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Abstract: During the non-contact geomagnetic detection of pipeline defects, measured signals
generally contain noise, which reduces detection efficiency. Complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) has recently emerged as a signal filtering method,
but its filtering performance is influenced by two parameters: the amplitude of added noise and the
number of ensemble trials. To solve this issue and improve detection accuracy and distinguishability,
a detection method based on improved CEEMDAN (ICEEDMAN) and the Teager energy operator
(TEO) is proposed. The magnetic detection signal was first decomposed into a series of intrinsic mode
functions (IMFs) by CEEMDAN with initial parameters. Signal IMFs were then distinguished using
the Hurst exponent to reconstruct the preliminary filtered signal, and its maximum value (except
the zero point) of the normalized autocorrelation function was defined as salp swarm algorithm
(SSA) fitness. The optimal parameters that maximize fitness were found by SSA iterations, and their
corresponding filtered signal was obtained. Finally, the gradient calculation and TEO were carried
out to complete non-contact geomagnetic detection. The results of the simulated signal based on
magnetic dipole under a noisy environment and field testing prove that ICEEMDAN denoising has
better filtering performance than conventional CEEMDAN denoising methods, and ICEEMDAN-TEO
has obvious advantages compared to other detection methods in the aspects of location error, peak
side-lobe ratio, and integrated side-lobe ratio.

Keywords: geomagnetic detection; CEEMDAN; salp swarm algorithm; adaptive filtering; Teager
energy operator

1. Introduction

Buried steel pipelines are used for oil and gas transportation across the world and thus directly
influence national economies and public security. However, pipelines are invariably attacked by
surrounding factors such as corrosion, natural disasters, and stress and must be regularly inspected to
reduce the risk of failure. A well-proven technique for the pipelines inspection uses in-line inspection
(ILI) tools or inspection robotics [1,2] which utilize magnetic flux leakage (MFL) [3,4], pulsed eddy
current (PEC) [5,6], ultrasonic technology (UT) [7], electromagnetic acoustic transducer (EMAT) [8],
and radiographic technology [9]. Nevertheless, their practicality is restricted by the limitations of
inspection robotics. External inspection techniques represented by the transient electromagnetic
method (TEM) [10] and Nopig [11] can be applied for the inspection of buried steel pipelines where the
use of ILI is challenging. However, these techniques have low detection efficiencies and are influenced
by the excitation source.
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Non-contact geomagnetic detection, a passive non-destructive testing technology, has been
successfully implemented to evaluate the integrity of buried steel pipelines under trenchless
conditions [12,13]. This technology identifies pipeline defects by measuring ground leakage magnetic
fields. The measured signals typically contain substantial random noise, including environmental
disturbances and instrument noise, which dramatically affect the detection consequences of pipeline
defects. To improve the non-contact geomagnetic detection efficiency, it is essential to implement a
useful method to suppress noise.

Thus far, there are many filtering methods available for noisy signals. Traditional filters, such as
the moving average filter [14] and Winner filter [15], are only suitable for stationary and linear signals.
Wavelet threshold denoising [16] is a common non-linear method used to reduce noise, but its wavelet
base and decomposition layer need to be predefined. The empirical mode decomposition (EMD)
method was proposed by Huang [17], which was demonstrated to be a powerful tool that deals
with non-stationary and non-linear signals [18–20]. The multicomponent signal can be adaptively
decomposed into a succession of oscillatory functions, which are called the intrinsic mode functions
(IMFs). The EMD has excellent filtering performance for noisy signals [21–23]. However, the mixing of
modes heavily impacts the EMD effect. To alleviate this drawback, Wu developed ensemble empirical
mode decomposition (EEMD) [24], which is viewed as multiple EMDs with added white Gaussian
noise. However, the EEMD produces residual noise and generates different modes using different
iterations [25]. The complementary EEMD (CEEMD) was proven to overcome the reconstruction
problem by adding paired positive and negative white Gaussian noise, but the redundant modes
problem still exists [26]. Therefore, the complete ensemble empirical mode decomposition with
adaptive noise (CEEMDAN) was presented to achieve accurate reconstruction and solve the redundant
modes [27–29].

