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Abstract: This study provides an effective cooperative carrying and navigation control method
for mobile robots in an unknown environment. The manager mode switches between two
behavioral control modes—wall-following mode (WFM) and toward-goal mode (TGM)—based on
the relationship between the mobile robot and the unknown environment. An interval type-2 fuzzy
neural controller (IT2FNC) based on a dynamic group differential evolution (DGDE) is proposed
to realize the carrying control and WFM control for mobile robots. The proposed DGDE uses a
hybrid method that involves a group concept and an improved differential evolution to overcome
the drawbacks of the traditional differential evolution algorithm. A reinforcement learning strategy
was adopted to develop an adaptive WFM control and achieve cooperative carrying control for
mobile robots. The experimental results demonstrated that the proposed DGDE is superior to other
algorithms at using WFM control. Moreover, the experimental results demonstrate that the proposed
method can complete the task of cooperative carrying, and can realize navigation control to enable
the robot to reach the target location.

Keywords: evolutionary mobile robot; fuzzy control; navigation control; cooperative carrying;
differential evolution

1. Introduction

Mobile robot control has been widely used in several applications, such as navigation, obstacle
avoidance, path planning, and cooperative transport. To enhance the robot control quality,
Cupertino [1] adopted a fuzzy controller. The fuzzy controller possesses robustness and an anti-noise
ability; the controller can identify and calculate signals with uncertainties. However, to design
an applicable fuzzy controller, designers must spend a considerable amount of time analyzing the
experimental input and output data of a mobile robot. Thus, machine-learning technology has
gradually attracted considerable research attention. Zhu and Yang [2] and Rusu et al. [3] used
supervised learning methods to adjust the parameters of the if–then rules in fuzzy neural networks by
training data. The disadvantages of supervised learning [2,3] are that it is difficult to collect training
data in advance and obtain precise training data.

Recently, reinforcement learning [4] has been widely used in control applications for mobile robots.
The method not only can automatically construct a complete fuzzy neural network in the absence of
precise training data but also adjust the parameters of the system through the machine leaning
algorithm to complete the navigation task. Therefore, designing a mobile robot using evolutionary
computing in unknown environments has become a topic of interest. Hsu and Juang [5] implemented
a wall-following control using reinforcement learning. A fitness function was used to evaluate a
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robot’s movement in an unknown environment, and an optimal fitness value was adopted as the
reinforcement signal. Anish and Parhi [6] used sensors to measure the distance between a robot and
an obstacle. In [6], measured distances were used as inputs, and steering angle and speed were used
as outputs for the adaptive network-based fuzzy inference system controller. Juang and Chang [7]
adopted four sonar sensors and used the data from these sensors as input signals. In this application,
the speeds of the left and right wheel are the outputs of the fuzzy neural network controller. The mobile
robot was trained in the training environment by adjusting the parameters of the fuzzy neural network
controller. Although the aforementioned methods can be used to successfully complete the navigation
task, their performances are not optimal. Because the robot is in a real environment, the input signal
contains uncertainties due to noise interferences from the sensors.

Although some researchers [8,9] have used the type-1 fuzzy set to solve uncertain problems,
the control performance in the real environment is not optimal. Therefore, Kim and Chwa [10] used an
interval type-2 fuzzy set for solving uncertain problems. The membership values of fuzzy sets provide
a footprint of uncertainty (FOU) to deal with uncertainties. Thus, the controller design is more flexible
and has improved error tolerance. Castillo and Melin [11] reduced the computational complexity of an
interval type-2 fuzzy system.

Recently, researchers have used evolutionary algorithms for solving the parameter optimization
problem, such as particle swarm optimization (PSO) [12], ant colony optimization (ACO) [13],
differential evolution (DE) [14], the artificial bee colony (ABC) algorithm [15], and bacterial foraging
optimization (BFO) [16]. In recent years, DE has been widely used in various fields [17,18] and has
the advantages of a simple structure, reduced parameter setting requirements, and superior problem
solving ability. However, the traditional DE method has a disadvantage, in that it can easily become
trapped in a local optimal solution. To eliminate this disadvantage, an improved DE is proposed for
solving mobile robot control problems.

The major contributions of this paper are described as follows. First, an efficient interval
type-2 fuzzy neural controller (IT2FNC) based on dynamic group differential evolution (DGDE) was
designed to implement the carrying control and wall-following mode (WFM) control for mobile robots.
In the proposed IT2FNC, a functional link neural network (FLNN) with a nonlinear combination input
was added in consequent part of a fuzzy rule. Second, the proposed DGDE used a hybrid method
that involves a group concept and an improved DE to overcome the drawbacks of easily trapped
into local optimal in the traditional DE algorithm. Second, a manager mode was developed to assist
mobile robots in navigation control. Third, the manager mode switched to WFM or toward-goal mode
(TGM), based on the relationship between the mobile robot and the unknown environment. Fourth,
the proposed control method can complete the task of cooperative carrying and can realize navigation
control to enable the robot to reach a target location. Moreover, the experimental results demonstrated
that the proposed DGDE learning algorithm is superior to other algorithms at using WFM control.

