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Abstract: The interest in indoor localization has been increasing in the last few years because of the
numerous important applications related to the pervasive diffusion of mobile smart devices that could
benefit from localization. Various wireless technologies are in use to perform indoor localization, and,
among them, WiFi and UWB technologies are appreciated when robust and accurate localization
is required. The major advantage of WiFi technology is that it is ubiquitous, and therefore it can
be used to support localization without the introduction of a specific infrastructure. The major
drawback of WiFi technology is that it does not often ensure sufficient accuracy. On the contrary,
indoor localization based on UWB technology guarantees higher accuracy with increased robustness,
but it requires the use of UWB-enabled devices and the deployment of specific infrastructures made of
UWB beacons. Experimental results on the synergic use of WiFi and UWB technologies for localization
are presented in this paper to show that hybrid approaches can be used to effectively to increase
the accuracy of WiFi-based localization. Actually, presented experimental results show that the
use of a small number of UWB beacons together with an ordinary WiFi infrastructure is sufficient to
significantly increase the accuracy of localization and to make WiFi-based localization adequate to
implement relevant location-based services and applications.

Keywords: indoor localization; WiFi-based localization; UWB-based localization

1. Introduction

Wireless localization is an appealing and challenging problem that is gaining significant interest
thanks to the increasing diffusion of mobile smart devices (e.g., [1]) and to the related possibility to
deliver location-based services and applications (e.g., [2]). A coarse-grained classification of localization
scenarios distinguishes between indoor localization and outdoor localization. Concerning outdoor
localization, it can be observed that global navigation satellite systems, such as the Global Positioning
System (GPS), are today easily accessible by many devices. The accuracy of localization obtained
from the GPS is typically in the order of a few meters, and it is sufficient for many applications
that include transport navigation and guidance, tracking of smart devices, and synchronization of
telecommunications networks (e.g., [3]). Therefore, outdoor localization in normally considered as
a solved problem. On the contrary, indoor localization is still an open problem and, at the moment,
there are no commodity technologies available to solve it, even if the literature documents many
studies on the subject (e.g., [4]). Various types of applications can be envisaged for indoor localization,
for example, in the context of home surveillance, smart homes and ambient assisted living (e.g., [5–7]),
in the context of industrial monitoring and automation (e.g., [8–10]), and in the context of creative
industries to enable location-aware games (e.g., [11,12]). The number of relevant application scenarios
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encouraged the exploration of localization strategies involving different technologies, such as inertial
sensors, optical and/or acoustic sensors, and Radio Frequency (RF) communications (e.g., [13]).

In this paper, localization strategies based on the use of two different RF technologies, namely
WiFi and Ultra-Wide Band (UWB) [14], are considered. In the localization scenario discussed in
this paper, some Anchor Nodes (ANs) with fixed and known positions are assumed to be placed
in the indoor environment of interest. The considered ANs can be Access Points (APs) of the WiFi
network and/or UWB beacons. The aim of the considered localization infrastructure is allow the
estimation of the position of a mobile smart device, denoted as Target Node (TN), using a range-based
localization approach that benefits from the available WiFi and UWB infrastructures. As the name
suggests, range-based localization approaches are based on the possibility to measure the distance
between the TN and each AN. Such distance estimates are obtained by properly processing relevant
parameters of the RF signals traveling between the TN and each AN, such as the Time of Flight (ToF)
and/or the Received Signal Strength (RSS). When sufficient distance estimates from different ANs
become available, the application running on the TN can estimate the position of the TN within the
considered environment using a proper localization algorithm. Note that the discussed approach
assumes that the application running on the TN knows the fixed positions of ANs in the environment.

The choice of WiFi and UWB technologies as ranging technologies is motivated as follows.
WiFi infrastructures are available in the large majority of indoor scenarios, and therefore the cost of
WiFi-based localization is low because no specific infrastructure is required (e.g., [15]). Unfortunately,
the use of WiFi technology to support localization does not guarantee sufficient accuracy for many
applications (e.g., [16]) because WiFi-based distance estimates are derived from the RSS, which is
influenced by shadowing effects due to the presence of obstacles and reflections typical of indoor
environments. On the contrary, the use of UWB technology usually leads to accurate position
estimates (e.g., [16]) because UWB devices transmit pulses with durations in the order of nanoseconds.
Short-duration pulses guarantee accurate estimates of the ToF of signals, which ultimately leads to
high localization accuracy. In addition, the large frequency spectrum that characterizes UWB signals
increases the possibility of penetrating through obstacles (e.g., [17]). The two mentioned features
make UWB technology as a leading candidate to support range-based localization (e.g., [18]) and,
consequently, the interest in UWB-based localization has been rapidly growing. Some UWB devices
are readily available and, just to cite relevant vendors, it is worth mentioning (in alphabetical order)
UWB modules produced by BeSpoon (www.bespoon.com), Decawave (www.decawave.com), Time
Domain (www.timedomain.com), and Ubisense (www.ubisense.net). The main drawback of the
use of UWB technology for indoor localization is related to the total cost of ownership of the needed
infrastructure. Actually, UWB beacons are not normally available in indoor environments and a
specific UWB infrastructure composed of active UWB beacons must be installed just for the purpose to
use UWB technology for indoor localization.

