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Abstract: Nowadays, networked control systems (NCSs) are being widely implemented in many
applications. However, several problems negatively affect and compromise the design of practical
NCSs. One of them is the performance degradation of the system due to quantization. This paper
aims to develop dynamic quantizers for NCSs and their design methods that alleviate the effects
of the quantization problem. In this paper, we propose a type of dynamic quantizers implemented
with neural networks and memories, which can be tuned by a time series data of the plant inputs
and outputs. Since the proposed quantizer can be designed without the model information of the
system, the quantizer could be applied to any system with uncertainty or nonlinearity. This paper
gives two types of quantizers, and they differ from each other in the neural networks structure.
The effectiveness of these quantizers and their design method are verified using numerical examples.
Besides, their performances are compared among each other using statistical analysis tools.

Keywords: networked control systems; quantizer; neural networks; model-free design

1. Introduction

The networked control systems (NCSs) are systems in which its elements are physically separated
but connected by some communication channels. They have been around for some decades already,
and they have been implemented successfully in many fields such as industrial automation, robotics,
and power grids. Although the NCSs provide several advantages to the systems, it is well-known
that one of the problems is the system performance degradation caused by the data rate constraints in
the communication channels [1-3]. In the case that operation signals of NCSs are transmitted over
networks under data rate constraints, the signal quantization is a fundamental process in which a
continuous-valued signal is transformed into a discrete-valued one. However, the quantization error
between the continuous-valued signal and discrete-valued one occurs, and it affects the performance
of the NCSs. Therefore, one of the significant works is to develop a method to minimize the influence
of the quantization error to the performance of the NCSs.

It has been proven that properly designed feedback-type dynamic quantizers are effective to
reduce this degradation in the system’s performance [4]. Several studies have considered the design
of dynamic quantizers. For instance, a mathematical expression of an optimal dynamic quantizer for
time-invariant linear plants was presented in [4], and an equivalent expression for nonlinear plants was
introduced in [5]. Furthermore, design methods for dynamic quantizers that minimize the system’s
performance degradation and satisfy the channel’s data rate constraints were developed in [6-8]. Then,
in [9] event-triggered dynamic quantizers that reduce the traffic in the communication network were
proposed. In these studies, the design of the quantizers is carried out using information from the
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plant; namely, these quantizers are based on model-based approach. Thus, if the model of the plant is
inaccurate, then the quantizers will be faulty.

Accordingly, in this paper, the data-driven approach is considered for the design of feedback type
dynamic quantizers. Besides, this paper presents a class of dynamic quantizers that are constructed
using feedforward neural networks. The quantizer, called neural network quantizers, are designed using
time series data of plant inputs and outputs. Some advantages of this approach are that a model of the
plant is not required for the design, i.e., model-free design, and that the quantizer can be designed not
only for linear but also for nonlinear plants. The selection of neural networks to perform this job is
motivated by the fact that feedforward neural networks are very flexible and that they can be used to
represent any nonlinear function/system, in this sense, they work as universal approximators [10,11].
This property is especially important for the design of optimal dynamic quantizers because their
structures are functions of the plants’ model [4,5]. If the model of the plant is not given, but it is known
to be linear, then the structure of the optimal quantizer is also known to be linear. However, if the
plant is nonlinear and its model is absent, then the optimal quantizer’s structure is unknown. Thus,
the neural network can approximate the optimal quantizer’s structure based on a series of plant input
and output data.

This paper is structured as follows. First, we propose a class of dynamic quantizers composed
of feedforward neural network, memories, and a static quantizer. The proposed quantizer has two
variations in neural network structures: one is based on a regression-based approach, and the other
is based on a classification-based approach. Then, we formulate the quantizers design problem that
finds the parameters of the neural network and the quantization interval for given a time series data of
plant input and output. Next, with numerical examples, the effectiveness of these quantizers and their
design method are verified. Finally, several design variations are considered in order to optimize the
quantizer’s performance, and comparisons among these variations are carried out.

