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Abstract: Virtual machine placement (VMP) optimization is a crucial task in the field of cloud
computing. VMP optimization has a substantial impact on the energy efficiency of data centers, as it
reduces the number of active physical servers, thereby reducing the power consumption. In this
paper, a computational intelligence technique is applied to address the problem of VMP optimization.
The problem is formulated as a minimization problem in which the objective is to reduce the number
of active hosts and the power consumption. Based on the promising performance of the grey wolf
optimization (GWO) technique for combinatorial problems, GWO-VMP is proposed. We propose
transforming the VMP optimization problem into binary and discrete problems via two algorithms.
The proposed method effectively minimizes the number of active servers that are used to host the
virtual machines (VMs). We evaluated the proposed method on various VM sizes in the CloudSIM
environment of homogeneous and heterogeneous servers. The experimental results demonstrate the
efficiency of the proposed method in reducing energy consumption and the more efficient use of CPU
and memory resources.

Keywords: virtual machine placement; cloud computing; grey wolf optimization

1. Introduction

Cloud computing has transformed traditional IT into a promising paradigm in which the cloud is
used as a utility [1,2]. Service-on-demand is a common cloud computing service model, in which the
user can dynamically scale up or down the reserved resources and pay for the exact resource usage.
Cloud computing provides its services via three models: Software as a Service (SaaS) for applications,
Infrastructure as a Service (IaaS) for hardware resources, and Platform as a Service (PaaS) for runtime
environments [3].

In IaaS, cloud computing offers an unlimited amount of heterogeneous resources with high
elasticity of use via a virtualization technique [4]. A virtual machine (VM) is created to host an
application according to the customer requirements for resources such as CPU, memory, storage, and
bandwidth [5,6]. The virtualization technique enables multiple VMs to share the physical resources on
the same physical machine (PM). This technique facilitates the efficient exploitation of the physical
resources via VM consolidation, which places as many VMs as possible on the minimal number of
PMs [7].

The rapid growth of cloud computing service demands has increased the power consumption
of cloud data centers, where the power consumption and carbon dioxide emission are the largest
challenges and hamper the promotion of cloud computing [8]. Power savings and emissions reduction
can be effectively realized by minimizing the number of active hosts and shutting idle servers
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down [9,10]. Therefore, reducing the energy consumption of servers is vital to decreasing the total
power of a data center [11].

Virtual machine placement (VMP) optimization is a process of selecting the minimal number
of PMs that can supply the required resources for hosting a specified number of VMs with the
lowest possible power consumption. VMP optimization increases the energy efficiency and resource
utilization of cloud data centers by introducing a solution in which VMs are hosted in the minimal
number of active PMs. Moreover, VMP optimization can prolong the stability of the datacenter before
the reallocation of VMs becomes an urgent issue [12,13].

VMP optimization is an NP-hard combinatorial problem. The problem can be addressed with
diverse, conflicting objectives [14,15]. The VMP problem has been solved for several objectives, i.e.,
a linear programming problem (LP) is used to minimize the cost of hosting VMs in PMs [16] and
heuristic data to consolidate VMs on a minimal number of PMs [17].

Evolutionary computation algorithms have been used to reduce the power consumption and
increase the resource utilization, i.e., genetic algorithm (GA). In [18], an improved genetic algorithm
has been introduced for maximizing the multidimensional resource usage and minimizing the
communication traffic. In [19,20], the proposed method used multicapacity bin packing to find
the optimal assignment for the VMP problem. In [21], a method for optimizing a neural network that
forecasts the power consumption via GA was proposed.

Grey wolf optimization (GWO) is an evolutionary algorithm. GWO yields promising results
compared to the well-known heuristics, such as evolution strategy (ES), the gravitational search
algorithm (GSA), differential evolution (DE), evolutionary programming (EP), and particle swarm
optimization (PSO) [22]. Recently, the binary grey wolf optimization (BGWO) approach for feature
selection was proposed in [23].