It is evident from previous considerations that the identification of a hybrid approach capable of
providing the accuracy and the robustness of UWB-based localization without the cost of ownership of
an entire specific infrastructure would be highly beneficial to boost the adoption of indoor localization
in everyday scenarios. The major contribution of this paper is to assess the possibility of combining
WiFi-based localization with UWB-based localization to obtain a hybrid approach that provides
sufficient accuracy without the cost of deploying an entire UWB infrastructure. Experimental
results shown in the last part of this paper provides convincing empirical evidence that hybrid
indoor localization based on the synergistic integration of UWB and WiFi technologies is possible.
Experimental results were obtained using an Android smartphone called SpoonPhone that BeSpoon
produces to show how UWB technology can be integrated in a commodity device. Such a device
provides the ordinary features of modern smartphones, which obviously include WiFi connectivity,
but it is also equipped with hardware and software modules needed to implement UWB-based
localization. In particular, applications installed on a SpoonPhone can actively measure the distances
between the device and paired UWB beacons, and such a possibility is used by the localization module
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for software agents [19], originally intended to support location-aware educational games [20] and
location-based social networks [12,21], that was used to perform experiments.

In detail, the experiments presented in Section 3 were performed in an empty square room whose
sides are 4 m long and whose height is 3 m. The positions of the ANs were fixed and the number of
ANs were equal to four in all considered scenarios. Note that four is the minimum number of ANs that
guarantees the possibility to perform localization and the studied scenario could be extended easily to
use more ANs. As expected, the addition of ANs increases the total cost of ownership of the localization
infrastructure but it can improve the accuracy of localization (e.g., [22]). The unknown position of
the TN, which was a SpoonPhone running an application specifically developed for the experiments,
was estimated by the application running on the TN using the Two-Stage Maximum-Likelihood
(TMSL) algorithm outlined in Section 2. The application running on the TN was used to estimate the
accuracy of localization in different configurations: when all ANs were WiFi APs, when all ANs were
UWB beacons, and when some ANs were UWB beacons and the others were WiFi APs. Experimental
results confirm that the accuracy of localization based only on UWB technology is better than the
accuracy of localization based only on WiFi technology, as expected from previous consideration
on the features of WiFi and UWB technologies. In addition, experimental results show that the
substitution of some WiFi APs with UWB beacons located at the same positions can significantly
improve the accuracy of localization with respect to the localization that uses only WiFi technology.
Therefore, hybrid configurations in which WiFi APs coexist with some UWB beacons can be considered
as a good compromise between the accuracy of localization and the total cost of ownership of a
localization-specific infrastructure.

This paper is organized as follows. Section 2 describes how UWB and WiFi technologies can be
used to measure the distances between the TN and each AN, and it also shows how such distances
can be used to estimate the position of the TN. Section 3 discusses the experimental results obtained
with different configurations of ANs and with the TN located at different positions. Finally, Section 4
concludes the paper by summarizing the lessons learned.

2. Range-Based Indoor Localization

This section introduces relevant notation and outlines the localization algorithm used to obtain the
experimental results discussed in Section 3. Note that this section does not distinguish between WiFi
APs and UWB beacons, and the generic term ANs is used for both. Section 3 presents experimental
results obtained with different configurations of ANs and the distinction between WiFi APs and UWB
beacons is made explicit to discuss the characteristics of single configurations.

2.1. Scenario and Notation

Let m ≥ 4 be the number of ANs available in the considered indoor environment. Such ANs can be
WiFi APs and/or UWB beacons, and the position of the i−th AN is denoted as ai ∈ R3 with 1 ≤ i ≤ m.
The positions of the ANs are fixed and known to the application running on the TN, and the application
can associate each acquired distance estimate with the corresponding AN. Actually, the communication
between the TN and a generic AN provides the application running on the TN with either the Basic
Service Set IDentification (BSSID) of the responding WiFi AP (for WiFi communications) or the ID of
the responding UWB beacon (for UWB communications). Given that it is assumed that the application
running on the TN can map each BSSID and/or ID with the coordinates of the corresponding AN,
each distance estimate can be related to the coordinates of the corresponding AN.