It should be remarked that various results on the quantizer design for networked control systems
have been obtained, e.g., [12-16]. However, the contributions of this paper are distinguished from
them as follows. The papers in [12-14] focus on the zoom-in and zoom-out strategy based dynamic
quantizer, i.e., the quantizer with time-varying quantization interval. Besides, the paper [15] considers
the static logarithmic quantizer, i.e., its quantization interval is not uniform. On the other hand,
this paper proposes dynamic quantizer with the time-invariant and uniform interval. Furthermore,
the paper [16] proposes a AX modulator, which is related to the proposed quantizer. Although the
result in [16] is restricted to the case of two quantization levels, this paper can deal with the case of
multi-levels.

This paper is a journal version of our previous conference papers that were presented in [17,18].
The main difference between this paper and its predecessors is as follows. The system description
and problem formulation are improved, and detail explanations of the proposed quantizers are
added. Then, we use the ANOVA test to analyze the several simulation results. Besides, we take into
account different activation functions for the neural networks hidden layers and compares different
initialization methods for the network tuning.

2. Neural Network Quantizers

In this section, we first describe a networked control system considered here. Then we present a
quantizer, composed of neural networks and a static quantizer, called neural network quantizer.

2.1. System Description

This paper considers the system depicted in Figure 1. This system is composed of a plant P, a
communication channel that has no loses or delays, and the neural network quantizer Qny proposed
in this paper.
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Figure 1. Considered system with a neural network quantizer Q.

The plant is represented by the following single-input-single-output (SISO) model:

[ xk1) = (xR, 0(0)),
P'{y(k) — 3 (x(K)), @

where k € {0} UN is the discrete time, x € R"? is the state vector with initial value x(0) = xp, v € Ris
the input, and y € R is the output. The functions f : R"? x R — R"? and g : R"? — R are in general
nonlinear mappings. It is assumed that f and g are continuous and smooth.

The quantizer Quy, shown in Figure 1, is composed of a neural network, a static quantizer g, and
a couple of memories S, and Sy,. The quantizer is represented are by the following expression:

QnN Y ug(k) =Ta(y(k)), ()

where u € R is the input, y € R¥L is the output of the neural network, u; € Ris the input of q, and
v e {+4, :tZ%, cee, i%%} is the output of g, i.e., the output of Qnn. Note that d is the quantization
interval, and M is the number of quantization levels which is determined from the data rate of network
channel. The signals V (k) and Y, (k) are the outputs of the memories S, and S, respectively. They are
time series of past values of the quantized inputs v(k) and the outputs y, (k) of the plant, and they are
given by

V() =[o(k—1), o(k—=2),..., v(k—ny)]T, 3)
Yy (k) = [yg(k —1),yq(k —2),...,yq(k — ny)]T, )

where ny and ny are the dimensions of these memories. Thus, the proposed quantizer is tuned by
using the past input and output data of the plant. This means that the quantizer may capture the
dynamics of the plant.

This paper proposes two types of neural network quantizers: Qnygr and Qnnc. The quantizers
Onnr and Qnnc differ in the expressions of the nonlinear functions I'1(-), I'2(+), and q(+).
The illustrations of Qnnr and Qnnc are shown in Figure 2. Although detail explanations of two
quantizers will be shown in the following subsections, the main difference between them is in the
neural network’s structure. In Qnnr the network has only one output that shapes the input signal,
i.e., the network is trained to perform regression. On the other hand, in Qnnc the network has
as many outputs as the considered amount of quantization levels M. Each output represents the
probability that a given input is matched with a specific quantization level, i.e., the network is trained
for classification. Besides, in Figure 2a, the numbers 2,1, 1, 3, 3 mean the selected quantization levels,
which are determined by the function I';.
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Figure 2. Difference between the neural network quantizer based on regression and the one based on
classification. (a) Regression based approach. The neural net has one output and shapes the original
signal; (b) Classification based approach. The number of the neural network output is same as that of

quantization levels, and each output correponds to the probability that a original signal is classified
into a specific quantization level.

