreover, because LQA messages had four parameters to store the HID and LOC of the SH
and RH, they were larger than other control messages. The actual packet size was the biggest when
compared with other control packets shown in Figure 26, Figure 28, and Figure 29.

No. Time Source Destination Protocol Length Info

Frame 12: 27@ bytes on wire (2160 bits), 270 bytes captured (2168 bits)

Ethernet II, Src: DavicomS 00:01:08 (00:60:6e:00:01:08), Dst: DavicomS 00:82:42 (00:60:6e:00:82:42)
Internet Protocol Version 4, Src: 155.236.23.185 (155.230.23.185), Dst: 155.230.23.184 (155.230.23.184)
User Datagram Protocol, Src Port: 50407 (50487), Dst Port: afs3-callback (7001}

Data (228 bytes)

Figure 27. Packet capture (between DMCs).

No. Time Source Destination Protocol Length Info
10.000080  2014::22:22:22:22  2014::99:99:99:99  ICMPv6 158 Private experimentation
3/1.000147  2014::22:22:22:22  2014::99:99:99:99  ICMPv6 158 Private experimentation

158 Private experimentation

7 3.000444  2014::22:22:22:22 2014::99:99:99:99 ICMPVE 158 Private experimentation

94.000589  2014::22:22:22:22  2014::99:99:99:99  ICMPv6 158 Private experimentation
115.000744  2014::22:22:22:22  2014::99:99:99:99  ICMPv6 158 Private experimentation
125.814603  fe80::5642:49ff:fe87:.2014::99:99:99:99  ICMPv6 86 Neighbor Solicitation for 2614::99:99,
13 5.814639  2014::99:99:99:99 feB0::5642:49Ff: feB7:« ICMPVE 78 Neighbor Advertisement 2014::99:99:99,
14 5.814639  2014::99:99:99:99  fe80::5642:49ff:fe87:¢ICMPv6 86 Neighbor Advertisement 2014::99:99:99,
16/6.000888  2014::22:22:22:22  2014::99:99:99:99  ICMPv6 158 Private experimentation
p Frame 5: 158 bytes on wire (1264 bits), 158 bytes captured (1264 bits)
b Ethernet II, Src: Sony B7:4c:f2 (54:42:49:87:4c:f2), Dst: Broadcast (ff:ff:ff:ff:ff.ff)
P Internet Protocol Version 6, Src: 2014::22:22:22:22 (2014::22:22:22:22), Dst: 2014::99:99:99:99 (2014::99:99:99:99)
" Internet Control Message Protocol v6
Type: Private experimentation (260)
Code: @
Checksum: 8xf882 [correct]
v [Expert Info (Note/Undecoded): Dissector for ICMPv6 Type (260) code not implemented, Contact Wireshark developers
[Message: Dissector for ICMPv6 Type (208) code not implemented, Contact Wireshark developers if you want this su
[Severity level: Note] 1

Figure 28. Packet capture (at the R-GW of domain 2).

No. Time Source Destination Protocol Length Info

» Frame 1: 138 bytes on wire (1104 bits), 138 bytes captured (1184 bits)

» Ethernet II, Src: Dell ©@:8c:15 (18:03:73:00:8c:15), Dst: Dell e@:e4:89 (b8:ac:6f:eB:e4:89)
» Internet Protocol Version 4, Src: 192.168.1.3 (192.168.1.3), Dst: 192.168.1.4 (192.168.1.4)
» User Datagram Protocol, Src Port: x11-2 (6002), Dst Port: afs3-callback (7001)

> Data (96 bytes)

Figure 29. Packet capture (at R-GW of domain 1).



Electronics 2019, 8, 338 20 of 24

Figure 28 shows the packet capturing result for the HID binding operation of Host 2. In the figure,
we can see that the destination address was 2014::99:99:99:99. This was because the host could not
know the destination address to perform the HID binding update operation when attached to a new
network. Thus, we supposed that all R-GWs should have a bridge interface (br0) to be the destination
of the HID binding update message, for which the address was 2014::99:99:99:99. To perform the HID
binding operation, we implemented an Internet Control Message Protocol version 6 (ICMPv6) message
using raw socket APIs, because ICMPv6 has several options such as the neighbor discovery protocol
(NDP). Thus, we concluded the ICMPv6 message to perform the HID binding operation. An ICMPv6
message was extended to perform the HID binding operation between a host and the R-GW. For this
purpose, we assigned the type as 200, which means private experimentation, and we implemented
an ICMP message body as an HBR/HBA message. Because of using ICMPv6 and supporting the
backward compatibility between HID and IPv6, we were able to implement the MOFI architecture
while still allowing the use of the existing IPv6 network and IPv6 applications.