In this paper, we develop a GWO-based method for addressing the VMP optimization problem
as a combinatorial problem. We formulate the VMP task as binary and discrete problems. Then, we
adapt the GWO method for each of these two problems. The performance of the proposed methods
is evaluated via a set of experiments on homogeneous and heterogeneous data center environments.
The major contributions of this paper are as follows:

1.  To the best of the authors” knowledge, this is the first time that GWO has been utilized to address
the problem of optimal VM placement; we refer to this method as GWO-VMP. The proposed
method reduces the energy consumption of cloud computing by allocating VMs into the minimal
number of active PMs.

2. The proposed work formulated the VMP optimization problem as discrete and binary GWO
problems. The binary approach is more efficient.

3.  We proposed a method for correcting infeasible solutions (RIS) to accelerate the convergence of
the proposed algorithms.

4. We performed an extensive experimental study to evaluate the effectiveness and efficiency of
the proposed algorithms. The proposed methods performed competitively compared to the
state-of-the-art methods.

2. Background and Related Work

2.1. VMP Problem Formulation

Virtualization is the key technology that powers cloud computing. The largest benefit of
virtualization is server consolidation, where resources of a single server can be split for multiple
VMs. Virtualization reduces the operating cost and increases the utilization efficiency of the cloud data
center. Application that are demanded by customers are hosted on VMs according to the customer
requirements (i.e., operating system and hardware specifications).

Then, the VMP strategy assigns the VMs to a sufficient number of physical servers according
to various objectives [24,25]. One of the most important objectives is power consumption reduction
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because of its impacts on the operating cost and environmental effects. In this paper, we introduce a
new VMP strategy for minimizing the number of active PMs and reducing the power consumption.

Consider a cloud data center that contains n PMs and m VMs. P represents a set of PMs, where P;
represents the i’ PM, i belongs to [1...n], and P; € P. Similarly, V represents a set of VMs, where Vi
represents the j VM, j belongs to [1...m], and VieVv.

In this study, we focus on CPU and memory resources. The required computational power and
memory of V; are represented as Vepu; and Vram;, respectively. Likewise, the capacities of P; for CPU
and memory are represented as Pcpu; and Pram;, respectively.

We suppose that each PM has sufficient capacity to host any single VM. Thus, a single VM can be
hosted on one and only one PM. The placement solution, which is denoted by S, is represented by a
zero-one adjacency matrix, where x;; = 1if VM is assigned to P; and x;; = 0 otherwise. Similar to the
constraints that were proposed in [26], the optimal VMP, which has the minimal number of active PMs
in a cloud data center, can be formulated as:

n
miny_y; @
i=1

which is subject to the following constraints:

v — 1, if V] is assigned to P;, Vi € PandVj € V @
70, otherwise
i = 1 ifyN xj>1VvieP 3)
0, otherwise
N
Y xj=1VjeV 4)
i=1
M
Z Vepuj.xj; < Pepuyy; Vi € P ®)
i=1
M
Z Vram;.x;j; < Pramj.y; Vi € P (6)

Il
—

According to Equation (3), P; is active if y; = 1 and P; is idle if y; = 0. Equation (4) ensures that V;
is submitted to only one of the PMs. Equations (5) and (6) specify the P; capacity constraints, which
the CPU and memory should not exceed.

The power that is consumed by an active PM without a load is approximately 50% to 70% of
the power consumption of a fully utilized PM [27]. The power consumption has a linear relationship
with the CPU load, as demonstrated in [28]. Consequently, shutting down inactive PMs is vital for
minimizing the total power consumption in the cloud data center. Therefore, we defined the power
consumption as a linear function of the CPU utilization as follows:

Pigre + (Pfull - Pz‘dle)
PC (Pcpu;) = x Pcpu;, if Pcpu; >0 @)
0, otherwise

where P, is the power that is consumed in an idle state, Py, is the power that is consumed in a fully
utilized CPU, and Pcpu; € [0,1]. In this paper, we have assumed that the power consumption in an
idle state of the PM is 60% of the energy that is consumed in a fully utilized state. An effective way
to reduce power consumption is to increase the resource utilization of active hosts and decrease the
number of active PMs. Therefore, full CPU utilization will lead to consuming the total power of active
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PMs regardless of other types of resource. Consequently, we have considered the CPU resource in a
power model as it is the most important resource reducing the power consumption [29-31].