The (unknown) true position of the TN is denoted as t ∈ R3 and the (unknown) true distance
between the TN and the i−th AN is denoted as

ri = ||t− ai||, (1)
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where 1 ≤ i ≤ m and ||x|| denotes the Euclidean norm of vector x ∈ R3. Note that the ordinary
notation x = (x1, x2, . . . , xn) = (xi)

n
i=1 is used to refer to column vector x ∈ Rn with n ∈ N+.

If the values of the true distances (ri)
m
i=1 were known, the position t of the TN could be found

by intersecting the m spheres centered in (ai)
m
i=1 with radii (ri)

m
i=1. The computation of such an

intersection would require to solve the following quadratic system of equations

||t− a1||2 = r2
1

||t− a2||2 = r2
2

...

||t− am||2 = r2
m,

(2)

and the unique solution of such a system would correspond to the true position of the TN. However,
in real localization scenarios the values of the true distance between the TN and each AN is unknown,
and therefore it is necessary to use corresponding estimates in order to compute estimates of the
position of the TN. The following quadratic system of equations is obtained by replacing the (unknown)
true values of the distances (ri)

m
i=1 in system (2) with their corresponding estimates (r̃i)

m
i=1

||t̃− a1||2 = r̃2
1

||t̃− a2||2 = r̃2
2

...

||t̃− am||2 = r̃2
m,

(3)

where t̃ ∈ R3 denotes an estimate of the position of the TN. Observe that equations in system (3)
represent spheres centered in (ai)

m
i=1 with radii (r̃i)

m
i=1, but for the errors in distance estimates (r̃i)

m
i=1

such spheres do not normally intersect in a single point. Therefore, proper solution strategies need to be
applied to estimate the position of the TN even if system (3) can have several or possibly no solutions.
Applicable solution strategies are commonly called localization algorithms, and they are the subject of
a relevant literature (e.g., [23]). In the remaining of this section, the algorithm implemented to obtain
the experimental results discussed in Section 3 is briefly outlined. Such an algorithm, normally called
TSML, was chosen among the plethora of localization algorithms because it is proved [24] that it can
attain the Cramér-Rao lower bound for the position estimator.

2.2. The TSML Algorithm

The Two-Stage Maximum-Likelihood (TSML) [25] algorithm is a two-step method to solve
system (3) that uses the maximum-likelihood approach. The algorithm is notable because it is
proved [24] that it can achieve the Cramér-Rao lower bound for the position estimator. In order to
apply the algorithm, the quadratic system of Equations (3) is rewritten in matrix notation as

Gv = h̃1 (4)

where

G =


−2aᵀ1 1
−2aᵀ2 1

...
...

−2aᵀm 1

 v =

(
t̃
||t̃||2

)
h̃1 =


r̃2

1 − ||a1||2
r̃2

2 − ||a2||2
...

r̃2
m − ||am||2

 . (5)

As a first step, the solution v ∈ R4 of the matrix Equation (4) is computed as if system (3) was
linear. Note that since the fourth component of the solution vector v is written in terms of its first
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three components, the second step of the algorithm is necessary to compute t̃, which is the desired
estimate of the position of the TN.

Given a positive definite matrix W1, the weighted least-square solution of (4) that minimizes
(h̃1 − Gv)ᵀW1(h̃1 − Gv) is

v = (Gᵀ W1 G)−1Gᵀ W1 h̃1. (6)

The simplest choice of the weighting matrix W1 is the identity matrix, but it can be shown [25]
that the choice of W1 that minimizes the variance of v is

W1 = (4Bᵀ Q B)−1, (7)

where Q is a diagonal matrix whose entries are the variances of distance estimates (r̃i)
m
i=1, and B is

a diagonal matrix whose diagonal entries are (ri)
m
i=1. The entries of Q depend significantly on the

adopted ranging technology, and they are normally estimated once the actual ranging technology used
to measure the distance between the TN and each AN is fixed. On the contrary, no a priori measure of
the entries of B is possible, and as suggested in [25], distance estimates (r̃i)

m
i=1 are used to populate B

instead of the (unknown) distances (ri)
m
i=1.

The second step of the TSML algorithm is meant to address the fact that the fourth component of
the solution vector v depends on its first three components, and it involves the solution of a second
system of equations. The second system of equations is linear and it can be written as

Hw = h̃2, (8)

where

H =


1 0 0
0 1 0
0 0 1
1 1 1

 w =

 t̃2
1

t̃2
2

t̃2
3

 h̃2 =


v2

1
v2

2
v2

3
v4

 . (9)

The weighted least-square solution of system (8) that minimizes (h̃2 − Hw)ᵀW2(h̃2 − Hw) can
be expressed as

w = (HᵀW2H)−1HᵀW2h̃2, (10)

where W2 is a positive definite matrix. Also in this case, the simplest choice for W2 is the identity matrix,
but a different choice is suggested in [25] to minimize the variance of w. The weighted least-square
solution of (8) that minimizes the weighted norm of (h̃2 − Hw) is obtained with the following positive
definite matrix