2. Mobile Robot Specifications

In this study, the e-puck mobile robot developed by the Ecole Polytechnique Fédérale de Lausanne,
was adopted, as displayed in Figure 1a. The mobile robot has been widely used in studies, such as in
embedded computing, signal processing, inter-robot communication, robot control, feature extraction
from images and sounds, swarm intelligence, and cooperative behavior in robotics.

The e-puck mobile robot is a two-wheeled mobile robot with an axle diameter of 4.12 cm and
a maximum speed of 15 cm/s. The infrared sensor has a sensing range of approximately 360◦ and
is symmetrical. The sensor performs tasks such as object detection, distance detection, and obstacle
avoidance. The sensors S0–S3 that are on the right side of the robot are mounted at 10◦, 45◦, 90◦, and
135◦, respectively. Each sensor can detect a distance between 1 and 6 cm, as shown in Figure 1b.
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Figure 1.  E-puck mobile robot architecture (a) E-puck mobile robot, (b) Infrared sensor position. 
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Figure 1. E-puck mobile robot architecture (a) E-puck mobile robot, (b) Infrared sensor position.

3. Proposed Type-2 Fuzzy Controller Based on an Evolutionary Algorithm

An IT2FNC was proposed to realize wall-following control. The associated DGDE learning
algorithm can be used to adjust the parameters of the IT2FNC.

3.1. Interval Type-2 Fuzzy Neural Controller

In this section, the structure of the IT2FNC is introduced. Figure 2 displays the structure of the
IT2FNC. X1, · · · , Xn represents the input of IT2FNC, whereas YLe f t and YRight represent the left and
right wheel speed of the robot, respectively. To reduce the computational complexity of the order
reduction during defuzzification, this study adopted the centers of sets (COS) [11,19] to conduct the
order reduction process. A functional link neural network (FLNN) with a nonlinear combination
input was added in consequent part of a fuzzy rule [20]. Figure 2 presents the five-layer structure of
an IT2FNC. The IT2FNC consists of an input layer, a membership function layer, a firing layer,
a consequent layer, and an output layer. The if–then rule can be expressed as follows:

Rule j : IF x1 is Ã1j and x2 is Ã2j . . . and xi is Ãij . . . and xn is Ãnj
THEN yj = ∑M

k=1 ωkj∅k,
= ω1j∅1 + ω2j∅2 + . . . + ωMj∅M,

(1)

where n is the number of inputs, xi represents the ith input, yj denotes the output of the jth fuzzy rule,
Ã1j, Ã2j, . . . , Ãnj represent the interval type-2 fuzzy sets, ωkj is the link weight, ∅k represents the basis
trigonometric function, and M is the number of basis functions.Electronics 2018, 7, x FOR PEER REVIEW  4 of 21 
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Figure 2. Structure of an interval type-2 fuzzy neural controller (IT2FNC).
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The five-layer structure of the IT2FNC is described as follows:
Layer 1 (input layer): This layer only imports the input data into the next layer:

u(1)
i = xi. (2)

Layer 2 (membership function layer): This layer performs the fuzzification. Each node in this
layer defines an interval type-2 fuzzy set, as displayed in Figure 3. The Gaussian primary membership
function has an uncertainty mean

[
mij1, mij2

]
and standard deviation σij and is expressed as follows:

u(2)
ij = exp

−
[
u(1)

i −mij

]2

σ2
ij

 ≡ N
(
mij , σij; u(1)

i ), mij ∈
[
mij1, mij2

]
. (3)

The membership degree of the Gaussian primary membership function u(2)
ij is called the

footprint of uncertainty (FOU) and is expressed as the upper bound u(2)
ij and the lower bound u(2)

ij .
The membership degree is expressed as follows:

u(2)
ij

(
u(1)

i

)
=


N
(

mij1, σij; u(1)
i

)
, i f u(1)

i < mij1

1, i f mij1 ≤ u(1)
i ≤ mij2,

N
(

mij2, σij; u(1)
i

)
, i f u(1)

i > mij2

(4)

and

u(2)
ij

(
u(1)

i

)
=

 N
(

mij2, σij; u(1)
i

)
, i f u(1)

i ≤ mij1+mij2
2

N
(

mij1, σij; u(1)
i

)
, i f u(1)

i >
mij1+mij2

2

. (5)