2.2. Related Work

VMP optimization is an NP-hard problem because of the diverse, conflicting objectives [14].
The VMP problem has been solved for various objectives in different ways. The stochastic integer
problem, which is a linear programming problem (LP), is solved via a mathematical optimization
technique, which is used to minimize the cost of hosting VMs in PMs [16]. In [32], the resource demand,
which is estimated as a correlation-aware value and an aggregate of essential demands, is used to
assign VMs to PMs, where the probability of the server load exceeding its capacity is p.

In [17], the authors proposed minimizing the server cost by VM using integer LP model using a
heuristic data to consolidate VMs on a minimum number of PMs. In [33], the power consumption has
been decreased by non-bypass IP/wavelength division multiplexing core network model. They used
the DEER-CD model with comparable power efficiency to develop energy efficiency. The concept is to
place the small VMs in a proximity to their users.

The meta-heuristic approach is another method which effectively solves the VMP problem.
The main difference, compared to the heuristic algorithm, is that meta-heuristic algorithms are designed
for a general purpose problem and can efficiently avoid local optima [34]. In [26], X.F. Liu et al.
proposed an ACS-based approach, OEMACS, to assign m VMs to n PMs. The VMs were grouped
depending on historical experience of packing the VMs together before using artificial ants to search
for fittest place for hosting. The infeasible solution of the update was revised every search iteration
to reduce the convergence time. The solution space was reduced while the iteration number grows.
The solution is revised to turn infeasible solution to feasible one by ordering exchange process and
migrate VMs on overloaded PMs which reduces the convergence time. In [35], Kansal and Chana
proposed an energy-aware model based on artificial bee colony algorithm to schedule jobs to the
minimum resources in a cloud environment. This model minimized the energy consumption and
execution time of applications.

In [19], a GA-based method, namely, RGGA, for addressing the problem of VMP, is proposed.
The authors proposed using multicapacity bin packing to identify the optimal assignment for the
VMP problem. RGGA produces solutions via a crossover process in which the PMs of the previous
generation are sorted according to resource utilization and PMs that have heavy loads are selected to
host VMs. The unassigned VMs are arranged in decreasing order of CPU and RAM and submitted to
new PMs.

In [36], the authors proposed a novel method based on Simulated Annealing (SA) for addressing
the problem of VMP. The method includes a proposed searching technique for finding better SA
configurations. The acceptance criteria of the new configurations include two conditions. The new
configuration, to be accepted, must be feasible and have a lower energy consumption than the previous
state. In addition, a temperature scheduling technique is discussed for the purpose of avoiding
searching far from the optimal solution.

Cho et al. proposed a hybrid meta-heuristic algorithm based on a combination of ant colony
optimization and particle swarm optimization [37]. The algorithm schedules VMs to PMs according to
the load prediction for the new demand and rejects the unsatisfied demand to reduce the computing
time of the scheduling. Wen et al. proposed a meta-heuristic algorithm (ACO-VMM) for migrating VMs
to PMs that aims at finding a near-optimal solution [38]. The monitoring data of resource utilization
and traversal strategies are used by ants to identify the mapping between VMs and PMs that has the
minimal number of VM migrations. In [39], Feller et al. utilized ant colony optimization to minimize
the number of active PMs in a cloud data center by consolidating VMs in the minimal number of PMs
based on CPU utilization. However, this method considers only a single resource.

In [40], Tawfeek et al. addressed VM consolidation for the only one-dimensional resource which
gives a better result than FFD. As well, Suseela and Jeyakrishnan used a new hyper version of the
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ant colony and particle swarm to consolidate the VMs for minimum power consumption without the
direct aim of reducing the number of active PMs, which is reported to have good results [41].

