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Abstract: This paper presents an eight-channel time-interleaved (TI) 2.6 GS/s 8-bit successive
approximation register (SAR) analog-to-digital converter (ADC) prototype in a 55-nm complementary
metal-oxide-semiconductor (CMOS) process. The channel-selection-embedded bootstrap switch is
adopted to perform sampling times synchronization using the full-speed master clock to suppress
the time skew between channels. Based on the segmented pre-quantization and bypass switching
scheme, double alternate comparators clocked asynchronously with background offset calibration
are utilized in sub-channel SAR ADC to achieve high speed and low power. Measurement results
show that the signal-to-noise-and-distortion ratio (SNDR) of the ADC is above 38.2 dB up to 500 MHz
input frequency and above 31.8 dB across the entire first Nyquist zone. The differential non-linearity
(DNL) and integral non-linearity (INL) are +0.93/−0.85 LSB and +0.71/−0.91 LSB, respectively. The
ADC consumes 60 mW from a 1.2 V supply, occupies an area of 400 µm × 550 µm, and exhibits a
figure-of-merit (FoM) of 348 fJ/conversion-step.

Keywords: analog-to-digital converter; successive approximation register; direct sampling;
time-interleaved; channel-selection-embedded bootstrap; segmented pre-quantization and bypass

1. Introduction

High-speed analog-to-digital converters (ADCs) with a moderate resolution of 6–8 bits while
maintaining excellent power efficiency for longer battery life are highly demanded for applications
such as 802.11 ad (WiGig) radio architectures and the next-generation mobile communication system
(5G) [1]. Compared with flash and pipeline ADC, successive approximation register (SAR) ADC
has superior energy efficiency and is more suitable for the aggressive downscaling of technology
because of its primarily digital nature [2–4]. In order to overcome the speed limitation of a single
ADC, time-interleaved (TI) architecture running multiple parallel ADCs is an attractive approach. In
general, TI SAR ADC is the most feasible solution to realize both over GHz operation and medium
resolution around 8-bit [5]. However, the inter-channel non-ideal factors like offset, gain mismatch,
and time skew, will deteriorate the overall performance [6], and can be compensated for by either
circuit improvement in the analog domain or special digital calibration. As digital calibration is often
complex, it is preferred to minimize these mismatches using on-chip design optimization to relax
calibration requirements, especially when the number of interleaved channels is not large.

This paper demonstrates a 2.6 GS/s 8-bit SAR ADC prototype with an eight-channel direct
sampling TI architecture. In the sampling front-end, in order to suppress the time skew error among
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different channels, the channel-selection-embedded bootstrap switch is used as the sampling switch to
ensure the uniformity of sampling times by the master clock. In the sub-channel SAR ADC design,
segmented pre-quantization and a bypass switching scheme is employed to avoid unnecessary large
capacitors switching, reducing power consumption and non-linearity. Double comparators clocked
asynchronously in alternate mode are used to improve the conversion rate, with the background offset
calibration function integrated on-chip. This ADC exhibits lower calibration complexity and achieves
an acceptable efficiency in terms of area and power consumption.

2. Proposed TI SAR ADC Architecture

TI structures can generally be categorized as hierarchical sampling and direct sampling. In a
hierarchical sampling structure, there are at least two sampling switches in series in each sub-channel.
In contrast, a direct sampling architecture, wherein all parallel channels have individual sample/hold
circuits, provides the shortest signal transmission path from the input to the sampling capacitors, and
is very efficient for a small number of parallel channels (usually ≤8) [7].

In this design, a direct sampling architecture is adopted to implement the 2.6 GS/s 8-bit TI
ADC prototype, which mainly consists of multi-phase clock generator (MPCG), sampling switch,
eight-channel 325 MS/s 8-bit SAR ADC, and multiplexer (MUX), as depicted in Figure 1.
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Figure 1. Eight-channel time-interleaved (TI) successive approximation register (SAR) analog-to-digital
converter (ADC) architecture.

The current-mode logic (CML) sinusoidal input clock signal is buffered and then transformed
to complementary metal-oxide-semiconductor (CMOS) level full-speed master clock CKmaster.
The multi-phase clock pulse signals CKch,1–CKch,8 are generated from CKmaster using the cascaded
D flip-flop (DFF) chain [8–10] and combinational logic circuits using synchronous frequency division,
as shown in Figure 2a.
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Figure 2. (a) Multi-phase clock generator (MPCG), (b) D flip-flop (DFF), and (c) timing diagram.