W2 =
[
4Bᵀ

2 (G
ᵀW1G)−1 B2

]−1
, (11)

where B2 is the following 4× 4 diagonal matrix

B2 =


t1 0 0 0
0 t2 0 0
0 0 t3 0
0 0 0 1

2

 , (12)

which assumes that the true position of the TN t = (t1, t2, t3) was available. Since in practical scenarios
the true values of the coordinates of the TN are unknown, they are normally replaced with their
estimates, that is with the first three components of v. Finally, the desired estimate of the position of
the TN can be computed as
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t̃ = U
(√
|w1|,

√
|w2|,

√
|w3|

)
, (13)

where w = (w1, w2, w3) and U is a 3× 3 diagonal matrix whose diagonal entries are the signs of
the components of v. Interested readers should consult the literature (e.g., [25]) for details on the
dependence of the performance of the TSML algorithm on the multiple sources of errors, which include
errors on distance estimates (r̃i)

m
i=1 and on the positions of ANs (ai)

m
i=1.

3. Experimental Results

The scenario considered to obtain the experimental results discussed in this section is a square
room whose sides are 4 m long and whose height is 3 m. Four ANs are placed in the middle of each
wall at different heights. The coordinates of the ANs can be expressed in meters as

a1 = (2, 0, 3) a2 = (4, 2, 0) a3 = (2, 4, 3) a4 = (0, 2, 0). (14)

Note that each AN can be either a WiFi AP or an UWB beacon. Different configurations of
WiFi APs and UWB beacons are considered in the remaining of this section, but in all configurations
the number of ANs is equal to four, which is the minimum number of ANs needed to estimate the
position of the TN. In detail, the following four configurations are considered:

• Configuration 1: All ANs are WiFi APs;
• Configuration 2: The AN positioned in a1 is an UWB beacon, while the remaining three ANs are

WiFi APs;
• Configuration 3: The AN positioned in a1 and the AN positioned in a3 are UWB beacons, while

the remaining two ANs are WiFi APs; and
• Configuration 4: All ANs are UWB beacons.

For each configuration, four different positions of the TN are considered, and for each position,
the accuracy of the localization of the TN is analyzed. The coordinates of the four considered
positions of the TN can be expressed in meters as

t1 = (1, 1, 1) t2 = (2, 1, 1) t3 = (1, 2, 1) t4 = (2, 2, 1). (15)

In order to clarify the geometry of the experimental scenario, the positions of the ANs and the
four positions of the TN are shown in Figure 1.
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Figure 1. The positions of the four ANs (blue squares) are shown in the considered room together with
the four positions of the TN (red dots).



Electronics 2019, 8, 334 7 of 14

Observe that Configuration 1 is the less expensive in terms of the costs related to the localization
infrastructure because it only relies on the presence of WiFi APs, which are nowadays available in
virtually all indoor environments. As discussed in Section 1, the accuracy of WiFi-based distance
estimates is low (e.g., [16]), and therefore it is expected that the accuracy of obtained position
estimates is also low. At the opposite, Configuration 4 is the more expensive because it requires the
installation of four UWB beacons to be used specifically to support localization, but position estimates
in Configuration 4 are expected to be more accurate than in Configuration 1 because UWB-based
distance estimates are typically more accurate than those provided by the WiFi technology. Finally,
the costs related to the localization infrastructure of Configurations 2 and 3 are between those of
Configuration 1 and Configuration 4 because they partially rely on the available WiFi network but
they also require the installation of some (one or two) UWB beacons. Experimental results discussed
in the remaining of this section show that the use of some UWB beacons improves significantly
the accuracy of localization with respect to the accuracy obtained in Configuration 1. Therefore,
Configurations 2 and 3 can be both considered as good compromises between keeping the installation
costs low and improving the accuracy of localization. Note that presented experiments were performed
without considering the presence of obstacles between the TN and each AN. Therefore, the localization
errors measured in presented experiments must be considered lower bounds, and they are expected to
increase as the number of obstacles increases. In particular, the errors caused by the presence of
obstacles is expected to impact severely on distance estimates obtained using the WiFi technology,
while it is expected to be less relevant for distance estimates obtained using the UWB technology
(e.g., [14]). Therefore, the impact of obstacles on localization errors is expected to decrease as WiFi APs
are replaced with UWB beacons, ranging from the worst case of Configuration 1, in which only WiFi
APs are used, to the best case in Configuration 4, in which only UWB beacons are used.