2.2. Regression Based Neural Network Quantizer

For the regression-based neural network quantizer Qnnr, the static quantizer q(-) is a regular
finite-level static quantizer with saturation as shown in Figure 3. It receives directly the continuous
output of the neural network 1, (k) and rounds it to the nearest discrete value to generate v(k). It has
two parameters: one is the number of quantization levels M € N and the other is the quantization
interval d € R with d > 0. Figure 3 shows an example of this static quantizer with M = 4.

v(k)

A

; b

Md

Figure 3. Example of a static quantizer q(-) for Qnnr (M = 4).

In this paper, the fully connected feed-forward type neural network is adopted to build the function
I'1(-) in Equation (2). An example is shown in Figure 4. In this case, the function I'; is given by
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K> Ky Ko
Ii:y = ZWS)h <Z w,(qz.)h (Z w](il)xi>> forl =1,2,...,Ky,. (5)
k=0 j i=0

The following elements can be recognized in the network, the input units x € RX0, the output
units y € RX", and the hidden units z(!) € RKi (i=1,2,...,n, —1), where ny is the number of
layers in the network. Note that the inputs of this network are u(k), V(k) and ¥;(k), and they are
represented as x(k) = [u(k), V' (k), Yq—r (k)] T. Besides, the size of the neural network is represented
by K = [Ky,Kj, . ..,Ky, ]. Each neuron performs a nonlinear transformation of a weighted summation
of the previous layer outputs as follows

K;
z](l) =h (;)W](il)zl(l_l)> , 6)

where w](l.l) represents the weight of the connection that goes from the ith neuron in layer (I — 1) to

the jth neuron in layer /. Notice here that a simplified notation is used, where instead of having

(I-1)

biases the units xo = 1 and z; = 1 are included in the network. Then, because these elements are
constants, their respective connection’s weight w]%) serves as bias parameters. The weights of all the
connections in the network are put together in a vector w called the weights vector that has dimension
Nw = Z?:La ! (K; +1)K;; 1. Furthermore, h(-) represents the nonlinear transformation and is called
activation function. There are many functions that serve as activation functions such as logistic sigmoid,
hyperbolic tangent, and rectified linear unit (ReLU). In this paper, we adopt the most commonly used

sigmoid function:

sigm(a) = _ (7)

1+exp(—a)
Finally, since K;;; = 1in Qnng, the function I'; is given by I'; : u5 = y;.

Inputs Hidden units Outputs

Xk,

(A

X1

W(l) i W(Z) i W(3)

KK, KoK,

Figure 4. Fully connected 3 layered feed-forward neural network example.

2.3. Classification Based Neural Network Quantizer

For the classification based neural network quantizer Qnnc, the static quantizer q(-) is not a
conventional one. Its input u,(k) comes from a set of indexes, each of which makes reference to a
specific quantization level, i.e., ug(k) € {1,2,..., M}. Thus, q(-) is adapted to match each index to the
corresponding quantization level as Figure 5 shows. This quantizer is also defined by the number of
quantization levels M and the quantization interval d.
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0

M

Figure 5. Example of static quantizer q[-] adapted for Qnnc (M = 4).

The neural network I'; in Qnnc is same as that in Qnnr. The inputs of this network are the same
as in the previous case x(k) = [u(k), V' (k), Yq ' (k)]" and the hidden units activation function h(-) is
also the logistic sigmoid in Equation (7). The dimension of the ouput is K;;, = M. Then each output of
the network y; (k) is associated with one quantization level, and represents the probability that a given
input is classified into a specific quantization level. Therefore, the quantization level with the biggest
probability is selected to be the network’s output, and it is given by

It ug(k) = argmax M ©
ie{12...M} ;"% exp (v;(k))

3. Quantizer Design Problem

In this paper, it is assumed that the number of quantization levels M, the memory sizes ny and
ny, and the neural network structure K are given. Thus, the design parameters are the weight vector w
and the quantization interval d of the neural network quantizer Qnn.

The performance of the quantizer Quy in NCSs can be evaluated using a construction known
as error system. The considered error system is depicted in Figure 6. This system is composed of two
branches. In the lower branch, the input signal u is applied directly to the plant P that produces the
ideal output y. In the upper branch the effects of quantization are considered and u is applied to the
quantizer Qyy that generates the quantized signal v that is applied to the plant. The output of the
plant in this case is represented by y,, and the difference y, — y is the error signal. The error signal
e(k) is used to evaluate the performance degradation of the system. By minimizing y,; — v, the system
composed of the quantizer Qny and the plant P can be optimally approximated to the plant P, in
terms of the input-output relation.