The output of each node is represented by the following interval:
[
u(2)

ij , u(2)
ij

]
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Layer 3 (firing layer): Each node is a rule node and uses an algebraic product operation to obtain
the firing strengths u(3)

j and u(3)
j of each rule node. The firing strength of each rule node is defined

as follows:
u(3)

j = ∏
i

u(2)
ij and u(3)

j = ∏
i

u(2)
ij , (6)

where ∏i u(2)
ij and ∏i u(2)

ij represent the firing strength of the interval’s upper bound and lower
bound, respectively.
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Layer 4 (consequent layer): Interval type-2 fuzzy sets are reduced to interval type-1 fuzzy sets
through a type-reduction operation. The traditional type-2 order reduction method is based on highly
complex calculation. Therefore, the centers of sets (COS) method [11] is adopted for implementing the
reduction process and is described as follows:

Y(x) = [yl , yr] =

∫
a1 · · ·

∫
aM

∫
f 1∈[ f 1, f

1
]
· · ·
∫

f M∈[ f M , f
M
]

1

∑M
i=1 f iai

∑M
i=1 f i

, (7)

u(4) = yl =
∑R

j=1 u(3)
j

(
∑M

k=1 ωkjφk

)
∑R

j=1 u(3)
j

, (8)

and

u(4) = yr =
∑R

j=1 u(3)
j

(
∑M

k=1 ωkjφk

)
∑R

j=1 u(3)
j

, (9)

where ∑M
k=1 ωkjφk represents a nonlinear combination of FLNN inputs, ωkj represents the link weight,

and ∅k represents the functional expansion of FLNN inputs. The functional expansion is based on
basis trigonometric functions and defined as follows:

[φ1, φ2, · · · , φM] = [x1, sin(πx1), cos(πx1), · · · , xn, sin(πxn), cos(πxn)], (10)

where M = 3× n is the number of basis functions and n is the number of inputs.
Layer 5 (output layer): The node output of layer 5 is defuzzified by computing the average of

u(4) and u(4). The crisp value y is obtained as follows:

y =
u(4) + u(4)

2
= u(5). (11)

3.2. Proposed DGDE

DE has the advantages of fast convergence and simple implementation. However, some problems,
such as low precision and becoming easily trapped into local optima, are encountered when
complex problems are solved. Therefore, an efficient DGDE algorithm is proposed to overcome
the shortcomings of traditional DE. The steps of DGDE are described as follows:

Step 1: Initialization and coding
By setting the parameter vectors of DE and randomly initializing the target vector Xi,G,

the mathematical model is expressed as follows:

Xi,G =
[

x1
i,G, x2

i,G, · · · , xD
i,G

]
(12)

where i = 1, 2, · · · , NP; NP is the number of population; Xi,G represents the ith parameter vector in
Gth generation, and D is the number of dimensions.

The proposed DGDE is used to adjust the parameters of the IT2FNC. All the parameters in the
IT2FNC are coded into one vector. Each vector represents an IT2FNC. The adjustable parameters
in each IT2FNC are the uncertainty mean mij, standard deviation σij, displacement value of the
uncertainty mean dij, and link weight ωkj. Where the dij = mij2 − mij1 > 0. The coding format is
presented in Figure 4.
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The computation of the fitness values for the individuals in the population will be discussed
later, see Equations (24)–(30). The highest fitness value of the vectors is set as the new group leader.
This implies that the group number is updated from zero to one, as shown in Figure 6. On the basis of
the average distance difference and the average fitness difference between these ungrouped vectors
(i.e., group number 0) and the group leader, the threshold value of similarity comprises the threshold
values of fitness and distance:

DISg = ∑NP
i=1 ∑D

j=1

√(
Lg

j − Xi
j

)2
, i f Xi is ungrouped, (13)

FITg = ∑NP
i=1

∣∣∣Fit(Lg)− Fit
(

Xi
)∣∣∣ , i f Xi is ungrouped, (14)

Average_Distance(ADISg) =
DISg

NI
, (15)

Average_Fitness (AFITg) =
FITg

NI
, (16)

where D represents the encoded dimension, NP denotes the number of parameter vectors, Lg
j is the jth

dimension of the gth group leader, NI is the total number of ungrouped vectors, and ADISg and AFITg

represent the distance threshold value and the fitness threshold value of the gth group, respectively.
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The difference of the distance values
(

Disi) and the difference of the fitness values Fiti between
the ungrouped vectors and the leader vectors are calculated as follows:

Disi = ∑D
j=1

√(
Lg

j − Xi
j

)2
, (17)

Fiti =
∣∣∣Fit(Lg)− Fit

(
Xi
)∣∣∣ (18)