In detail, in order to obtain the discussed experimental results, the TSML algorithm is iterated
n = 100 times for each position of the TN and for each configuration of the ANs, and the distribution of
the localization error computed over the n position estimates is studied. The performance of the TSML
algorithm for each position of the TN and for each configuration of the ANs is analyzed in terms of the
average localization error and of the standard deviation of the localization error over the n position
estimates. In particular, let e ∈ R3 be the vector defined as

e = t− t̃, (16)

where, following the notation introduced in Section 2, t ∈ R3 denotes the true position of the TN
and t̃ ∈ R3 denotes an estimate of the position of the TN. Vector e quantifies the localization error
because it is the difference between the true position of the TN and the estimated position of the
TN in a generic iteration of the experiment. Note that the Euclidean norm of vector e measures the
distance between the true position of the TN and the estimated position of the TN in a generic iteration.
For each configuration of ANs and for each position of the TN, the following quantities are computed:

• The average value of the Euclidean norm of e over the n iterations, denoted as e;
• The standard deviation of the of the Euclidean norm of e over the n iterations, denoted as σ;
• The average and the standard deviation of the Euclidean norm of the projection of e along the

x−axis over the n iterations, denoted as ex and σx, respectively;
• The average and the standard deviation of the Euclidean norm of the projection of e along the

y−axis over the n iterations, denoted as ey and σy, respectively; and
• The average and the standard deviation of the Euclidean norm of the projection of e along the

z−axis over the n iterations, denoted as ez and σz, respectively.

Note that the study of the localization error along single axes is important because in many
applications only the projection of the position of the TN along one axis is relevant. For example,
in many applications related to educational games in exhibitions, only the projections of the position
of the TN on the x-axis and on the y-axis are used to determine which painting the visitor is currently
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observing. Similarly, in many applications related to home care, only the projection of the position of
the TN on the z-axis is used to determine if the patient is currently sitting or standing.

Before analyzing the accuracy of localization for each configuration of the ANs and for each
position of the TN in terms the quantities defined above, an additional remark is due to precisely
account for the parameters used in the TSML algorithm. With reference to the description of the
TSML algorithm in Section 2, note that matrix Q introduced in matrix Equation (7) contains the
variances of the distances from the TN to each AN, which can vary significantly when different
ranging technologies are adopted for different ANs. The variances used to populate matrix Q in
the current implementation of the TSML algorithm were obtained by studying the distribution of
distance estimates obtained using WiFi and UWB technologies. In particular, in the implementation
of the TSML algorithm used for experiments, the value of the variances used for the entries of Q
corresponding to WiFi APs is 0.13 m2, while the value used for the entries of Q corresponding to UWB
beacons is 0.01 m2. As expected, the variance of distance estimates is larger when WiFi technology
is used because UWB technology is normally more accurate. Note that, in general, the variances of
distance estimates depend on the true distances between the TN and each considered AN, but the
experiments used to compute the adopted variances confirm that such a dependence is negligible in
the considered scenario.

In the remaining of this section, the localization error is reported for each configuration of the
ANs and for each position of the TN, and a discussion on obtained results is provided.

3.1. Configuration 1

In this configuration of the ANs, all the ANs used for localization are WiFi APs. For each
considered position (ti)

4
i=1 of the TN, n = 100 position estimates are computed and results are properly

processed to obtain the quantities used to measure the accuracy of localization. Table 1 shows the
average value of the distance between the true position of the TN and its estimates, denoted as e,
and the standard deviation of the distance between the true position of the TN and its estimates,
denoted as σ. The average values (ex, ey, and ez) and the standard deviations (σx, σy, and σz) of the
localization errors with respect to the three axes are also shown.

Table 1. Experimental results in Configuration 1: measured average errors (e, ex, ey, and ez) are shown
together with the relative standard deviations (σ, σx, σy, and σz) for the four considered positions
(t1, t2, t3, and t4) of the TN.

e [m] σ [m] ex [m] σx [m] ey [m] σy [m] ez [m] σz [m]

t1 0.740 0.172 0.179 0.111 0.684 0.197 0.130 0.102
t2 0.757 0.217 0.156 0.151 0.589 0.219 0.377 0.189
t3 0.586 0.239 0.169 0.157 0.211 0.206 0.449 0.244
t4 0.530 0.225 0.129 0.124 0.218 0.194 0.393 0.246

Observe that the values of e vary between 0.53 m (in correspondence of t4) and 0.757 m
(in correspondence of t2). The values of the standard deviation σ vary between 0.172 m
(in correspondence of t1) and 0.239 m (in correspondence of t3). The values of the average errors
along the three axis are similar to each other and the same holds for the corresponding values of the
standard deviations.