In addition, several works that are based on meta-heuristic algorithms utilize particle swarm
optimization (PSO), which is applied for the VMP problem in [42]. The authors adapted the PSO
method to the VMP problem with the objective of realizing the low power consumption. In PSO
for VMP, the problem of submitting VMs to PMs is represented as a matrix, namely, [m; n], where n
is the number of VMs and m is the number of PMs. The particles and the velocities of the particles
in the initial solution are randomly distributed. The solutions are evaluated according to the VMP
constraints. The best local and global results are obtained based on the fitness function, which aims at
minimizing the power consumption. In the beginning, the position of each particle is set to its local
best position. Then, the best global result corresponds to the particle that has the minimum overall
power consumption. In each iteration, each particle updates its position according to its velocity.
If the corresponding bit in the velocity matrix is equal to one, the binary bit in the particle matrix is
revised. Then, the fitness function determines whether the particle updates its position to the new
value or saves the old position as the local best position. At the end of the iteration, the global best
solution is selected as the best solution for the VMP problem. Similarly, Braiki et al. proposed a
multiobjective PSO algorithm that seeks to maximize the packing efficiency while minimizing the
energy consumption [43].

2.3. Grey Wolf Optimization

Grey wolves live in packs and have a hierarchical governing system that imposes very strict rules.
According to [22], the wolves in a pack are categorized into four levels. The first level contains the
alphas, who are males or females who make decisions and lead the pack. The wolves in the remaining
levels of the wolf pack should obey the alphas’ instructions. The second level contains the betas, who
are at a lower level than the alphas and work as consultants and help make decisions. The betas are
the best candidates to be alphas. The third level contains deltas, who work as elders, hunters, sentinels,
scouts, and caretakers. They submit information to alphas and betas and dominate the omegas. Elders
are experienced wolves who are candidates to be alphas or betas.

Hunters are responsible for helping alphas and betas hunt prey and provision food for the pack.
Sentinels are responsible for guarding and guaranteeing the security of the pack. Scouts are responsible
for monitoring the boundaries and alerting the pack of any danger. Finally, caretakers care for the
weak, ill, and injured wolves in the pack. The fourth level contains the omegas, who must submit to
all the dominant levels in the pack and serve as scapegoats. They are allowed to eat only after all the
other wolves have finished eating.

The hunting of the grey wolves is guided by alpha («), beta (8), and delta () wolves. Consequently,
the best solutions are produced by alpha («) wolves, followed by beta (8) and delta (§) wolves.
The remaining solutions correspond to omega (w) wolves. The hunting in GWO consists of two stages:
encircling and attacking. The update procedure is mathematically formulated as follows:

X(t+1)= X,(t) +A.D, (8)

where D is defined in Equation (9), t is the number of iterations, A is the coefficient vector, Xp is the
position of the prey, and X is the position of the grey wolf.

—

D =I|C.%,(t)—X(t), )

where C is coefficient vector. The A, C vectors are calculated as following:

—

A=2a71—a (10)

(@Y

=2/, (11)
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where 4 is linearly decreased over the course of the iteration from 2 to 0 and r; and r; are randomly
generated in [0, 1]. The alphas normally guide the grey wolves” hunting; however, the betas and deltas
might also occasionally participate in hunting.

2.4. Binary Grey Wolf

Binary grey wolf optimization (BGWO) has been proposed in a recent study [23]. Unlike
continuous grey wolf optimization (CGWO), where the wolves update their positions to any point in
the space, BGWO solutions are limited to binary {0, 1} values. At any time, each solution is represented
in binary form and located on the corner of a hypercube. According to the BGWO algorithm, the
wolves follow the same approach to updating their positions while restricting the solutions to binary
values. In GWO, all wolves estimate the positions of prey and the positions of the best wolves relative
to the prey guide the other wolves to update their positions randomly around those of the best wolves
toward the prey.

3. GWO for Virtual Machine Placement

3.1. Adjusting GWO for VMP

The energy consumption of a cloud data center can be reduced effectively by minimizing the
number of active PMs. Therefore, we adjust the GWO algorithm to fit the VMP problem to obtain a
solution that maps the VMs to a minimal number of active PMs. We choose the best feasible solution S,
which has a minimal number of active PMs. However, since the optimal mapping of VMs to PMs is
unknown at the initial state, we start with the best solution that has been generated, which is denoted
as Sp, in the initial state. The m VMs are randomly distributed on n PMs, where each VM is submitted
to a single PM. Consequently, there are m" possible distributions of m over n.