If the Disi < ADISg and Fiti < AFITg conditions are satisfied for a vector, then the vector is
similar to the gth group leader. Therefore, these vectors are grouped together and the group number is
updated to g. Otherwise, the vectors are not grouped together. Figure 7 shows that the vectors X2,G
and Xi,G are similar to the 1st group leader.
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Next, if any ungrouped vectors exist, the ungrouped vector with the highest fitness value is set as
the group leader in a new group. Figure 8 presents the vector X3,G from the ungrouped vectors that
has the highest fitness value and is set as a new group leader (i.e., the 2nd group leader). The grouping
process is completed when no ungroup vectors exist.
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Step 3: Mutation
Two new mutation methods are proposed for improving the disadvantages of the traditional DE

algorithms. The modified formula is expressed as follows:
Mutation method 1:

Ui,G+1 = XrL,G + F(Xr1,G − Xr2,G) (19)

Mutation method 2:

Ui,G+1 = Xbest, G + F(XrL,G − Xr1,G) + F(Xr2,G − Xr3,G) (20)

where Ui,G+1 =
[
u1

i,G+1, u2
i,G+1, · · · , uD

i,G+1

]
, F is the mutation weight factor. Moreover, the weight

factor is set to 0.5 as a general rule, Xbest, G is the best fitness vector, and XrL,G is a random leader
selected from all the group leaders. Because the traditional DE method easily falls into local optima,
this study employed the random leader as the base vector to increase the search ability effectively, as
presented in Equation (19). In Equation (20), the best vector is set as the base vector, and three random
vectors and one random leader vector are used. The mutated vector in Equation (20) revolves around
the best vector and enhances the search ability in the solution space.
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Step 4: Recombination
The recombination operation crosses the mutation vector with the target vector and generates a

new vector Vi,G+1. The definition of Vi,G+1 is expressed as follows:

Vi,G+1 =
[
v1

i,G+1, v2
i,G+1, · · · , vD

i,G+1

]
(21)

vj
i, G+1 =

{
uj

i,G+1, i f randj(0, 1) ≤ CR

xj
i,G+1, otherwise

j = 1 . . . D (22)

where randj(0, 1) represents random values between zero and one in jth dimension, and CR is the
crossover rate. The higher CR value represents the higher similarity between the vector and the
mutation vector.

Step 5: Selection
The fitness values of vectors are evaluated for selecting the target vectors in the next generation.

If the fitness value of a vector is less favorable than the current target vector, the target vector will
remain in the next generation. The selection operation is described as follows:

Xi,G+1 =

{
Vi,G+1 , i f Fit(Vi,G+1) > Fit(Xi,G)

Xi,G, otherwise
(23)

The flowchart of DGDE is presented in Figure 9.
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Figure 9. Flowchart of the proposed dynamic group differential evolution (DGDE).

3.3. Wall-Following Control of Mobile Robots

Recently, some researchers have proposed the wall-following control of mobile robots for using
reinforcement learning. Jhang et al. [21] used an interval type-2 recurrent fuzzy cerebellar model
articulation controller (IT2RFCMAC). They adopted a Takagi–Sugeno–Kang (TSK) in the consequent
part in IT2RFCMAC. The TSK is a linear function and simple implementation. However, in complex
problems, nonlinear functions are better in terms of performance than linear functions. Therefore,
in this study a nonlinear functional link neural network of the proposed IT2FNC was used as the
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consequent part to improve control performance. The proposed IT2FNC that based on DGDE is
demonstrated. Wall-following control was utilized by the IT2FNC to control the mobile robot.
A reinforcement learning strategy was used to adjust the controller parameters of the proposed IT2FNC.
The block diagram for the wall-following control of the mobile robot is presented in Figure 10. The four
input signals of the proposed IT2FNC are the S0, S1, S2, and S3 distances, which are measured by the
infrared sensor. The outputs of the IT2FNC are the rotational speeds VL and VR of the two wheels.
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To allow mobile robots to be used in different environments, the training environment in this
study featured straight lines, corners, right-angled corners, and slope lines. Figure 11 presents the
1.7 × 1.6 m2 training environment.
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To avoid collision with obstacles and deviation from the wall during the wall-following control
learning process, three terminal conditions of wall-following control learning were specified:

1. If the total moving distance of the mobile robot was larger than the predefined maximal
distance of the training environment, the mobile robot successfully moved in a circular path in an
unknown environment.

2. The mobile robot collided with the wall when the measured distance from any infrared sensor
was less than 1 cm, as displayed in Figure 12a.