Figure 29 shows the packet capturing result between the R-GW and the DMC for the HID binding
operation of Host 1. From the figure, we can see the source address and its port. Then, the messages
used UDP for the transmission. Unlike LQR messages, these messages were not generated by the Click
Modular Router of the R-GW. Upon receiving HBR messages from the Host, they were encapsulated
by the Click Modular Router of R-GW for the HID binding operation and they were forwarded to their
own DMC.

5.3. N-Screen Scenario

We chose an N-Screen application to demonstrate the superiority of the MOFI architecture since
this service scenario occurs frequently and it shows the service mobility scenario. When a user
returns home from outside, the video still streams to the smart phone. At the time a user enters the
house, various screens are discovered, for example, television (TV), tablet, etc. These screens perform
negotiation processes with each other and share the HID. At this point, the smart phone selects another
destination screen that will receive the ongoing video stream. Since the MOFI GW maintains its
mapping table that maps each screen’s HID to its LOC, the selected screen is assigned the same HID
and the video is directly forwarded to the desired screen through the GW.

For this purpose, we implemented the N-Screen application based on an Android system and
constructed two domains at the ETRI site. There are two domains that are interconnected by the
KREONET backbone network. Furthermore, we used one domain of the KNU site for the server
side of the N-Screen scenario; the video stream initiated a server located at KNU and video clients
located at ETRI, and we could observe the media data being streamed through the network, which
was inter-connected by the EU-Korea network.

Figure 30 shows the testbed for the N-Screen scenario at the ETRI site. There were three screens
as follows: the first one was a controller, and the others were screens. There were two screen types for
the demonstration. One was a TV using a Universal Serial Bus (USB) dongle based on Android, and
the other was a tablet. The controller used the smartphone. For the experiment, Figure 31 shows the
controller and two screens.

Firstly, we demonstrated the handover scenario from domain 2 to domain 1. For this scenario,
we used the controller as a host device. In this service mobility scenario, the controller was already
connected to the MOFI domain 2. Figure 32 shows the inter-domain handover of the controller.

From the figure, the left side shows a screenshot before the handover and the right side shows a
screenshot after the handover. We implemented that the user interface of controller can choose one
of two access points connected to each domain. In this experiment, we carried out the handover by
selecting another access point. Even though we observed handover delay, the handover scenario was
successfully performed.
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Figure 32. Inter-domain handover scenario.

Next, we demonstrated the N-Screen scenario. Using the controller, we selected a screen to play
the movie clip. Figure 33 shows screenshots of our N-Screen experiment. The registered screens at the
controller are displayed in a list, and a user can then choose one to play. Through the experiment, we
could see that a movie clip was properly played on the screen when it was selected. Since screens 1
and 2 were connected to the same domain, it was possible to verify intra-domain handover through

this scenario.
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Figure 33. N-Screen scenario.

6. Conclusions

In this article, we presented a new mobility management architecture for a future mobile network.
The new architecture features the separation of data and control planes, as well as a novel distributed
HID-LOC mapping control. We implemented the architecture using OpenFlow and Click Modular
Router over a Linux platform and tested the implemented architecture over the EU-Korea testbed
network for validation.

To evaluate the proposed architecture, we implemented OpenFlow and Click Modular Router
over a Linux platform, and then we validated it using a local testbed. Moreover, we performed the
evaluation over an internationally configured EU-Korea testbed network. In particular, we operated
the realistic service scenario over the EU-Korea testbed network using an N-Screen scenario. Using
various screens for streaming a movie clip, the mobility and the service scenario of the proposed
architecture were shown. In the intra-domain mobility event (changing the screen using a controller),
there was no observable impact on the streaming session. On the other hand, in the inter-domain
mobility event (moving to another domain), although the LOC changed, the HID was able to
communicate constantly, and it could be confirmed that there was slight handover latency due to LOC
change. However, since the service uses ID-based communication, there is no need to disconnect the
service or make a new connection for the service. In order to provide a seamless streaming service,
the MOFI control plane performs mapping of each host’s HID to a specific LOC, and it updates this
mapping information and creates the flows that will forward the traffic to the new location. After
updating the mapping information, streaming data are forwarded to the new domain network to
which the client is now attached.

In particular, the proposed architecture could provide mobility management without any
modification of the current Internet architecture. Furthermore, we showed that the implemented
architecture can support backward compatibilities with current IPv6 applications and Internet
Protocol networks.
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As a future research direction, we will consider integrating security and mobility functionality
into the proposed architecture. Because our first goal was to provide an architecture that functions
with basic network features, we focused on designing and evaluating the basic architecture. As future
research directions, we will firstly address security and mobility issues that were not fully considered
in the current design. Also, we will evaluate our architecture with various user scenarios, because
Internet services are becoming more dynamic and diverse. Finally, we plan to integrate the concept of
virtualization in the next MOFI architecture.
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