The wolves continuously update their positions to search for prey (an optimal solution). During
the search process, to encircle the prey, the wolves are guided by the best solutions, which are denoted
as &, B, and J, and update their positions according to the «, 8, and 6 wolves’ positions. Therefore,
the VMP solution can be constructed as shown in Figure 1.

Figure 1 presents an example of four feasible solutions, each in a different color, for hosting five
VMs, where n = 4 PMs and m = 5 VMs. The solution that is shown as a black line represents the
initial solution for four PMs. The solution that is shown as a yellow line represents another enhanced
solution for submitting five VMs to three PMs. The solution that is shown as a red line produces
the same number of active PMs as the solution that is shown as a yellow line, but in a different way.
The optimum solution, which is represented a blue line, uses only two PMs to host the five VMs.

3.2. Solution Construction

After the randomly distributed solution step has been completed for all wolves in the pack,
GWO-VMP generates new solutions by updating the existing solutions for every wolf to search for an
optimum distribution of VMs on PMs. In each iteration ¢, the wolves update their locations according
to the best three solutions that have been obtained so far. The best solutions are the solutions that
utilize the minimal number of active PMs. The best solutions («, 8, and ¢) maintain their locations
without any update to guide other wolves to the optimum solution.

Figure 1 shows four wolves’ solutions for assigning five VMs to the minimal number of the
existing five PMs, where n = 4 and m = 5. The four wolves’ solutions can be represented by the
following set: S = {S,, S B Ss,Sw}. These solutions are sorted in ascending order of the number of
active PMs. The first-, second-, and third-best solutions are denoted as S,, S B and S;, respectively. Each
of these solutions represents a single solution. In Figure 1, these solutions are (x31, X12, X33, X14, X15),
(x21, X12, X13, X34, X25), and (x11, X22, X13, X14, X35), respectively. The remaining solution(s) are denoted
as Su, (X11,X22, X33, X44, X35). S represents all solutions except the first three best solutions. Thus,
it represents a set of solutions. Consequently, the number of wolves that are involved in hunting
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should exceed three. If two wolves introduce the same number of active PMs, in a heterogeneous
environment, the algorithm sorts them according to the power consumption value, where the lower
the power consumption is, the better the solution. At the last iteration, solution « is reported as the
best solution, which represents the best placement of the VMs on the PMs that was obtained via GWO.

To reduce the number of active PMs, each PM must host as many VMs as possible, which increases
the resource utilization of each PM. Consequently, updating the location of the set of VMs to the same
PM is necessary for minimizing the number of active PMs. In each iteration, the VM location is updated
to any available PM: i (1 < i < n). The available PM, namely, P;, is defined as

Yt xij-Vepuj + Vepuy < Pepu; and

P = (12)
2;71:1 xjj.Vram; + Vram; < Pram;
where Vcpu; and Vram; are the sums of the CPU and memory capacities of the already submitted
VMs on P;, respectively. Vcpu; and Vram; are the CPU and memory capacities of the unscheduled
VM. Pcpu; and Pram; are the capacities of the PM. This equation represents the constraints on the
capacities, which facilitate the selection of a suitable PM from the set of PMs. The methods that are
used to update the discrete and binary locations of VMs on PMs will be discussed in detail in the
following sections (E, F).

VM 1 VM 2 VM3 VM 4 VM5
PM1
PM 2
PM 3
P4

Figure 1. Example of feasible solutions.
3.3. Revising the Infeasible Solutions (RIS)

After all wolves have updated their positions, not all solutions are feasible according to the
constraints in Equations (2)—(6). Each infeasible solution must be transformed into a feasible solution
before &, B, and J are chosen. We propose an approach, namely, RIS, for correcting the updated positions
according to the constraints of Equations (2)—(6). RIS consists of three procedures: (1) eliminating the
duplicate assignments, (2) obviating the overload assignments, and (3) reassigning the unallocated
VMs. These procedures correct VMs’ positions and obviate the overloaded PMs. If all solutions become
feasible solutions, the &, , and é can be chosen.

3.3.1. Eliminating the Duplicate Assignments

This operation is used to determine whether a solution has a single VM assigned to more than
one PM and to change the solution so that each VM is hosted by a single PM according to Equation (4).
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There are several approaches to eliminating the problem of a VM being hosted by more than one PM.
One possible approach is to fix a random number i and set x;; = 1 and the values of the other entries to
zero. Another approach is to keep the first PM that is hosting the VM and set the VM as not assigned
to the other PMs.