Although CEEMDAN denoising has a stronger filtering ability than EMD, EEMD, and CEEMD
denoising [30–32], it is also necessary to study how the selection of two parameters (the amplitude
of added noise and the number of ensemble trials) must be performed, as they directly influence
decomposition and filtering performance. If the added amplitude of noise is too small, the different
time-scale signals cannot be automatically distributed to a suitable reference scale. Therefore, the mode
mixing problem cannot be efficiently solved. On the contrary, an excessively large amplitude of added
noise will generate redundant IMF components. An unlimited number of ensemble trials is needed to
offset the influence of white noise. However, this is unrealistic for the real-world signals. In the current
research on CEEMDAN denoising, these parameters are defined as constant values [33,34], which result
in great blindness for different kinds of signals. To achieve accurate non-contact geomagnetic detection,
the filtering performance of CEEMDAN denoising for noisy signals needs to be further enhanced.

Gradient calculation is a common method to amplify magnetic signals of pipeline defects, but its
effect is not apparent as encountering strong noise [35,36]. The Teager energy operator (TEO) is a
non-linear difference operator [37]. TEO estimates the total energy required for the source to produce a
dynamic signal which can calculate instantaneous amplitude and instantaneous frequency and extract
instantaneous energy. This method has been successfully applied in speech recognition [38], bearing
fault detection [39], and power system oscillation diagnosis [40]. However, the research about TEO
that applies to magnetic signals is almost blank.

In this paper, a non-contact geomagnetic detection methodology based on improved CEEMDAN
(ICEEMDAN) and TEO is proposed. First, the magnetic detection signal was decomposed into a
series of IMFs via CEEMDAN with an initial amplitude of added noise and a number of ensemble
trials. Second, signal IMFs were distinguished via computing the Hurst exponent to reconstruct the
preliminary filtered signal. Third, the maximum value (except for the zero point) of the normalized
autocorrelation function of the preliminary filtered signal was then calculated as fitness. Fourth,
the optimal parameters that maximize fitness were sought via salp swarm algorithm (SSA) iterations,
and the final filtered signal was obtained. Finally, the gradient calculation and TEO were used to
identify the locations of pipeline defects.
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2. Relevant Principles

2.1. EMD

The EMD can self-adaptively decompose a signal x into a series of IMFs and a residue. The IMF
must meet two conditions: (a) the difference between the number of extremum points and zero-crossing
is equal to zero or one and (b) the mean value of the upper envelope and the lower envelope is zero.
The flowchart of EMD is shown in Figure 1. The EMD steps can be defined as follows [41,42]:

(1) Identify all extremum points and define an upper and lower envelope, lmax and lmin, respectively,
using a cubic spline interpolation.

(2) Compute the mean envelope.

m0 =
lmax + lmin

2
(1)

(3) Calculate the first IMF candidate as follows:

c1 = x−m0 (2)

(4) If c1 satisfies IMF conditions, define IMF1 = c1. Otherwise, treat c1 as the new signal and repeat
the above sifting procedure k times until an ck+1 is IMF, as follows:

ck+1 = ck −mk (3)

However, continuous sifting to calculate IMF is not possible in reality. The stopping criterion is
defined to finish the iteration.

SD = ∑
|ck − ck+1|2

c2
k

(4)

If the SD < γ (γ is set to 0.2 in this study), the iteration will be stopped.
(5) Let r1 = x− IMF1 replace x and repeat Steps (1) to (4) to obtain the next IMF. The EMD process

will be terminated when the residue rI is a monotonic function. Finally, the signal x can be
defined as:

x =
I

∑
i=1

IMFi + rI (5)

However, EMD has a serious mode mixing problem, which is defined as oscillations of
different scales coexisting in a mode or oscillations of similar scales existing in different modes.
Therefore, this problem not only decreases the decomposition efficiency but also degrades the
filtering performance.

2.2. CEEMDAN

To alleviate the mode mixing problem and improve the decomposition precision, CEEMDAN
was proposed by Torres. The flowchart of CEEMDAN is shown in Figure 2. The CEEMDAN process
can be defined as follows [43,44]:

(1) Decompose x + α0n(j)(j = 1, . . . , N) to obtain the first IMF using EMD.

h1 =
1
N

N

∑
j=1

h(j)
1 (6)

where α0 is the amplitude of the added white noise, n(j) is the white noise under the circumstances
of the jth ensemble trials, and N is a total number of ensemble trials.



Electronics 2019, 8, 309 4 of 18

(2) Calculate the first residue.
r1 = x− h1 (7)

(3) Decompose r1 + α1E1(n(j)) to acquire the first mode and compute the second IMF.

h2 =
1
N

N

∑
j=1

E1(r1 + α1E1(n(j))) (8)

(4) For i = 2, . . . , I, compute the ith residue.

ri = ri−1 − hi (9)

(5) Decompose ri + αiEi(n(j)) to acquire the first mode and calculate the (i + 1)th IMF as:

hi+1 =
1
N

N

∑
j=1

E1(ri + αiEi(n(j))) (10)

where Ei represents the ith IMF by EMD.
(6) Repeat Steps (4) to (5) until the residue no longer be decomposed. The signal x can be

represented as:

x =
I

∑
i=1

hi + rI (11)
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(CEEMDAN).