3. The mobile robot deviated from the wall when the measured distance S2 was greater than 6 cm,
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The proposed DGDE was used to train the parameters of the IT2FNC. Each vector in the DGDE
represents a solution of an IT2FNC. When any terminal condition during the wall-following control
learning process is satisfied, a fitness function was used to evaluate the performance of the mobile
robot. The proposed fitness function comprises three sub-fitness functions—SF1, SF2, and SF3. SF1,
SF2, and SF3 represent the total moving distance, the distance between the robot and the wall, and the
degree of parallelism between the robot and the wall, respectively. The three sub-fitness functions are
defined as follows:

(1) SF1: If the moving distance Rdis was greater than the predefined value Rstop, the robot successfully
moved around a circular path in the training environment and set Rdis = Rstop. The sub-fitness
function SF1 is defined as follows:

SF1 = Rstop − Rdis (24)

(2) SF2: The goal of the wall-following control was to maintain a fixed distance between the side of
the robot and the wall. Therefore, the sub-fitness function SF2 is defined as the average of WD(t),
where WD(t) represents the distance between the side of the robot and the wall at each time step,
and is defined as follows:

WD(t) = |S2(t)− dwall | (25)

SF2 =
∑

Tstop
t=1 WD(t)

Tstop
(26)

where dwall is the pre-defined fixed distance (i.e., dwall = 4 cm), as presented in Figure 13a. Tstop is
the total number of time steps in a learning process. If the robot remains at a fixed distance from
the wall, the SF2 value is equal to zero.

(3) SF3: This sub-fitness function was used for evaluating the degree of parallelism between the robot
and the wall. If the robot was parallel to the wall, the angle θ between the robot and wall was 90◦.
On the basis of the law of cosines, x(t) must have the same value as that of RS2, as presented in
Figure 13b.

RS1 = r + δ1 , RS2 = r + δ2 (27)

x(t) =
√

RS1
2 + RS2

2 − 2RS1RS2 cos(45 ◦) (28)

where r is the radius of the robot; δ1 and δ2 represent the distance between the sensor 1 and
the wall and that between sensor 2 and the wall, respectively, and SF3 represents the average
value of the degree of parallelism during movement. If the robot is parallel to the wall, SF3 is
equal to zero.

SF3 =
∑

Tstop
t=1 |RS2 − x(t)|

Tstop
(29)

Therefore, the proposed fitness function is defined as follows:

F(·) = 1
1 + (SF1 + SF2 + SF3)

(30)

Electronics 2018, 7, x FOR PEER REVIEW  11 of 21 

 

𝑆𝐹ଷ = ∑ |𝑅𝑆ଶ − 𝑥(𝑡)|ೞ்೟೚೛௧ୀଵ 𝑇௦௧௢௣   (29) 

Therefore, the proposed fitness function is defined as follows: 𝐹(∙) = 11 + (𝑆𝐹ଵ + 𝑆𝐹ଶ + 𝑆𝐹ଷ)  (30) 

 

 

 

 

(a) (b) 

Figure 13. Definition of (a) 𝑑௪௔௟௟ and (b) degree of parallelism 

Figure 14 shows the block diagram of learning process of wall-following control. Each solution 
represents an IT2FNC controller, which is evaluated by the fitness function. Additionally, it 
automatically adjust parameters of IT2FNC using evolutionary strategies. The best solution will be 
replaced when a better solution exits in each generation. 

Start

Initialization

Using DEDE 
to update 

each solution

wall-following 
control learning 

process

One of the 
terminal 

conditions is 
met?

End

Is the last 
Generation

Yes

NO

NO

Evaluate the 
fitness value

 

Figure 14. Block diagram of learning process of wall-following control. 

3.4. Experimental Results of the Wall-Following Control 

To verify the effectiveness of the proposed method, the performance of the WFM controller 
while using the proposed DGDE-1 (mutation method 1) and DGDE-2 (mutation method 2) were 

Figure 13. Definition of (a) dwall and (b) degree of parallelism.



Electronics 2019, 8, 298 11 of 21

Figure 14 shows the block diagram of learning process of wall-following control. Each solution
represents an IT2FNC controller, which is evaluated by the fitness function. Additionally,
it automatically adjust parameters of IT2FNC using evolutionary strategies. The best solution will be
replaced when a better solution exits in each generation.

Electronics 2018, 7, x FOR PEER REVIEW  11 of 21 

 

𝑆𝐹ଷ = ∑ |𝑅𝑆ଶ − 𝑥(𝑡)|ೞ்೟೚೛௧ୀଵ 𝑇௦௧௢௣   (29) 

Therefore, the proposed fitness function is defined as follows: 𝐹(∙) = 11 + (𝑆𝐹ଵ + 𝑆𝐹ଶ + 𝑆𝐹ଷ)  (30) 

 

 

 

 

(a) (b) 

Figure 13. Definition of (a) 𝑑௪௔௟௟ and (b) degree of parallelism 

Figure 14 shows the block diagram of learning process of wall-following control. Each solution 
represents an IT2FNC controller, which is evaluated by the fitness function. Additionally, it 
automatically adjust parameters of IT2FNC using evolutionary strategies. The best solution will be 
replaced when a better solution exits in each generation. 