Neural Network Quantizer Plant

u % V Yq
QNN ——> Channel —> P |

y _|__ yq_y

~
~ P SN
> 4 [

. r
' i
! |
v v

v

U, Y (input and output data) can be available

Figure 6. Error system.
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In this context, a parameter known as performance index is used to measure the system’s
performance degradation. The performance index considered here is the sum-of-squares error function
that is defined by

s

E(Qnn) = Y [yg(u(k), w,d) — y(k)]? )

k=0

where u(k) is used to build x(k) along side with V (k) and Y, (k) that are generated dynamically. It is
necessary to make E(Qyy) as small as possible to maintain the output error low. Then, the design of
Qnn is set up as an optimization problem in which the performance index is minimized.

This paper assumes that, although the model is unknown, it is possible to feed it with inputs and
measure its outputs. Then, a time series of inputs and outputs of the plant will be available. These
time series are represented as follows.

u-= [u(l),u(Z),...,u(ns)]T, (10)
Y =[y(1),y(2),...,y(ns)]", (11)

where 75 is the length of the time series, namely, the number of samples. Notice that y(k) (k =
1,2,...,ns) represents the output of the plant P when u(k) is applied directly to it, i.e., v(k) = u(k).

Then, the neural network quantizers design problem is formulated as follows:

Problem 1. Suppose that the time series data U and Y of the plant, the number of quantization levels M, the
neural network structure K, and the memory sizes ny and ny are given. Then, find the parameters of Qnn: the
weight vector w and the quantization interval d which minimize E(Qnn ), under the condition that d > 0.

This design problem is nonlinear and nonconvex. Thus, it cannot be solved using gradient-based
optimization methods such as linear programming or quadratic programming. Moreover, conventional
neural network training techniques based on error backpropagation cannot be used either due to the
structure of the system, as it was explained previously. Therefore, alternative optimization methods
should be used.

In this regard, the metaheuristics stand out from the available options because of their flexibility
and a wide variety of implementations [19]. In particular, the differential evolution (DE) metaheuristic
algorithm is used to perform the design of Qnyn. This choice is justified by the fact that DE has
proven to be effective in the training of neural networks [20,21] and that it has shown an outstanding
performance in the design of dynamic quantizers [9]. DE is a population-based metaheuristic algorithm
inspired in the mechanism of biological evolution [22,23]. In this algorithm, the cost function J(0) is
evaluated iteratively over a population of possible solutions or individuals 8; € R" in each iteration the
individuals improve their values and move towards the best solution. Finally, the individual with the
lowest fitness value in the last iteration is regarded as the optimal solution. Some advantages of DE
are that it is very easy to implement and has only two tuning parameters: the scale factor F and the
crossover constant H, apart from the number of individuals N and the maximum number of iterations
tmax. Besides, DE shows very good exploration capacities and converges fast to global optima. DE has
many versions and variations; the one considered in this study is the classical DE/best/1/bin strategy,
which is described in Algorithm 1.
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Algorithm 1 : DE (DE/best/1/bin strategy)

Initialization: Given N € N, t,,y € N, F € [0,2], H € [0,1] and the initial search space Sy =
[0min, Omax]"™. Set t = 0 then select randomly N individuals {61, 0, ..., 0y} in the search space.

Step 1: The cost function J(0) is evaluated for each 6; and 6,,;, = 0 is calculated by:

I = argmin J(6;). (12)
i€{1,2,....N}

If t = tyax then 6y, is the final solution, if not go to Step 2.
Step 2 (Mutation): For each 8; a mutant vector M is generated by:

Mz’ = ebase + F(GTL,' - eTz,i)/ (13)

where 77 ; and 1p; are random indexes subject to i # T ; # T; # [.
Step 3 (Crossover): For each 0; and M; a trial vector J; is generated by:

o Mi,j if Pi,j S H OI‘j = jmnd/
Tij = { 0; otherwise, (14)

where p;; € [0,1] and jyuq € {1,2,...,n} are generated randomly.
Step 4 (Selection): The members of the next generation k + 1 are selected by:

, T ifJ(3) < J(6;),
0; < { 0; otherwise, (15)

then t <~ ¢+ 1and go to Step 1.