2.3. IMF Selection Method Based on the Hurst Exponent

The Hurst exponent is an effective index to examine randomness for a time series [45,46], and this
was utilized to distinguish signal IMFs and noise IMFs in this study. The aggregated variance method
can calculate the Hurst exponent of a signal. The steps for this can be defined as follows:

(1) For times series xi, i = 1, 2, 3, . . . , N, set the window size to τ = 1.
(2) Compute the standard deviation of xi and record the point (τ, τ·στ).
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(3) Find the average data of the adjacent points and overwrite the original data.

xi =
x2i−1 + x2i

2
(12)

(4) Rescale appropriately as N ← N/2, τ ← 2τ .
(5) When N > 4, repeat Steps (2) to (4).
(6) Plot the log–log graph and calculate its slope as Hurst exponent h.

In this paper, IMFs with h > 0.5 were defined as signal IMFs decomposed by CEEMDAN [47,48].

2.4. Salp Swarm Algorithm

SSA is a novel heuristic swarm intelligence algorithm inspired by the swarming behavior of
salp: salp chain, which has been applied for cantilever beam design, welded beam design, and
two-dimensional airfoil design [49]. SSA defines the salp population as two classes: leader and
followers. The first salp in the chain is a leader, and the rest of salps are followers. The locations of
salps are defined in n-dimensional space, where n represents the number of optimized parameters.
The locations of all salps exist in the matrix x. The food source F is a target for the salp swarm.

The location of the leader in the jth dimension is updated using the following formula.

x1
j =

{
Fj + c1((ubj − lbj)c2 + lbj) c3 ≥ 0
Fj − c1((ubj − lbj)c2 + lbj) c3 < 0

(13)

where x1
j is the location of the leader salp, Fj is the location of the food source, ubj is the upper boundary,

lbj is the lower boundary, and c1, c2, and c3 represent random numbers.
c1 is the most significant coefficient because it controls leader exploration and exploitation, which

can be expressed as:

c1 = 2e−(
4l
L )

2
(14)

where l is the current iteration, and L is the maximum number of iterations. The coefficients c2 and c3

are random numbers in the interval of [0,1]. The locations of followers in the jth dimension is updated
using following the formula.

xi
j =

1
2

at2 + v0t (15)

where i ≥ 2, xi
j is the location of ith follower, t is time, v0 is the initial velocity, and a = v f inal/v0 where

v = (x− x0)/t. As the difference between iterations is equal to one and v0 = 0, Equation (15) can be
revised to become:

xi
j =

1
2
(xi

j + xi−1
j ) (16)

The SSA begins with initializing random locations for salps. The fitness of each salp is then
calculated to seek the best fitness, and its location is defined as the food source (F). During this period,
the coefficient c1 is updated utilizing Equation (14), and the location of leader salp is updated utilizing
Equation (13). In addition, the locations of follower salps are updated utilizing Equation (16). If the
location of any salp is beyond the search region, it will be got back on the upper or lower boundary.
The above steps, except for initialization, are required to be reiteratively executed until the final result
satisfies predefined criteria.

2.5. Teager Energy Operator

The Teager energy operator (TEO) is a nonlinear operator, which was used to improve defect
identification ability [50]. For signal x(t), TEO is defined as:

ψ[x(t)] = [
.
x(t)]2 − x(t)

..
x(t) (17)
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where
.
x(t) is the first derivative of signal x(t) with respect to time t, and

..
x(t) is the second derivative.

A linear undamped vibration system was composed of an object with mass m and a spring with
stiffness g, and its motion equation is:

x(t) = A cos(wt + ϕ) (18)

where x(t) is the displacement of the object relative to the equilibrium position, A is the vibration
amplitude, w = (k/m)1/2 is inherent frequency, and ϕ is initial phase. The instantaneous total energy
of the system is:

E =
1
2

k[x(t)]2 +
1
2

m[
.
x(t)]2 =

1
2

mA2w2 (19)

By substituting x(t) from Equation (18) into Equation (17), the following equation is derived.