3.2. Configuration 2

In this configuration of the ANs, the AN positioned in a1 is an UWB beacon and the remaining
three ANs are WiFi APs. For each considered position (ti)

4
i=1 of the TN, n = 100 position estimates are

computed and results are properly processed to obtain the quantities used to measure the accuracy of
localization. Table 2 shows the average value of the distance between the true position of the TN and
its estimates, denoted as e, and the standard deviation of the distance between the true position of the
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TN and its estimates, denoted as σ. The average values (ex, ey, and ez) and the standard deviations
(σx, σy, and σz) of the localization errors with respect to the three axes are also shown.

Table 2. Experimental results in Configuration 2: measured average errors (e, ex, ey, and ez) are shown
together with the relative standard deviations (σ, σx, σy, and σz) for the four considered positions
(t1, t2, t3, and t4) of the TN.

e [m] σ [m] ex [m] σx [m] ey [m] σy [m] ez [m] σz [m]

t1 0.525 0.121 0.151 0.106 0.434 0.099 0.226 0.084
t2 0.692 0.211 0.159 0.154 0.493 0.158 0.425 0.166
t3 0.448 0.183 0.162 0.142 0.330 0.149 0.202 0.125
t4 0.398 0.188 0.132 0.125 0.291 0.169 0.178 0.128

Observe that the values of e vary between 0.398 m (in correspondence of t4) and 0.692 m
(in correspondence of t2). A comparison between the values of e obtained in this configuration and
those obtained in Configuration 1 shows that the use of a single UWB beacon improves the accuracy of
localization. The value of e obtained in Configuration 2 is reduced by 29% with respect to that obtained
in Configuration 1 when the TN is in position t1. The value of e obtained in Configuration 2 is reduced
by 8% with respect to that obtained in Configuration 1 when the TN is in position t2. The value of
e obtained in Configuration 2 is reduced by 23% with respect to that obtained in Configuration 1
when the TN is in position t3. Finally, the value of e obtained in Configuration 2 is reduced by 24%
with respect to that obtained in Configuration 1 when the TN is in position t4. Similar percentages
hold if the values of the standard deviation σ obtained in Configuration 1 and in Configuration 2 are
compared. Observe that the values of σ vary between 0.121 m (in correspondence of t1) and 0.21 m
(in correspondence of t2). The values of the average errors along the three axis are similar to each other
and the same holds for the corresponding values of the standard deviations.

3.3. Configuration 3

In this configuration of the ANs, the AN positioned in a1 and the AN positioned in a3 are UWB
beacons, while the remaining two ANs are WiFi APs. For each considered position (ti)

4
i=1 of the TN,

n = 100 position estimates are computed and results are properly processed to obtain the quantities
used to measure the accuracy of localization. Table 3 shows the average value of the distance between
the true position of the TN and its estimates, denoted as e, and the standard deviation of the distance
between the true position of the TN and its estimates, denoted as σ. The average values (ex, ey, and ez)
and the standard deviations (σx, σy, and σz) of the localization errors with respect to the three axes are
also shown.

Table 3. Experimental results in Configuration 3: measured average errors (e, ex, ey, and ez) are shown
together with the relative standard deviations (σ, σx, σy, and σz) for the four considered positions
(t1, t2, t3, and t4) of the TN.

e [m] σ [m] ex [m] σx [m] ey [m] σy [m] ez [m] σz [m]

t1 0.201 0.093 0.124 0.106 0.112 0.026 0.080 0.051
t2 0.229 0.142 0.168 0.162 0.075 0.020 0.094 0.053
t3 0.170 0.122 0.130 0.114 0.002 0.003 0.092 0.074
t4 0.173 0.115 0.133 0.125 0.003 0.005 0.092 0.039

Observe that the values of e vary between 0.170 m (in correspondence of t3) and 0.229 m
(in correspondence of t2). A comparison between the values of e obtained in this configuration
and those obtained in Configuration 1, where only WiFi APs were used, shows that replacing two
WiFi APs with two UWB beacons improves the accuracy of localization. The value of e obtained in
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Configuration 3 is reduced by 72% with respect to that obtained in Configuration 1 when the TN
is in position t1. The value of e obtained in Configuration 3 is reduced by 69% with respect to that
obtained in Configuration 1 when the TN is in position t2. The value of e obtained in Configuration 3
is reduced by 70% with respect to that obtained in Configuration 1 when the TN is in position t3.
Finally, the value of e obtained in Configuration 3 is reduced by 67% with respect to that obtained in
Configuration 1 when the TN is in position t4.

The introduction of a second UWB beacon improves the accuracy of localization also with
respect to Configuration 2, where only one UWB beacon is present. The value of e obtained in
Configuration 3 is reduced by 61% with respect to that obtained in Configuration 2 when the TN
is in position t1. The value of e obtained in Configuration 3 is reduced by 66% with respect to that
obtained in Configuration 2 when the TN is in position t2. The value of e obtained in Configuration 3
is reduced by 61% with respect to that obtained in Configuration 2 when the TN is in position t3.
Finally, the value of e obtained in Configuration 3 is reduced by 56% with respect to that obtained in
Configuration 2 when the TN is in position t4.