3.3.2. Obviating the Overload Assignments

This operation is used to determine whether the load of a PM satisfies the constraints in
Equations (5) and (6). For each overloaded PM i, we decrease the load by moving some of the
VMs that are assigned to PM i to another PM. Several approaches are available for selecting which VM
to remove from the overloaded PM.

To maximize the resource utilization and minimize the number of active PMs, we can select the
VM that has the lowest resource requirements among the VMs that are hosted by the overloaded
PM. This would obviate the overload and maximize the resource utilization. After the VM has been
selected, it is reassigned to another PM. Another way of selecting the VM is by sorting the VMs that
are hosted by the overloaded PM and selecting the worst-balanced resource utilization according to
the absolute difference between the CPU and RAM requirements of these VMs.

In addition, we can select the first VM that violates the constraints in Equations (5) and (6) during
the evaluation process. This approach would decrease the computational burden and obviate the
overload. However, the resource utilization might not be balanced or maximized because the size of
the eliminated VM is not considered. After selecting a VM to reassign to avoid an overload, if PM i
is still overloaded, then another VM is selected for reassignment. Once a VM j that is hosted by an
overloaded PM i is selected for reassignment, the variable x;; is set to zero.

3.3.3. Reassigning the Unallocated VMs

This operation is used to reassign a VM that was not allocated during updating, duplication
removal, or overload obviation. An infeasible solution might contain an unallocated VM, which should
be reassigned. After the wolves’ positions have been updated, the VM constraint in Equation (4) is
evaluated. If the sum of the value x;; = 0 that corresponds to VM j was not assigned to any PM during
updating, duplication removal, or overload obviation, we must reassign the VM to a nonoverloaded
PM that has sufficient residual resources to meet the resource requirements of this VM.

There are many approaches to implementing this procedure. The unhosted VM can be reassigned
to a random PM under the constraints of Equations (5) and (6), or we can assign the unhosted VM
to a PM that has sufficient resources via the first fit (FF) greedy algorithm. To maximize the resource
utilization and accelerate the convergence of the solution, we prefer to reassign the missing VM via the
best fit (BF) greedy algorithm. The best PM is the PM that has a minimum sufficient residual capacity
that satisfies the resource requirements of this VM.

To maximize the resource utilization and balance the use of resources (CPU and memory),
we can reassign the VM to the PM that will have the minimum estimated absolute difference
between CPU and memory resource utilizations after the VM has been added to the PM, where
the absolute difference between CPU and memory utilizations would be calculated after adding the
VM requirements to the utilized PM resources. Then, the minimum absolute difference between the
resources would be selected.
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3.4. Objective Function

After the wolves have updated their positions and RIS has transformed the infeasible solutions to
feasible solutions, the proposed method evaluates the fitness of the solutions to determine the «, 3,
and ¢ solutions. k wolves represent k solutions; only three wolves are selected as «, 8, and ¢ and keep
their positions, or solutions, without any update in the next iteration to serve as references to other
wolves through the updating process. To select the best three solutions, there are two objectives, which
are expressed as follows:

Y1 yi, Vi € P, y; satisfies
the constraints  in Equations (5) and (6)

f(S) = (13)

n+1, otherwise

n
f2(S) = ZPC(Pcpui) X Yj. (14)
i=1
where 7 is the number of PMs that are available in the data center to host m VMs and y; indicates
whether P; is used in this solution S or not.

Equation (13) calculates the number of active PMs that are used in the feasible solution. If an
infeasible solution remains after the RIS process, we distinguish it by assigning the value n + 1.
Consequently, the infeasible solutions would be at the end of the results of this function once they have
been sorted in ascending order. The first three values would be considered as «, 8, and 6. The other
solutions would be considered as w; thus, they must update their solutions in the next iteration.