Since the design parameters of Qny are w and 4, an individual for the DE algorithm will have the
following form 6 = [d w] ' with dimension # = 1 + n,. From these parameters, the weights vector w
is not affected by any constraint, but the quantization interval d should always be positive d > 0. DE
has no direct way to handle the constraints of the optimization problem since it was designed to solve
unconstrained problems. Then, in order to manage the constraint condition, a method developed by
Maruta et al. in [24] is employed. This method transforms the constrained optimization problem into
the following unconstrained one.

arctan[E(0)] — /2  ifd >0,

1
—d otherwise, (16)

minimize J(6)  for  J(8):= {
0cR"

where E(6) is the performance index in Equation (9). This constraints management method ensures
that d is positive.

The learning resulting from the training of a deep neural network depends highly on the initial
weights of the network because many of the learning techniques are in essence local searches. Therefore,
it is very important to initialize the network’s weights appropriately [25,26]. There are several ways
to initialize the neural networks to perform the training. The most common method is the uniformly
random initialization where random values sampled from a certain interval using a uniform probability
distribution are assigned to the weights and biases of the network. The initialization intervals are
selected according to, but they are usually small and close to zero. Popular ones are the intervals [—1, 1]
or [—0.5,0.5]. Another prevalent type of initialization was developed in [27] by Glorot and Bengio.
This method is known as Xavier Uniform initialization (from Xavier Glorot). In this method, the weights
of each layer in the network are initialized using random uniform sampling in a specific interval

w; ~ U[—Z,', lz] for i= 1,2,.. ., ny, (17)
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where w; represents the weights of the ith layer. The limits of the interval are given by I; which is a
function of the number of neurons of the considered layer K;, the number of neurons in the previous
layer K;_; and the hidden layers activation function h. The limit is the following

46
v Ki_1 4+ K;

i = for h(a) = sigm(a). (18)

4. Numerical Simulations

To verify that the proposed neural network quantizers and their design method work properly,
several numerical simulations were performed. In these simulations, the following discrete, nonlinear
and stable plant is used.

x(k+1)] _ [f1<x<k>>+f3<x<k>>u<k>
p. ) [xlk+1) fo(x(k)) + fa(x(k))u(k) |’ (19)
y(t) = 1.45x1 (k) + xa(k),
fix) = 0.8x; —0.4x + 0.4e~ 2l cos®(x7),
folx) = 0.6x3 4 0.4e 11l \cos(x1)|% ,
fa(x) = 0.01+0.01((x)*+0.1)"%

This plant is a modified version of the plant shown in [5]. The initial state is xp = [0.1, —O.Z]T,
and the input signal used in the examples is given by

u(k) = 0.3sin (6k) + 0.4 sin (k) 4 0.3 sin (3k). (20)

The evaluation interval is L = 1000, which implies that the amount of samples taken is 1, = 1000.

The quantizers are constructed with ny = ny = 5, M = {2, 8} and neural networks with
np = {2, 4}. Given the size of the memories and the dimension of u(k) all the networks have inputs
with dimension Ko = 11. The neural networks” structure depends on the type of quantizer and M.
Table 1 summaries the structure of the quantizers used in the simulations. For the regression case (R)
the network’s structure and the dimension of w (n,y) are independent of M. This is not the case for the
classification type of quantizer (C). Table 1 also shows a comparison among the n,, of each network.

Table 1. Simulation conditions.