Start

Initialization

Using DEDE 
to update 

each solution

wall-following 
control learning 

process

One of the 
terminal 

conditions is 
met?

End

Is the last 
Generation

Yes

NO

NO

Evaluate the 
fitness value

 

Figure 14. Block diagram of learning process of wall-following control. 

3.4. Experimental Results of the Wall-Following Control 

To verify the effectiveness of the proposed method, the performance of the WFM controller 
while using the proposed DGDE-1 (mutation method 1) and DGDE-2 (mutation method 2) were 

Figure 14. Block diagram of learning process of wall-following control.

3.4. Experimental Results of the Wall-Following Control

To verify the effectiveness of the proposed method, the performance of the WFM controller while
using the proposed DGDE-1 (mutation method 1) and DGDE-2 (mutation method 2) were compared
with the performance of the WFM control while using other methods. Each method was evaluated
10 times to verify the stability of each algorithm.

The initial parameters of the DGDE are the number of the population (NP), crossover rate,
generation, weighting factor of mutation, and number of fuzzy rules, as presented in Table 1.
Moreover, we considered different fuzzy rule numbers for performance evaluation. Table 2 presents
the performance evaluation results of different fuzzy rule numbers. The IT2FNC with six fuzzy rules
was more efficient than those with five and seven fuzzy rules.

Table 1. Initial parameters of DGDE.

NP CR F Generation Rule

30 0.9 0.5 3000 5,6,7
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Table 2. Performance evaluation of different fuzzy rule numbers. STD: standard deviation.

Fitness Value

Number of Rules DGDE-1 DGDE-2

5 6 7 5 6 7

Best 0.932 0.961 0.948 0.949 0.962 0.953

Worst 0.865 0.891 0.821 0.908 0.919 0.891

Average 0.903 0.933 0.911 0.923 0.942 0.913

STD 0.017 0.012 0.200 0.012 0.009 0.016

Number of
successful runs 10 10 10 10 10 10

Table 3 presents the performance evaluations of different algorithms. In this table, the performance
indexes include the best fitness function, the worst fitness function, the average fitness function,
the standard deviation (STD), the number of successful runs, and computation time for one training.
The number of successful runs is the number of times the robot moved successfully around a circular
path in the training environment. Figure 15 presents the learning curves of the WFM control when
various evolutionary algorithms are used. The proposed DGDE achieved superior fitness values and
successful runs than other methods. On the other hand, the proposed method also compares with the
IT2RFCMAC controller [21]. Table 4 shows that the proposed IT2FNC with nonlinear functional link
neural network performs better than IT2RFCMAC with linear TSK architecture [21].

Table 3. Performance comparison of various algorithms in the wall-following control behavior.

Algorithms

Evaluation Items Fitness Value Number of
Success Runs

Computation
Time (H:M:S)Best Worst Average STD

DGDE-1 0.961 0.891 0.933 0.012 10 5:01:39

DGDE-2 0.962 0.919 0.942 0.009 10 4:38:56

JADE [22] 0.950 0.860 0.911 0.029 10 10:11:03

Rank-DE [23] 0.958 0.867 0.922 0.025 10 18:21:05

DE [14] 0.941 0.262 0.786 0.184 8 1:03:38

PSO [12] 0.947 0.206 0.738 0.257 7 5:49:45

ABC [15] 0.932 0.354 0.735 0.149 8 2:57:23

Table 4. Performance comparison of different network architecture.

Algorithms

Evaluation Items IT2FNC IT2RFCMAC [23]

DGDE-1 DGDE-2 DGDE

Best 0.961 0.962 0.925

Worst 0.891 0.919 0.868

Average 0.933 0.942 0.906

To verify the WFM control performance of different learning algorithms, a training environment
and two unknown testing environments were created, as presented in Figures 16–18. The testing
environment in Figure 17 focuses on many difficult and large curves, whereas the other testing
environment in Figure 18 focuses on many right angle curves. The fitness value was used to evaluate
the WFM, and the detailed comparison results are presented in Table 5.
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Table 5. Fitness value of various algorithms in the testing environments.