ψ[x(t)] = ψ[A cos(wt + ϕ)] = A2w2 (20)

By comparing Equation (19) and Equation (20), it can be seen that there is a constant m/2
difference between the output of the energy operator and the instantaneous total energy of the
undamped vibration system, Thus, the TEO can accurately reflect the total energy required to generate
an undamped vibration.

For a discrete time signal (x(n)), the difference is used instead of differentiation. Thus, TEO can
be rewritten as:

ψ[x(n)] = [x(n)]2 − x(n + 1)x(n− 1) (21)

For a discrete time signal, TEO only needs three sample data in order to calculate the signal energy
at n. Therefore, TEO has a good time resolution for the instantaneous changes of the signal and can
detect the transient components in the signal.

3. Geomagnetic Detection for Pipeline Defects Using ICEEMDAN and TEO

The normalized autocorrelation function is a measurement method in the time domain and reflects
the similarity signal itself at a different time, which can be defined as:

Rx(τ) =
E(x(t)·x(t + τ))

E[x(t)·x(t)] (22)

where Rx(τ) represents the normalized autocorrelation function, and E(·) represents the mean
value. The normalized autocorrelation function of noise has a maximum value at the zero point
and immediately goes to zero at the rest of the point. The normalized autocorrelation function of
the actual signal has a maximum value at the zero point and slowly descends to zero at the rest of
the points. According to the above properties, we propose a geomagnetic detection method based
on ICEEMDAN and TEO, which is represented by the flowchart shown in Figure 3. The steps are
as follows:

(1) Decompose the magnetic detection signal by CEEMDAN, with an initial noise amplitude and
ensemble trial number, into a series of IMFs. Signal IMFs are then extracted using the Hurst
exponent to reconstruct the preliminary filtered signal.

(2) Calculate the maximum value (except for the zero point) of the normalized autocorrelation
function of the preliminary filtered signal as the SSA fitness and update the values of two
parameters using SSA iterations.

(3) Repeat Steps (1) to (2) until the optimal amplitude of added noise and the number of ensemble
trials to maximize fitness is found and their corresponding filtered signal is a final clean
magnetic signal.
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(4) Use gradient calculation and TEO to amplify the amplitude of defect signal and then identify
pipeline defects.
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4. Numerical Simulation

Generally, a pipeline defect can be considered as a magnetic dipole because the distance between
the defect and the detection point is 2.5 times greater than the maximum dimension of the defect [51].
If the dipole moment m = mxi + myj + mzk and the displacement vector from the source to the
measurement point r = rxi + ryj + rzk, the magnetic field vector is:

B =
µ0

4π
[
3(m·r)r

r5 − m
r3 ] (23)

The magnetic moment can be defined as:

m = VχmH (24)

where V is the damage volume, χm is the magnetic susceptibility, and H is the geomagnetic
field intensity.

Three components of geomagnetic field intensity can be expressed as:
Hx = H cos I cos D
Hy = H cos I sin D
Hz = H sin I

(25)

where I is a magnetic inclination, and D is a magnetic declination.
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Figure 4 illustrates a defect on the pipeline upper surface locating the coordinate original, with
length a of 0.1 m, width b of 0.3 m, depth c of 0.003 m. The magnetic susceptibility χm = 300 SI.
The measurement length is 2L = 20 m, and the sampling interval is o = 0.1 m. The distance between
the sensor to ground is h1 = 0.5 m, the distance between ground to pipeline upper surface is h2 = 1 m.
The geomagnetic field intensity is H = 43.56 A/m, the magnetic declination is D = −6◦, and the
magnetic inclination is I = 59◦.
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Figure 4. The pipeline defect model.

The axial component of the defect magnetic signal generated by the Figure 4 model was considered
as an input signal to evaluate the proposed methods availability. White Gaussian noise was added to
original signal with an input signal-to-noise ratio at 5 dB. In order to clearly verify the ICEEMDAN
denoising effectiveness, conventional CEEMDAN denoising 1 (i.e., the amplitude of added noise is
0.1 and the number of ensemble trials is 300 as described in Reference [33]), conventional CEEMDAN
denoising 2 (i.e., the amplitude of added noise is 0.2 and the number of ensemble trials is 500 as
described in Reference [34]), and ICEEMDAN denoising were utilized to filter noisy signals. For SSA,
the range of the added noise amplitude was 0.01–0.5, the range of ensemble trials number was 1–500,
the number of search agents was 20, and the maximum number of iterations was 100. To clearly
compare different methods, signal-to-noise ratio (SNR) and root mean square error (RMSE) were used
to evaluate filtering performance.