Quantizer Type M K ny Ny n
_ {2, 8 10, 1] 2 132 133
R: Qnng [10, 10,10, 1] 4 352 353
2 [10, 2] 2 142 143
10, 10, 10, 2 4 362 363
C: Qnne [ }
8 10, 8] 2208 209
[10, 10, 10, 8] 4 428 429

The hyper parameters of DE are N = 500, ;5 = 2000, F = 0.6, and H = 0.9. The simulations
were performed Ny, = 50 times for each considered case. Then, since the individuals have the form
0 = [d w] the dimensions of the optimization problems 1 will be the ones shown is the last column of
Table 1. Looking at Table 1 it is possible to see that Qnnc has more parameters than Qnnr, thisis a
factor that influences the performance of the proposed design method.
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The DE individuals are initialized as follows. The first element 4 is uniformly sampled from the
interval (0, 1]. The network weights are initialized using the uniform random and the Xavier uniform
initialization methods, described in Section 3.

After running the DE algorithm Ny, = 50 times for each considered case, the quantizers Qnn
with the lowest E(w, d) are selected to be the optimal quantizers. Then, in order to test these quantizers,
the error system in Figure 6 is fed with the input signal u(k) for each case. It results that all the
quantizers work properly and show good performance. For instance, Figure 7 depicts the signals
resulting from applying u(k) to the system with the quantizers designed for M = 2 and n; = 2.
This figure shows that the output signals obtained by quantization y;(k) follow the ideal output signal
y(k) pretty well and that the error between them is small in both cases. Also, the inputs u, (k) of the
static quantizers are shown for comparison.

<
=
3
S
S
=
-1 1
0 5 10 15 0 5 10 15
Time [s] Time [s]
(a) QnNR (b) Qnne

Figure 7. Signals resulting from applying u(k) to the system with the Qny designed for M = 2 and
ny = 2. The black lines represent the signals without quantization (u(k), y(k)) and the blues ones are
the signals when quantization is applied (v(k), ug(k), y4(k)).

To further validate this observation, in Figure 8 there are shown the output signals of the system
where the neural network quantizers were designed for M = 2 and n; = 4, and in Figure 9 the ones
for M = 8, n; = 2 and nj = 4. From these, we see that the proposed quantizer works well.

nL:4

y(k), yq(k)
y(k), yg (k)

(S

10 15 0 10 15

Time [s] Time [s]

(@) QNNR (b) Onne

<3

Figure 8. Output signals y, (k) (blue) and y(k) (black) resulting from applying u (k) to the error system
with Qnp designed for M = 2 and nj, = 4.
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y(k), yq(k)
y(k), yq (k)

ot

0 5 10 15 0 5 10 1Z

y(k), yq (k)
I § I
y(k), yq(k)

(S

10 15 0 10 15

Time [s] Time [s]
(a) QnNR (b) Qnne
Figure 9. Output signals y, (k) (blue) and y(k) (black) resulting from applying u(k) to the error system

<)

with Qnn designed for M = 8, n; = 2 (upper figure) and n; = 4 (lower figure).

In addition, the result with the static quantizer q case and the result with the optimal dynamic
quantizer case proposed in [5] are shown in Figure 10 for comparison. The value of the performance
index for the static quantizer is E(q) = 7.9961 and that for the optimal dynamic quantizer is
E(QNNR) = 3.6002. On the other hand, the performance of the proposed quantizer Qnng for M = 2
and n; = 21is E(Qnnr) = 3.73724 and that for M = 2 and n; = 4 is E(Qnngr) = 3.66764. From this
comparison result, we see that the proposed quantizer achieves higher performance than the static
quantizer. Then, we find that the proposed quantizer is similar to the optimal dynamic quantizer,
although the proposed quantizer is designed with the time series data of plant inputs and outputs,
i.e., without the model information of the plant. Therefore, we can confirm that the neural network in
the proposed quantizer captures the dynamics of the plant appropriately based on the time series data
of the plant input and output.

1

2
= —_
= ==
=0 =Y
= =
= 2
S
-1 L
0 5 10 15

2
= —_
= O
= X
= =
= 2

=
1 -1
0 5 10 15 0 s 10 15
Time [s] Time [s]
(a) Static quantizer q (b) Optimal dynamic quantizer

Figure 10. Signals resulting from applying u(k) to the systems with the static quantizer q in Figure 3
and the optimal dynamic quantizer proposed in [5]. The black lines represent the signals without
quantization (u(k), y(k)) and the blues ones are the signals when quantization is applied (v(k),

ug(k), yq(k)).