The infeasible solutions must also update their solutions. RIS cannot transform an infeasible
solution to a feasible solution because it utilizes only active PMs that are available in this solution at
the current iteration. If two solutions have the same number of active PMs, we compare their f, values,
which are calculated via Equation (14), and select the one that has the smaller value. Therefore, the
three solutions with the fewest active PMs and the lowest power consumption are selected as the best
solutions to be &, B, and J. A flowchart of general GWO-VMP is shown in Figure 2 and discussed in
the following section.

3.5. BGWO-VMP Algorithm

In the BGWO-VMP, the solution in which the VMs are submitted to the minimal number of active
PMs is presented as a matrix of binary values. In BGWO for the VMP problem, every wolf in the pack
represents a solution in which m VMs are mapped to n PMs as a matrix [n; m]|, where m is the number
of VMs and 7 is the number of PMs. Therefore, a wolf’s position is represented as follows:

1 .12 1
X, x5 X"
21,22 1m

(15)

where W is the matrix position of wolf k in the pack. The corresponding bit x;(] equals one if V; € Vis
assigned to P; € P; otherwise, the bit value equals zero.

The solution matrix of [n; m| for every wolf is updated according to the solution matrices of «, 3,
and J. The algorithm starts updating the solution matrix for each column, where each column contains
the submitted value of V; to P; under the constraints in Equation (4). Every column in the solution
matrix is updated according to every column in the &, §, and ¢ solutions. The allocation of V; is updated
bit by bit in each iteration.
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| Start |

A\ 4

Initialize (k) solutions of VMP, where each VM is assigned
to one PM. set the total number of iterations. Set (a) value
as Eq.(19). Set f;(S)=n, t=1;

v

Choose the best three solutions from (k) solutions of
mapping VMs to PMs
as a, B, and 6.

R=Titer; t=1

Sas Sﬁ, and Sg

| Revise the infeasible solution of VMP |
(RIS

A
Sort solutions according to Eq.24;
then Eq. 25

Y
Choose best three solutions of
VMP as a, B, and 6

Return the best solution of VMP
as Sg

\ 4
l Finish I

Figure 2. Flowchart of GWO-VMP.

Alpha () represents the best solution, beta () represents the second-best solution, and delta
(6) represents the third-best solution, where it is assumed that they have substantial amounts of
information about the possible location of prey. Consequently, the first three best solutions that have
been obtained so far are considered as («), (8), and (J) among all search agents, including all grey wolf
levels («, B, §, and w). Therefore, all other wolves update their positions according to the best search
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agents («, B, and ). Based on [23], the BGWO algorithm only forces the updated grey wolf position
vector to be a binary vector and the main updating formula is calculated as follows:
. 1 , . id x;j-&-x;j-&-xéj > d
digg41) =141 if sigmoid(=—4—=) > random (16)
0 otherwise

where x7(t + 1) is the updated binary position at iteration le]’ xlz] ,x;] are calculated according to

Equations (18)—~(20); random is a random number € [0, 1]; and function sigmoid(a) is formulated as follows:

sigmoid(a) = m 17)
xij: |xg—ﬁl.5a\, (18)
x;j = |x115] —A. 55|, (19)
x;j: ‘x;j—g:;.[_jg‘, (20)

where x,ij, xg, xfsj are the corresponding bits of the best three solutions that are obtained in the pack in
every iteration ¢; Al, A'z, Ag are calculated via Equation (10); and 13,1, D Bs 15(5 are calculated as follows

via Equations (21)—(23), respectively.

Dy = |Gy . % — &, 1)
l_jﬁ: |62XIZ - xij|, (22)
13(5 = ‘63 . xgj - xij|, (23)

where (_fl, C_fz, 63 are calculated via Equation (11) and xl represents the current corresponding bit that
must be updated. The parameter a, which controls the balance between exploration and exploitation,
is updated in every iteration. It is linearly decreased from 2 to 0 and is calculated as follows:

2

=2—t——
? NumOfIter

(24)

The main strategy of GWO is that the wolves update their positions toward the prey according to
the positions of the best wolves. The update location is near the positions of the best wolves and closer
to the prey. In addition, to minimize the number of active PMs and reduce the power consumption for
the cloud data center, we must improve the solution on current active PMs and try to decrease their
quantity. Consequently, updating the bits of every VM on all PMs is costly and enlarges the search
space; hence, the wolves’ locations move toward the prey and sometimes in the opposite direction in a
binary search space.