Algorithms

Evaluation Items Fitness Value
Training

Environment
Testing

Environment 1
Testing

Environment 2

DGDE-1 0.961 0.901 0.864

DGDE-2 0.962 0.899 0.872

JADE [22] 0.950 0.895 0.862

Rank-DE [23] 0.958 0.874 0.789

DE [14] 0.941 fail fail

PSO [12] 0.947 0.828 0.721

ABC [15] 0.932 fail fail
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4. Cooperative Carrying and Navigation Control of Multi-Evolutionary Mobile Robots

In this section, the cooperative carrying and navigation control of multi-evolutionary mobile
robots is discussed. Figure 19 shows that the distance between two robots Rd was set to 15 cm and a
rectangular object was placed on the two robots. The front and rear robots represent the leader and
follower, respectively. In the experiments, the leader explored the front environment, and the follower
assisted the leader in lifting objects to achieve obstacle avoidance and prevent objects being dropped
during cooperative carrying.
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4.1. Wall-Following Control of the Cooperative Carrying Method

A dual controller is proposed for the cooperative carrying of two mobile robots. An auxiliary
controller was incorporated in the follower robot to learn the WFM of cooperative carrying. The block
diagram is presented in Figure 20. The auxiliary controller contained five input signals and two output
signals. The inputs are the sensed distances by the follower’s sensors (S0, S1, S2, and S3) and the
distances between two robots (Rd). The outputs are the rotational speeds VL and VR of the two wheels.
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To implement cooperative carrying in an unknown environment, the training environment
featured straight lines, smooth curves, U-shaped curves, and continuous curves to train the follower’s
auxiliary controller. Figure 21 displays the 1.5 × 1.4 m2 training environment.
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Figure 21. Training environment for cooperative carrying.

To avoid collision with obstacles and objects being dropped during the cooperative carrying
learning process, five terminal conditions were specified:

(1) If the measured distance from one of the sensors in the follower robot is less than 1 cm, the follower
robot collides with the obstacles.

(2) If the measured distance of the sensor S2 is higher than 6 cm, the follower robot deviates from
the wall.

(3) If the measured distance between the leader robot and follower robot Rd is less than 10 cm or
higher than 20 cm, the leader and follower robots are inferred to be very close or very far.

(4) If the measured distance of the sensor is less than the height Rh of the robot, the object is dropped
by robots.

(5) If the measured distance Swall of the sensor is less than 1 cm or greater than 7.5 cm, the object
approaches the wall or deviates from the wall.
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When one of the aforementioned conditions is satisfied, the cooperative carrying of the robots has
failed. If the robots engaging in cooperative carrying can successfully move around a circular path in
the training environment, the auxiliary controller completes the training process. The time step of the
robot moving in the training environment is defined as the fitness function F(·):

F(·) = Tstop (31)

4.2. Navigation Control of Cooperative Carrying

This paper also proposes an effective navigation control method for cooperative carrying in
unknown environments. The manager mode automatically selects between the TGM and WFM on the
basis of the relative position of the mobile robot and the target location.

(1) Toward-Goal Mode

In the navigation control of the unknown environment, the robot used infrared sensors to detect
the object. In order to turn towards the goal position, the mobile robot calculates the angle difference
θTG between the current direction of the robot and the target direction, as presented in Figure 22:

θTG = θRobot − θGoal (32)

where θRobot is the angle between the mobile robot and the x axis and θGoal is the angle between the
goal and the x axis in inertial coordinate system.
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To avoid objects being dropped during the cooperative carrying process, both the follower and
leader move in the same direction and at the same speed, as displayed in Figure 23.
Electronics 2018, 7, x FOR PEER REVIEW  17 of 21 

 

 
 
 
 
 

 

 

 

Figure 23. Follower and leader move in the same direction and at the same speed. 

(2) Manager Mode 

The robot is divided into three zones—𝑂ଵ, 𝑂ଶ, and 𝑂ଷ, as displayed in Figure 24. In the process 
of TGM, the manager mode switches to the left WFM or the right WFM on the basis of the zone of 
the robot 𝑂௜ and on the basis of which sensor 𝑆௜ (i = 0, 2, 3, …,7) detected an obstacle. 

 

 

 

 

 

Figure 24. Divided zones of the mobile robot. 

 Left wall-following control: 

(i) The goal direction is located at 𝑂ଵ, and 𝑆଻ or 𝑆଺ detects obstacles. 
(ii) The goal direction is located at 𝑂ଶ, and 𝑆଻, 𝑆଺, and 𝑆ହ detect obstacles. 

 Right wall-following control: 

(i) The goal direction is located at 𝑂ଵ, and 𝑆଴ or 𝑆ଵ detects obstacles. 
(ii) The goal direction is located at 𝑂ଷ, and 𝑆଴, 𝑆ଵ, and 𝑆ଶ detect obstacles. 