The minimum values of the performance indexes in Equation (9), found by DE, are listed in Table 2.
In addition, this table lists the average performance indexes and their standard deviation. The values
in this table are divided according to their M, initialization method, n; and type (regression or
classification). There are two initialization methods implemented: uniform random (Urand) and Xavier.



Electronics 2019, 8, 318 12 of 16

Table 2. E(Qnn) analysis for h = sigmoid (N, = 50).

M Init. nr Type  Min. Avg. Std. Dev.

2 R 3.73724  4.32987  0.48300
3.66946 4.27038  0.34762

Urand
4 R 3.66764 4.22516 0.45819
2 C 3.54773  4.30158 0.49296
2 R 3.42879  4.15830 0.36054
. C 3.53307 4.09696 0.35038
Xavier
4 R 3.65081 4.10635 0.35909
C 3.63822  4.04066 0.29597
2 R 0.17825 0.20622 0.01612
C 0.91201 291111 1.54333
Urand
4 R 0.22911  0.32243 0.14041
8 C 0.81667 2.81630 1.43382
2 R 0.20424  1.90045 1.22825
. C 0.93284  2.85580 1.44467
Xavier
4 R 0.24762  0.85188 1.03043
C 1.00016  2.61201 1.06714

Drawing conclusions from this table by simple observation is difficult. For example, looking
at the minimum values of E(Qny) in the case of M = 2, it is possible to say that Qnyc have better
performance (smaller E(Qny)) than Qnnr in most cases. The average values not always corroborate
this observation. For M = 8, Qnnr has the smallest value of E(Qyy) in each case. However, there
is no evidence that there is a significant difference in the performance of these types of quantizers.
Therefore, the analysis of variance (ANOVA) is used to check if there are significant differences or not
among these values.

Because many factors influence E(Qny ), the 3-way ANOVA (ANOVA with three factors) is used.
The considered factors are Type, initialization method (Init.) and number of layers 7. The categories
of each factor are known as elements. For instance, the elements of the factor Type are R (Qnnr:
regression) and C (Qnnc: classification). The M is not taken as a factor, because M = 8 gives smaller
E(Qnn)s than M = 2. Then, it is not necessary to check which one gives better results. The considered
significance level is &« = 0.05. The goal is to determine if there is some statistical difference among the
E(QnN)’s means of the design methods.

A summary of this test is shown in Table 3. The ANOVA test shows if there are significant
differences among sets of data. When doing 3-way ANOVA, it is possible to see not only if there
is a significant difference among elements of a factor but also combinations of elements of different
factors. In this particular case, it will tell if there is a significant difference between Qnnr and Qnnc,
and also it will tell if there are differences among the combinations of the quantizer types and the
initialization methods. Then, the 3-way ANOVA test is run separately for M = 2 and M = 8. For the
case of M = 2, the significant difference is found only for the initialization method. For the case of
M = 8 the significant difference is found for all the factors and the combinations of them with the
exception of the combination of the quantizer type and n;.
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Table 3. Tukey pairwise comparison for h = sigmoid and single factors]Tukey pairwise comparison
3-way ANOVA for h = sigmoid and single factors. Grouping information using the Tukey test and
95% confidence. Means that do not share a letter are significantly different.

M Factor N Mean  Grouping
T R 200 420492 A
e ¢ 200 417739 A
2 g (Urand 200 428175 A
" Xavier 200 4.10057 B
. L2 200 421388 A
L L4 200 4.16844 A
T C 200 279881 A
ype R 200 0.82024 B
8 Init Xavier 200 2.05504 A
Urand 200 1.56401 B
, L2 200 196839 A
L L4 200 1.65066 B

So far only one type of activation function h(-), the sigmoid function, have been used in the
hidden layers to build the neural networks. However, there are other activation functions that can be
used. In this section two additional activation functions are considered: the hyperbolic tangent (tanh)
and the Rectified Linear Unit (ReLU). These functions were defined by

~ 1—exp(—2a)
tanh(a) = m, (21)
ReLU(a) = max(a,0). (22)

In addition, the limits /; in (17) for Xavier Uniform initializatin are given by

V6

l; = \/ﬁ for h(a) = tanh(a), (23)
I = V6 for h(a) = ReLU(a). (24)

Nie

Several numerical simulations were performed to compare the performance of the neural network
quantizers built with these functions. The settings of these simulations are the same as in the previous
cases where h = sigm, but they were carried out only for M = 8. These simulations were run
Nyyun = 50 times for each case. The results are summaries in Table 4.