SNR = 10lg


n
∑

i=1
s2(i)

n
∑

i=1
[s(i)− ŝ(i)]2

 (26)

RMSE =

√
1
n

n

∑
i=1

[s(i)− ŝ(i)]2 (27)

where s(i) is the original signal, ŝ(i) is the denoised signal, and i is the sampling point.
The optimal the amplitude of added noise and the number of ensemble trials were equal to

0.196 and 58, respectively. Figure 5 shows the noisy signal and filtered signal based on conventional
CEEMDAN denoising 1, conventional CEEMDAN denoising 2, and ICEEMDAN denoising. It is
evident that the three denoising methods have the ability to remove noise. Table 1 presents the SNR
and RMSE of three denoising methods. As seen in Table 1, the ICEEMDAN denoising had a maximum
SNR and minimum RMSE. As expected, ICEEMDAN denoising had better filtering performance than
conventional CEEMDAN denoising.
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Table 1. Signal-to-noise ratio (SNR) and root mean square error (RMSE) of the three denoising methods.

Indexes Conventional CEEMDAN
Denoising 1

Conventional CEEMDAN
Denoising 2 ICEEMDAN Denoising

SNR (dB) 6.0102 12.7882 13.6716
RMSE 1.5865 0.7226 0.6527

Location error, peak side-lobe ratio (PSLR), and integrated side-lobe ratio (ISLR) were used to
evaluate detection accuracy and distinguishability. Location error was defined as the absolute value of
the difference between signal peak location (Lp) and actual defect location (La).

L =
∣∣Lp − La

∣∣ (28)

PSLR [52] and ISLR [53] are determined as:

PSLR = 10lg
ps

pm
(29)

ISLR = 10lg
Es

Em
(30)

where ps represents the value of the highest side lobe (second highest peak), pm represents the value of
main lobe (highest peak), Es represents all side lobe energy, and Em represents for main lobe energy.
Smaller PSLR and ISLR values mean better detection consequences.

Figure 6 presents the detection results of conventional CEEMDAN denoising 1-TEO, conventional
CEEMDAN denoising 2-TEO, ICEEMDAN-gradient, and the proposed method. As shown in Figure 6,
the proposed method had the clearest detection effect. The location error, PSLR, and ISLR based on
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four methods are presented in Table 2. The error of the proposed method was smaller than in other
detection methods. In addition, the PSLR of the proposed method was higher than that of conventional
CEEMDAN denoising 1-TEO by approximately 6.00 dB, conventional CEEMDAN denoising 2-TEO
by approximately 6.03 dB, and ICEEMDAN-gradient by approximately 3.84 dB. For the ISLR index,
the ISLR of the proposed method was higher than that of conventional CEEMDAN denoising 1-TEO
by approximately 12.60 dB, conventional CEEMDAN denoising 2-TEO by approximately 11.49 dB,
and ICEEMDAN-gradient by approximately 8.03 dB. Therefore, the proposed method has a better
detection accuracy and defect identification ability than other conventional detection methods.
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Table 2. The evaluation indexes of the detection results based on different methods.

Indexes
Conventional
CEEMDAN

Denoising 1-TEO

Conventional
CEEMDAN

Denoising 2-TEO

ICEEMDAN-
Gradient Proposed Method

Location Error (m) 0.9 0.2 0.2 0.1
PSLR (dB) −0.6731 −0.6464 −2.8358 −6.6745
ISLR (dB) 1.0635 −0.0468 −3.5057 −11.5363

5. Experiment Verification

Figure 7 shows a field-testing process for the buried pipeline. The measurement system contained
high-precision magnetic TMR2309 sensors (with a measurement range of ±10 Oe and a sensitivity
of 100 mV/V/Oe), an ADLINK USB-1901 data acquisition card (with a resolution of 16-Bits and a
sampling rate of 250 kS/s), an industrial personal computer, and GPS. The segment pipeline was made
from Q235 steel with a diameter of 323 mm, a wall thickness of 5 mm, a buried depth of 1 m, and an
operating pressure of 2.5 Mpa. It was put into production in Hebei Province, China.
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Figure 7. Field testing for the buried pipeline.