The DFF is constructed using two latches [11], as shown in Figure 2b. The internal signals q1, q2,
q3 and q4 with a duty cycle of 50% are the divide-by-eight clocks of CKmaster such that a clock pulse
signal CKdiv8 with a duty cycle of 12.5% is obtained through AND logic operation. Since the initial
state of the shift registers is uncertain, the feedback logic is added to activate self-starting such that the
MPCG can automatically return from the non-ideal state to normal. The shift operation of CKdiv8 is
executed to get CKch,1–CKch,8, which have definite phase sequence relationships and the delay between
each other is one period of CKmaster, as shown in Figure 2c. The non-overlapping sampling phases
guarantee that only one sampling switch is turned on, thus reducing the channel load at the input.
CKch,1–CKch,8 are not only used as the control signals for the sampling switches, but also initiate the
conversion process of each channel.

As the input signal is sampled onto the capacitors array of respective sub-ADC sequentially for
quantization, the sampling instants are controlled uniformly using CKmaster to mitigate the time skew
between channels. Finally, the multi-path digital outputs from the sub-ADCs array are aggregated into
a one-way data stream using MUX.
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3. Circuit Implementation Details

3.1. Channel-Selection-Embedded Bootstrap Switch

Time skew refers to the mismatch in the sampling instants among TI channels, which originated
from the non-uniform sampling clock edges [12]. Some timing-skew, calibration-free techniques have
been proposed to suppress the time skew by circuit design and layout [13–15]. We attempted to realize
similar skew tolerance via circuit improvement in the analog domain for design simplicity rather
than digital calibration with complex algorithms that will consume extra hardware and power. The
channel-selection-embedded bootstrap switch [16] is utilized in the sampling front-end, so that the
sampling instants of each channel are aligned to the master clock CKmaster, while the corresponding TI
clock signals CKch,i (i = 1–8) are used to perform the channel selection, as described in Figure 3.
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Figure 3. Channel-selection-embedded bootstrap switch.

When CKch,i becomes high, the switching transistor M0 is turned on, and the channel begins
to track the input signal. CKen,i is a delayed version of CKch,i, used to prepare for sampling
synchronization. When CKen,i is high, once the rising edge of CKmaster comes, M1 and M2 are both
turned on, and the gate voltage VG of M0 is released from Vin + VDD to the ground level, thus
the sampling instants are determined by the rising edge of CKmaster. Then, the channel finishes the
sampling process and enters the holding phase. As CKen,i goes low, the gate of M0 is in floating
state and vulnerable to the interference of other signals. M3 from CKr,i provides a discharging path,
and the VG is fixed to the ground level, therefore avoiding the floating node at the holding phase.
The inter-channel sampling synchronization that is determined uniformly by CKmaster ensures the
consistency of the sampling instants, and it is beneficial to suppress the time skew among channels.

3.2. Sub-ADC Design

3.2.1. Asynchronous Timing of Alternate Comparators

The sub-ADC is implemented with 325 MS/s 8-bit SAR ADC [17], including fundamental building
blocks, such as capacitive digital-to-analog converter (CDAC), comparators and control logic, as
illustrated in Figure 4a.
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If only one comparator is used in the SAR ADC, the comparator needs to be fully reset to avoid
the residual effect from the previous conversion process, so the overall conversion speed is slowed
down. Double dynamic comparators with cross-coupled latches are used [18], and the preamplifier
has been designed for moderate gain to reduce its offset, and more importantly, to limit the kick-back
noise from the latch [19]. The two comparators are clocked asynchronously in alternate operation, as
shown in Figure 4b. Under the control of CK1 and CK2, when one comparator is in a comparison state,
another comparator is reset, reducing the impact of reset time on the critical path, and thus improving
the conversion speed [20]. Once the preceding comparison is over, a successful decision is detected as
the trigger signal for the following comparison process. This asynchronous conversion process repeats
like dominoes until all bits are resolved [21].

The pulse labeled “CC” corresponds to the operation for the compensation capacitor in the CDAC.
At the end of the conversion, the inputs of the comparators are shorted together using CKreset for
calibration purposes. With the pulse labeled “cal” the background offset calibration based on the
charge pump principle in the analog domain for each comparator is carried out once every two cycles.