As before, it is difficult to conclude from the table by simple observation. Therefore, the ANOVA
test is used to analyze the data. In this case, four factors influence the results: h, initialization
method, n;, and quantizer type. However, because the influence of ny is understood the focus in this
section will be in the factors: h, initialization method, quantizer type, and the interaction among each
other. Therefore, the 3-way ANOVA general linear model of E(Qny) versus quantizer type (Type),
initialization method (Init) and activation function h is considered. The significance level used in this
analysis is & = 0.05. The analysis of variance showed that the statistical null hypothesis that all the
means are the same was rejected for every single factor and the combination of them. This means that
in each case there is at least one element that significantly differs from the others. The Tukey pairwise
comparison is made to see the differences among the quantizer’s design elements.
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Table 4. E(Qnn) results summary for h = tanh and h = ReLU (M = 8).

h Init. ny Type  Min. Avg. Std. Dev.
2 R 0.17945 0.57343 0.73814
C 0.85707 2.17040 1.21598
Urand
4 R 0.24340 1.83621 1.37026
tanh C 0.69604 1.62132 0.68768
2 R 0.17010 0.20761 0.02103
. C 0.92943  1.97048 0.78436
Xavier
4 R 0.19868 0.25325 0.03900
C 0.66041 1.77138 0.99609
2 R 0.16532  0.75854 1.21252
C 0.70494  1.93226 0.98668
Urand
4 R 0.19175  3.04153 1.69148
ReLU C 0.71718  1.93823 1.27409
2 R 0.22438  2.97202 1.24661
. C 0.72398  2.12915 1.12578
Xavier
4 R 0.22062  3.01670 1.70763
C 0.63188 2.14319 1.03974

The results of this test are summarized in Table 5. From the results, we see the following things.
First, they tell that there is a significant difference between the Qnnr and Qnne, and that Qnnr
outperforms Qnnc. Second, they show that there is a difference between the initialization methods
and that the Urand method exhibits better performance than the Xavier method. These results
corroborate the ones shown in Table 3 previously obtained for M = 8 and h = sigm. Third, the table
shows that the performances of the considered activation functions vary significantly, that the one
with the best performance is h = tanh, and that the one with the lowest performance is h = ReLU.

Table 5. Tukey pairwise comparison 3-way ANOVA for the activation functions comparison (M = 8).
Grouping information using the Tukey test and 95% confidence. Means that do not share a letter are

significantly different.
Factor N Mean Grouping
Tvpe 600 223930 A
Pe R 600 1.32836 B
Init Xavier 600 1.89033 A
Urand 600 1.67733 B
ReLU 400 224145 A
h sigm 400 1.80953 B
tanh 400 1.30051 C

5. Conclusions

This paper introduces the concept of neural network quantizers that are designed using a set of
the inputs and outputs of the plant. These quantizers are aimed at systems in which the model of
the plant is unknown or unreliable. They are constructed using feedforward neural networks and
static quantizers. Two types of neural network quantizers are proposed: regression-based type Qnnr
and classification based type Qnnc. In addition, a design method based on differential evolution is
proposed for these quantizers.

By means of several numerical examples, it was found that both types of neural network
quantizers are effective alongside with their DE based design method. Furthermore, many variations
were considered in the construction of these quantizers. These variations are reflected in the number
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of quantization levels (M = {2,8}), in the number of layers of the network (1, = {2,4}), in the type of
network initialization technique (Urand, Xavier), and in the hidden layers” activation functions (sigm,
tanh, ReLU). Several conclusions were reached based on the analysis of variance performed on the
simulations results. Some of the most important is that the quantizers based on regression outperform
the ones based on classification, that the best initialization method is the random uniform (Urand),
and that the activation function that gives the best performance is tanh.
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