Before switching to the WFM, the manager mode determines which robot is closest to the 
obstacle. If the leader robot encounters an obstacle, it will execute a prerotation process. This aim of 
this process is to enable the two robots to approach the wall for a smooth navigational control, as 
displayed in Figure 25. 

 

 

 

 

 

Figure 25. Leader robot encounters an obstacle. 

Figure 23. Follower and leader move in the same direction and at the same speed.



Electronics 2019, 8, 298 17 of 21

(2) Manager Mode

The robot is divided into three zones—O1, O2, and O3, as displayed in Figure 24. In the process of
TGM, the manager mode switches to the left WFM or the right WFM on the basis of the zone of the
robot Oi and on the basis of which sensor Si (i = 0, 2, 3, . . . ,7) detected an obstacle.
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Figure 24. Divided zones of the mobile robot.

• Left wall-following control:

(i) The goal direction is located at O1, and S7 or S6 detects obstacles.
(ii) The goal direction is located at O2, and S7, S6, and S5 detect obstacles.

• Right wall-following control:

(i) The goal direction is located at O1, and S0 or S1 detects obstacles.
(ii) The goal direction is located at O3, and S0, S1, and S2 detect obstacles.

Before switching to the WFM, the manager mode determines which robot is closest to the obstacle.
If the leader robot encounters an obstacle, it will execute a prerotation process. This aim of this process
is to enable the two robots to approach the wall for a smooth navigational control, as displayed in
Figure 25.
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The leader robot turns in order to be positioned parallel to the wall and records the angle of
rotation θL. Then, this message is sent to the follower robot. The follower robot turns to π− θL

◦,
maintains a fixed distance from the leader robot, and moves toward the obstacle. The manager
mode of the two robots switch to WFM until the pre-rotation process of the follower robot is completed.
The pre-rotation process is presented in Figure 26.

If the follower robot encounters an obstacle, the manager mode switches to the WFM; this process
is displayed in Figure 27. If the target direction is located in O1 of the follower robot and the distance
between the sensor on right side S1 (the sensor of left side S6) and the wall is greater than 6 cm,
the object being held by the two robots is inferred to have passed the obstacle. Then, the manager
mode switches to the TGM, as displayed in Figure 28.
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4.3. Experimental Results of Cooperative Carrying Control

In this subsection, the proposed method is used to verify the success of cooperative carrying
control in unknown environments. Figure 29 demonstrates that the robots complete the wall-following
control of cooperative carrying in the training environment. Moreover, to verify the performance of
navigation control, two different test environments were created for testing whether the robots
successfully accomplished cooperative carrying and navigation control. The experimental results of
the two test environments are presented in Figure 30. In this experiment, the average distance (RD)
between the two robots and the average distance (FWD) between the follower robot and the wall were
evaluated. The results are presented in Table 6. If the RD is large, the two robots (i.e., the leader robot
and the follower robot) are not at a suitable distance during the cooperative transport control, and the
object drops easily. However, if the FWD is very large or very small, the robots pass the curves with
poor efficiency, and the object is easily moved and dropped.
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Table 6. Evaluation of the cooperative carrying performance.

Algorithms

Evaluation Items Training Environment Testing Environment 1 Testing Environment 2

RD (cm) FWD (cm) RD (cm) FWD (cm) RD (cm) FWD (cm)

DGDE-1 16.18 3.81 16.54 3.61 17.03 3.42

DGDE-2 15.43 3.96 15.76 3.89 17.16 4.23
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5. Conclusions

Aiming at the navigation control for cooperative carrying in an unknown environment, this study
proposed an IT2FNC based on a dynamic group differential evolution to realize the carrying control
and WFM control for mobile robots. At the same time, the developed DGDE learning algorithm
adopts dynamic grouping and local search methods, which enhance the search ability and convergence
stability of the traditional DE method, and is used to adjust IT2FNC parameters. On this basis, manager
mode is established to assist mobile robots in navigation control. The manager mode automatically
selects between the WFM or the TGM base on the relative position between the mobile robot and the
target location. In addition, the pre-rotation mechanism was employed to accomplish cooperative
carrying control. In the training process, the best fitness function, the worst fitness function, the average
fitness function, the standard deviation (STD), the number of successful runs, and the computation
time of the proposed DGDE were 0.962, 0.919, 0.942, 0.009, 10, and 4:38:56, respectively. Although DE
and ABC are shorter than the proposed method at the computation time, DE and ABC had only eight
successful runs during 10 runs. Experimental results revealed that the proposed method achieved
a superior WFM performance than other methods and successfully accomplished the navigation
control of cooperative carrying to target locations in unknown environments. Since the trained
controller using reinforcement learning needs to take a long time, future research work needs to
implement the proposed learning algorithm on chip to improve the learning speed.
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