3.2.2. The Background Offset Calibration of Comparator

The diagram of comparator’s background offset calibration is shown in Figure 5. An auxiliary
differential pair is introduced to calibrate the offset voltage of the comparator. Only the generation
circuit of Vcalp is presented. Another calibration voltage Vcaln can be generated in two ways, one is set
to a constant voltage using a resistive voltage divider [20], and the other is similar to the generation
of Vcalp, except that the corresponding control voltage is different. In this design, the latter method is
adopted. Vcalp and Vcaln change in opposite directions and jointly cancel the impact of the offset.

During the offset calibration phase of the comparator, the input signals Vip and Vin of the main
differential pair are shorted together. In the case of no offset, Vip = Vin, then the output voltage of
the preamplifier stage is equal, that is, VA = VB. Finally, the output signal of the comparator OUTP
= OUTN = 0, and the corresponding complementary output signal OUTP = OUTN = 1. At this
time, M5 and M8 are on, the upper capacitor Cp is charged to the power supply, and the lower Cp

is discharged to the ground level. Both M6 and M7 are off, and the calibration voltage Vcalp remains
unchanged. There is no calibration effect yet.
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If the offset exists, OUTP or OUTN will change. Usually, the output changes caused by offset
can be equivalent to the input changes. Taking an offset output case as an example, if OUTP = 0
and OUTN = 1, this offset effect is the same as the situation when Vip < Vin. Note that VA > VB now.
In the calibration voltage generation circuit, M6 is turned on, the voltage on Cp charges Ccal, and
Vcalp is pumped up. Then Vcalp is fed back to the preamplifier input stage such that VA decreases
to approximate VB. After a number of calibration cycles, once the decreasing VA is equal to VB,
OUTP = OUTN, thereby realizing offset calibration. The calibration step size or accuracy is related
to the capacitance values of Cp and Ccal. The parasitic capacitor can be used as Cp, which is usually
small. The larger the calibration capacitor Ccal, the higher the calibration accuracy and the better the
calibration effect. However, a large Ccal will affect the calibration settling time, and a trade-off between
calibration accuracy and settling time is required to determine the value of Ccal.

3.2.3. Segmented Pre-Quantization and Bypass Switching Scheme

The control logic is used to generate internal asynchronous clocks, register the decision results
of the comparators, and control the switching of the CDAC accordingly [20]. Several typical
power-efficient switching sequences for CDAC, such as monotonic [22], splitting monotonic [23],
and bypass switching techniques, have been proposed to improve the power efficiency. According to
the reference [24], it was observed that the bypass method yields better results with less switching
activity [25–27] because of the basic idea to skip the conversion steps for several significant bits when
the signal is within a predefined window. Moreover, the skip operation reduces the error accumulation
to improve the static performance. In this design, the CDAC is built with a segmented pre-quantization
and bypass switching scheme [28], and the actual differential structure is displayed as single-ended
for clarity in Figure 6.
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and bypass switching scheme.

The capacitors array of CDAC is divided into two parts with high and low weight by the
switch Smerge. To keep the comparator’s input common-mode voltage constant, each capacitor is
split into two identical small capacitors. The input signal is sampled onto the capacitors array via
channel-selection-embedded bootstrap switches.

After sampling, all the switches are turned off, and only the low-weight capacitors array is
connected to the comparator, equivalent to a 4-bit ADC. The comparator directly performs the first
comparison without switching any capacitors to obtain the first digital code D1 [22], which is fed back
to switch the minimum capacitor 8C in the high-weight capacitors array, providing an initial voltage.
The subsequent digital codes D2–D4 are compared with D1, as Figure 6a shows. If one of the codes is
the same as D1, that means the previous output of the CDAC is not enough, so the associated large
capacitor is switched, contributing a corresponding weight output to the CDAC. In case the code is
different from D1, it indicates that the last output of the CDAC is excessive, and the relevant large
capacitor is bypassed, just maintaining the original state without switching. The monotonic procedure
is either upward or downward to avoid unnecessary opposite direction switching of high-weight large
capacitors, therefore reducing the power consumption and nonlinearity.

Once the high-weight capacitors are properly set, the switch Smerge is turned on, and the two
arrays are merged. Meanwhile the low-weight capacitors array is reset to the initial condition. Then,
the entire structure is changed back to 8-bit ADC, entering the residual quantization phase for the low
4-bit digital codes D5–D8, as shown in Figure 6b. In the whole conversion process, all quantization is
done using the low-weight capacitors array, relaxing the settling constraints of the CDAC.