Observe that the values of σ vary between 0.093 m (in correspondence of t1) and 0.142 m
(in correspondence of t2) and they are further reduced with respect to those obtained in Configurations 1
and 2. The values of the average errors along the three axis are similar to each other and they are lower
than those obtained in Configurations 1 and 2. The same holds for the corresponding values of the
standard deviations.

3.4. Configuration 4

In this configuration of the ANs, all the ANs used for localization are UWB beacons. For each
considered position (ti)

4
i=1 of the TN, n = 100 position estimates are computed and results are properly

processed to obtain the quantities used to measure the accuracy of localization. Table 4 shows the
average value of the distance between the true position of the TN and its estimates, denoted as e,
and the standard deviation of the distance between the true position of the TN and its estimates,
denoted as σ. The average values (ex, ey, and ez) and the standard deviations (σx, σy, and σz) of the
localization errors with respect to the three axes are also shown.

Table 4. Experimental results in Configuration 4: measured average errors (e, ex, ey, and ez) are shown
together with the relative standard deviations (σ, σx, σy, and σz) for the four considered positions
(t1, t2, t3, and t4) of the TN.

e [m] σ [m] ex [m] σx [m] ey [m] σy [m] ez [m] σz [m]

t1 0.134 0.018 0.053 0.005 0.113 0.016 0.047 0.010
t2 0.136 0.018 0.002 0.005 0.114 0.015 0.074 0.010
t3 0.054 0.010 0.051 0.005 0.002 0.003 0.013 0.013
t4 0.032 0.005 0.001 0.001 0.003 0.005 0.032 0.004

Observe that the values of e vary between 0.032 m (in correspondence of t4) and 0.136 m
(in correspondence of t2). A comparison between the values of e obtained in this configuration
and those obtained in Configuration 1, where only WiFi APs were used, shows that replacing all the
WiFi APs with UWB beacons strongly improves the accuracy of localization. The value of e obtained
in Configuration 4 is reduced by 81% with respect to that obtained in Configuration 1 when the TN
is in position t1. The value of e obtained in Configuration 4 is reduced by 82% with respect to that
obtained in Configuration 1 when the TN is in position t2. The value of e obtained in Configuration 4
is reduced by 90% with respect to that obtained in Configuration 1 when the TN is in position t3.
Finally, the value of e obtained in Configuration 4 is reduced by 93% with respect to that obtained in
Configuration 1 when the TN is in position t4.
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The use of four UWB beacon improves the accuracy of localization also with respect to
Configuration 2, where only one UWB beacon is present. The value of e obtained in Configuration 4 is
reduced by 74% with respect to that obtained in Configuration 2 when the TN is in position t1.
The value of e obtained in Configuration 4 is reduced by 74% with respect to that obtained in
Configuration 2 when the TN is in position t1. The value of e obtained in Configuration 4 is reduced
by 80% with respect to that obtained in Configuration 2 when the TN is in position t2. The value of e
obtained in Configuration 4 is reduced by 87% with respect to that obtained in Configuration 2 when
the TN is in position t3. Finally, the value of e obtained in Configuration 4 is reduced by 91% with
respect to that obtained in Configuration 2 when the TN is in position t4.

The accuracy of localization with four UWB beacon is also improved with respect to
Configuration 3, where only two UWB beacons are used. The value of e obtained in Configuration 4 is
reduced by 33% with respect to that obtained in Configuration 3 when the TN is in position t1.
The value of e obtained in Configuration 4 is reduced by 40% with respect to that obtained in
Configuration 3 when the TN is in position t2. The value of e obtained in Configuration 4 is reduced by
68% with respect to that obtained in Configuration 3 when the TN is in position t3. Finally, the value of
e obtained in Configuration 4 is reduced by 81% with respect to that obtained in Configuration 3 when
the TN is in position t4. Observe that the values of σ vary between 0.005 m (in correspondence of t4)
and 0.018 m (in correspondence of t1 and t2) and they are further reduced by one order of magnitude
with respect to those obtained in Configuration 3. The values of the average errors along the three axis
are similar to each other and they are lower than those obtained in Configurations 1 and 2. The same
holds for the corresponding values of the standard deviations.