Figure 8 shows the magnetic detection signal and gradient signal in field testing. Due to the
original signal containing a lot of random noise, it was difficult to locate defects from the gradient
signal. The optimal amplitude of added noise was 0.480, and the number of ensemble trials was 126 by
SSA. Their corresponding decomposition results are shown in Figure 9. It is evident that the magnetic
detection signal was decomposed into 10 IMFs and a residue. The noise was concentrated in the first
few IMFs and decreased as the IMF number increased. The calculation results of the Hurst exponent
for each IMF are shown in Table 3. According to the selection rule, the IMF6-10 and residue were
selected to reconstruct the filtered signal.
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Table 3. Calculation results of the Hurst exponent.

IMFs Hurst Exponent IMFs Hurst Exponent

IMF1 0.2389 IMF6 0.5923
IMF2 0.0820 IMF7 0.7761
IMF3 0.2506 IMF8 0.8751
IMF4 0.3290 IMF9 0.9942
IMF5 0.4806 IMF10 1

Figure 10 shows the magnetic detection signal and filtered signal using conventional CEEMDAN
denoising 1, conventional CEEMDAN denoising 2, and ICEEMDAN denoising. It shows that three
methods are able to extract signal fluctuation characteristics. After examining it carefully, the filtered
signal based on the ICEEMDAN denoising was found to be smoother than in other methods.
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Figure 10. Figure 10. The filtering results of three denoising methods. (a) Conventional CEEMDAN
denoising 1. (b) Conventional CEEMDAN denoising 2. (c) ICEEMDAN denoising.

Detrended fluctuation analysis (DFA) is a useful method for researching the fluctuation of time
series, which can remove the different orders of foreign trends and show the statistical behavior
characteristics accurately [54]. The scaling index α represents the roughness of the times series. A larger
α means a smoother time series. DFA has been successfully used to evaluate filtering performance
for impact signals [55] and pipeline leakage signals [56]. The α of each denoising method is shown in
Figure 11. It is evident that the α of the ICEEMDAN denoising is larger than that of the other denoising
methods. The results prove that ICEEMDAN denoising can adaptively select parameters to achieve
the most effective filtering for the noisy magnetic detection signal.
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Figure 12 and Table 4 show the detection results and evaluation indexes of conventional
CEEMDAN denoising 1-TEO, conventional CEEMDAN denoising 2-TEO, ICEEMDAN-gradient,
and the proposed method. After pavement opening, a scratch defect (with a length of 10 mm, width
of 5 mm, and depth of 1.5 mm) was found on the pipeline at 9 m. From Table 4, it is evident that
the proposed method had a minimum location error in the four methods. For the PSLR index,
the PSLR of the proposed method was higher than that of conventional CEEMDAN denoising 1-TEO
by approximately 6.42 dB, conventional CEEMDAN denoising 2-TEO by approximately 4.21 dB,
and ICEEMDAN-gradient by approximately 5.41 dB. The ISLR of the proposed method was higher
than that of conventional CEEMDAN denoising 1-TEO by approximately 11.57 dB, conventional
CEEMDAN denoising 2-TEO by approximately 6.95 dB, and ICEEMDAN-gradient by approximately
6.35 dB. In conclusion, the proposed method can detect buried pipeline defects precisely and efficiently.

Table 4. The evaluation indexes of the four detection results.

Indexes
Conventional
CEEMDAN

Denoising 1-TEO

Conventional
CEEMDAN

Denoising 2-TEO

ICEEMDAN-
Gradient Proposed Method

Location Error (m) 7.33 7.24 0.57 0.33
PSLR (dB) −0.2513 −2.4639 −1.2647 −6.6745
ISLR (dB) 5.2464 0.6247 0.0247 −6.3203
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6. Conclusions

In this paper, a non-contact geomagnetic detection method using ICEEMDAN and TEO is
proposed. According to the difference of normalized autocorrelation function values between signal
and noise, ICEEMDAN uses SSA to adaptively find the optimal amplitude of added noise and
the number of ensemble trials. This improves CEEMDAN filtering performance. In addition,
TEO is used to further enhance the amplitude of defect magnetic signals and improve detection
distinguishability. The simulation results of the defect magnetic signal based on magnetic dipole in a
noisy environment certified that ICEEMDAN denoising has a higher SNR and smaller RMSE than
conventional CEEMDAN denoising methods, and ICEEMDAN-TEO is superior to other detection
methods in terms of location error, PSLR, and ISLR. In this study, the practical magnetic detection
signal of field testing was used to validate that ICEEMDAN denoising performs more effective filtering
and produces a smoother signal compared to the other denoising methods as evaluated by DFA, and
ICEEMDAN-TEO has a higher detection accuracy and distinguishability than other detection methods.
In the future, the proposed method will require further verification via more non-contact geomagnetic
detection applications.
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