Ideally, the proportion of 4C in the low-weight capacitors array should be the same as that of
64C in the whole capacitors array, both being 1/2. However, the presence of parasitic capacitance
changes the ratio. Since the total capacitance of high-weight capacitors array is much larger than that
of low-weight capacitors array, even the same parasitic capacitance will occupy different proportions
in different weight capacitor arrays, resulting in gain errors in CDAC output between high 4-bit coarse
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quantization and low 4-bit global quantization stages, so it is necessary to insert equilibrium capacitor
(denoted as CE) to balance the parasitic differences between the two capacitor arrays, as shown below:

CL
CL + CPL

=
CH

CH + CPH + CE
(1)

CH and CL represent the total capacitance of high and low weight capacitors array, respectively;
that is, CH = 64C + 32C + 16C + 8C = 120C, CL = 4C + 2C + C + C = 8C. CPH and CPL represent the
parasitic capacitance respectively, which can be obtained from the layout parameters extraction.

In order to further solve the potential wrong conversion caused by inaccurate parameter extraction
and manufacturing process variation, a compensation capacitor (denoted as CC) with the weight of 4
is used to provide 1-bit redundancy (corresponding to digital code DC), whose error correction range
is up to 4/128 = 3.125%.

The gain error of TI SAR ADC mainly comes from the parasitic effect and capacitance mismatch
of CDAC. When selecting a capacitor size, there are two main factors to consider: thermal noise (kT/C)
and matching accuracy [9]. A compact and reasonable CDAC layout is deliberately designed by using
full-custom metal-oxide-metal (MOM) capacitors [29] with the unit capacitance of 1.5 fF. Benefiting
from 1-bit redundancy, intrinsic capacitor matching, and careful layout routing, the gain error can be
minimized to a tolerant level [30].

4. Measured Results

The ADC prototype was manufactured in a 55-nm one-poly nine-metal (1P9M) CMOS process
with a core area of 400 µm × 550 µm, and a large number of decoupling capacitors were filled inside
the chip to keep the power supply voltage clean and stable. The die micrograph is shown in Figure 7.
The static performance of differential non-linearity (DNL) and integral non-linearity (INL) is shown in
Figure 8. The measured DNL and INL were +0.93/−0.85 LSB and +0.71/−0.91 LSB, respectively.
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The output fast Fourier transform (FFT) spectrum is shown in Figure 9 at a 115 MHz
input frequency and 2.6 GS/s, with an spurious-free dynamic range (SFDR) of 52.0 dB and
signal-to-noise-and-distortion ratio (SNDR) of 41.52 dB. Figure 10 shows SNDR and SFDR versus
input frequency at 2.6 GS/s. Within the input frequency range of 500 MHz, the SFDR was greater than
47.9 dB, the SNDR was greater than 38.2 dB, and the effective number of bits (ENOB) was greater than
6-bit. SFDR was above 40.3 dB and SNDR was above 31.8 dB in the first Nyquist zone. However, as
the input frequency increased to the Nyquist frequency, the SNDR decreased by about 9 dB, which
was much lower than the expected theoretical values. This result reveals that although the proposed
method could suppress sample/hold circuit mismatch, the performance was not satisfactory in the
high-frequency region due to other non-ideal factors, such as the master clock path mismatch, input
signal path mismatch, and so on [5].

Electronics 2019, 8, x FOR PEER REVIEW 9 of 12 

 

 

Figure 8. Measured differential non-linearity (DNL) and integral non-linearity (INL). 

The output fast Fourier transform (FFT) spectrum is shown in Figure 9 at a 115 MHz input 

frequency and 2.6 GS/s, with an spurious-free dynamic range (SFDR) of 52.0 dB and signal-to-noise-

and-distortion ratio (SNDR) of 41.52 dB. Figure 10 shows SNDR and SFDR versus input frequency at 

2.6 GS/s. Within the input frequency range of 500 MHz, the SFDR was greater than 47.9 dB, the SNDR 

was greater than 38.2 dB, and the effective number of bits (ENOB) was greater than 6-bit. SFDR was 

above 40.3 dB and SNDR was above 31.8 dB in the first Nyquist zone. However, as the input 

frequency increased to the Nyquist frequency, the SNDR decreased by about 9 dB, which was much 

lower than the expected theoretical values. This result reveals that although the proposed method 

could suppress sample/hold circuit mismatch, the performance was not satisfactory in the high-

frequency region due to other non-ideal factors, such as the master clock path mismatch, input signal 

path mismatch, and so on [5]. 