3.5. Discussion

The remaining of this section provides additional comments on obtained experimental results
in order to clarify the analysis of localization errors. The experimental results presented in this section
show that the accuracy of localization improves as the number of UWB beacons increases. Such a result
is not surprising because UWB-based distance estimates are typically more accurate than WiFi-based
distance estimates. Figure 2 shows the values of the average localization errors e for the four considered
positions of the TN. In the figure, light-blue dots represent the values of e obtained in Configuration 1,
violet triangles represent the values of e obtained in Configuration 2, orange crosses represent the
values of e obtained in Configuration 3, and green diamonds represent the values of e obtained in
Configuration 4. Regardless of the position of the TN, the values of e decrease as the number of UWB
beacon used for localization increases. A significant improvement can be noticed when the number of
UWB beacons is equal to two (orange crosses).

As an illustrative example intended to further clarify the details of experimental results, Figure 3
shows for all configurations of the ANs the values of the distances between the true position of the TN
and the relative estimated position for each one of the n = 100 samples when the TN is positioned
in t1. In detail, light-blue dots refer to Configuration 1, violet triangles refer to Configuration 2, orange
crosses refer to Configuration 3, and green diamonds refer to Configuration 4. When considering
WiFi-based localization (light-blue dots), the values of the localization error are often higher 0.5 m
and they can vary significantly when different samples are considered. When considering distance
estimates obtained with one UWB beacon and three WiFi APs, the values of the localization error
(violet triangles) are reduced with respect to the previous case and the number of peaks corresponding
to high errors is also reduced. The figure also shows that the accuracy of localization improves when
considering the configuration with two UWB beacons and two WiFi APs because the values of the
localization error are further reduced (orange crosses). Finally, the lower values of the localization
error are obtained when localization uses only the UWB technology. In this case, the values of
the localization error are almost constant over the n samples. Finally, Figure 3 also shows that the
variance of the localization error decreases as the number of UWB beacons involved in localization
increases, in agreement with results in Tables 1–4.
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Figure 2. Values of the average localization error e for the four considered positions of the TN (t1, t2, t3,
and t4) obtained in Configuration 1 (light-blue dots), Configuration 2 (violet triangles), Configuration 3
(orange crosses), and Configuration 4 (green diamond).
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Figure 3. Samples of the localization error obtained when the TN is positioned in t1 and the
configuration of ANs is: Configuration 1 (light-blue dots), Configuration 2 (violet triangles),
Configuration 3 (orange crosses), and Configuration 4 (green diamond).

4. Conclusions

The major contribution of this paper is to validate the possibility of effectively implementing
hybrid indoor localization to benefit from both the widespread availability of WiFi networks and
the well-known accuracy of UWB-based localization. The major advantage of the use of WiFi
technology to support localization is that nowadays WiFi networks are ubiquitous and virtually all
smart devices supports WiFi connectivity. On the other hand, the accuracy of WiFi-based localization
is not often sufficient to support relevant applications because WiFi-based localization is not an
option when the requested accuracy is below 50 cm. At the opposite, UWB-based localization
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is well-known for its accuracy and robustness, but UWB beacons are not normally available in
indoor environments, and their deployment contributes to increase the total cost of ownership of
the localization infrastructure. Therefore, the possibility of synergistically using both technologies
seems to provide a good compromise between accuracy and infrastructure costs.

Experimental results discussed in the last part of this paper provide convincing empirical evidence
that the proposed hybrid approach to enhance the accuracy of WiFi-based localization using a small
number of UWB beacons is effective. Four different configurations of WiFi APs and UWB beacons
were considered, and for each considered configuration the localization accuracy corresponding to four
different positions of the TN was evaluated. In the first configuration, only WiFi APs were available
and localization was performed using only WiFi-based distance estimates. In the second configuration,
one of the four WiFi APs was replaced with an UWB beacon, so that three WiFi APs and one UWB
beacon were used. In the third configuration, the number of WiFi APs is further reduced to two
because an additional WiFi AP is replaced with an UWB beacon. Finally, in the fourth configuration,
only UWB beacons were used. As expected, the accuracy of localization improves as the number of
UWB beacons increases and the most accurate position estimates were obtained when four UWB
beacons were used. Notably, discussed results show that the use of a small number of UWB beacons
(one or two) can significantly reduce the average localization error. In detail, the use of just one UWB
beacon reduces the average localization error from nearly 70 cm to 50 cm, while the use of two UWB
beacons reduces it further to 20 cm. Therefore, the adoption of a hybrid localization infrastructure
seems to provide an effective and adjustable compromise between the accuracy of localization and the
total cost of ownership of the infrastructure.

Author Contributions: Authors contributed equally to this work in terms of conceptualization, methodology,
software, validation, formal analysis, investigation, resources, data curation, writing–original draft preparation,
and writing–review and editing.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AN Anchor Node
AP Access Point
BSSID Basic Service Set IDentification
GPS Global Positioning System
RF Radio Frequency
RSS Received Signal Strength
ToF Time of Flight
TN Target Node
TSML Two-Stage Maximum-Likelihood
UWB Ultra-Wide Band
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