 

Figure 9. Output fast Fourier transform (FFT) spectrum. 
Figure 9. Output fast Fourier transform (FFT) spectrum.



Electronics 2019, 8, 305 10 of 12
Electronics 2019, 8, x FOR PEER REVIEW 10 of 12 

 

 

Figure 10. Signal-to-noise-and-distortion ratio (SNDR) and spurious-free dynamic range (SFDR) 

versus input frequency. 

Based on the simulation results, the total power consumption of 60 mW at 1.2 V supply voltage 

was composed as follows: 12 mW for the clock generation module and 48 mW for the SAR ADCs 

array (that is, 6 mW/slice for every sub-ADC). The FoM calculated within the 500 MHz input 

frequency was 348 fJ/conversion-step. The performance summary is shown in Table 1. 

Table 1. Performance summary. 

Technology 55-nm 1P9M CMOS 

Architecture 8-channel TI SAR 

Sampling Rate 2.6 GS/s 

Resolution 8-bit 

Power 60 mW 

Active Area 0.22 mm2 

DNL +0.93/−0.85 LSB 

INL +0.71/−0.91 LSB 

SFDR 

≥50.94 dB (up to115 MHz) 

≥47.9 dB (up to 500 MHz) 

≥40.3 dB (up to Nyquist) 

SNDR 

≥40.54 dB (up to115 MHz) 

≥38.2 dB (up to 500 MHz) 

≥31.8 dB (up to Nyquist) 

FoM 1 348 fJ/conversion-step 

Calibration Complexity On-chip offset calibration only 
1 FoM = Power/(2ENOB × Sampling frequency). 

5. Conclusions 

A 2.6 GS/s 8-bit SAR ADC prototype with eight-channel direct sampling TI architecture has been 

presented. The SNDR was above 38.2 dB up to 500 MHz input frequency and above 31.8 dB up to the 

Nyquist frequency. The DNL and INL were +0.93/−0.85 LSB and +0.71/−0.91 LSB, respectively. The 

ADC consumed 60 mW, occupied an area of 400 μm × 550 μm, and realized a FoM of 348 

fJ/conversion-step. In general, this design is a beneficial attempt of time-skew, calibration-free 

technology, which achieves acceptable results in low and medium frequency, and provides a 

reference for related research and design. If the calibration for time skew is used for future work, 

better performance can be promised. 
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Based on the simulation results, the total power consumption of 60 mW at 1.2 V supply voltage
was composed as follows: 12 mW for the clock generation module and 48 mW for the SAR ADCs array
(that is, 6 mW/slice for every sub-ADC). The FoM calculated within the 500 MHz input frequency was
348 fJ/conversion-step. The performance summary is shown in Table 1.

Table 1. Performance summary.

Technology 55-nm 1P9M CMOS

Architecture 8-channel TI SAR

Sampling Rate 2.6 GS/s

Resolution 8-bit

Power 60 mW

Active Area 0.22 mm2

DNL +0.93/−0.85 LSB

INL +0.71/−0.91 LSB

SFDR
≥50.94 dB (up to115 MHz)
≥47.9 dB (up to 500 MHz)
≥40.3 dB (up to Nyquist)

SNDR
≥40.54 dB (up to115 MHz)
≥38.2 dB (up to 500 MHz)
≥31.8 dB (up to Nyquist)

FoM 1 348 fJ/conversion-step

Calibration Complexity On-chip offset calibration only
1 FoM = Power/(2ENOB × Sampling frequency).

5. Conclusions

A 2.6 GS/s 8-bit SAR ADC prototype with eight-channel direct sampling TI architecture has
been presented. The SNDR was above 38.2 dB up to 500 MHz input frequency and above 31.8
dB up to the Nyquist frequency. The DNL and INL were +0.93/−0.85 LSB and +0.71/−0.91 LSB,
respectively. The ADC consumed 60 mW, occupied an area of 400 µm × 550 µm, and realized a FoM
of 348 fJ/conversion-step. In general, this design is a beneficial attempt of time-skew, calibration-free
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technology, which achieves acceptable results in low and medium frequency, and provides a reference
for related research and design. If the calibration for time skew is used for future work, better
performance can be promised.
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