Based on this general description of the GWO algorithm, we proposed that the corresponding
value x;; of submitted V; to P; be updated if the corresponding bit of «, f, or 6 equals one. Hence,
the search space is exclusive to the active PMs and the effort that is required of RIS to correct
infeasible solutions is reduced. Based on the GWO algorithm and the new adjustment of its operations,
BGWO-VMP is described in Algorithm 1.

3.6. DGWO-VMP Algorithm

In the discrete GWO-VMP algorithm, the solution of VMP is represented as a one-dimensional
matrix of size [1 x m|. Each entry represents a VM and its value is the index of the hosting PM. Thus,
the entries of this matrix are integers that are in the range [1, 1], where 1 is the number of PMs. For
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instance, matrix component x; = i denotes that VM j is hosted by PM i. Consequently, Equation (15) is
reformulated as follows:
Wi =[x, <2, .., "] (25)

where W is the matrix position of wolf k in the pack. The corresponding variable, namely, xi!, equals
the discrete value i, Vi € [1,n]. If V; € V is assigned to P; € P, the corresponding value equals a
number in [1, n].

Every wolf updates its solution according to &, 8, and ¢ via Equation (26).

ij ij ij
X + x5 + x5

Xt +1) = 3 , (26)

where le] , xlzj , x;] are calculated as in Equations (18)—(20).

Applying DGWO-VMP on the example that is illustrated in Figure 1 yields the following: the &
solution is represented as S = {3,1,3,1,1}, which indicates that V; is submitted to Ps, V3 is submitted
to P; and so on. According to the a solution, only two PMs are active for hosting the five VMs,
with consolidation P; = {V;, V3} and P; = {V,, V4, V5}. Similarly, according to the B solution, only
three PMs are active for hosting the five VMs, with consolidation P, = {V;, V5}, P; = {V,, V3}, P3 =
{V4}. According to the ¢ solution, three PMs are active for hosting the five VMs, with consolidation
Py = {V1,V3,V4}, P, = {V}, P3 = {V5}. Finally, according to the w solution, four PMs are active for
hosting the five VMs, with consolidation Py = {V;}, P, = {V2}, P3 = {V3,V5}, Py = {V4}. The w
solution path must be updated according to «, 8, and J based on Equation (26), where the locations of
the VMs are updated one by one. However, some of the update locations of the VMs may be outside
the boundary [1, n]. In such cases, the algorithm recalculates the allocation of VMs to guarantee that
the PMs are inside the boundary as follows:

xXi(t+1) (modn), ifxi(t+1)¢ [1,n]

iy 27
x7(t+1), otherwise @7

X(t+1) :{

Based on the GWO algorithm and the new adjustment of its operations, DGWO-VMP is described
in Algorithm 1.

Algorithm 1: GWO-VMP.

Input: the number of VMs, the number of PMs

Output: VM allocation map «

Step 1: Initialization. Set parameter a via Equation (24). Set the number of wolves as k, which
are considered as the search agents. Set the total number of iterations Titer and the iteration
number it = 1.

Step 2: Let the k wolves construct the k solutions. Then, select the &, 8, and ¢ solutions.

Step 3: Update all solutions based on the solutions of &, 8, and ¢ and calculate the updated
values according to Equation (16) or Equation (27) for the binary and discrete
algorithms, respectively.

Step 4: Perform RIS if there is an infeasible solution.

Step 5: Evaluate the fitness values of the k solutions and identify the best three solutions so far,
which are set as &, 8, and ¢ for the current iteration.

Step 6: Termination detection. If the current iteration number exceeds the maximum number
of iterations or the number of active PMs equals the preset optimal number of active PMs,
then the algorithm terminates. Otherwise, increase it by 1 and return to step (3) for the

next iteration.
Step 7: Return a solution « as the best solution.
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4. Experiment and Comparisons

Experimental tests are conducted in this section to evaluate the performances of BGWO-VMP and
DGWO-VMP. The proposed algorithms have been implemented in Java. We have used CloudSIM [44],
which supports many features of laaS, such as provisioning on-demand resources and power-aware
solutions. We have used the 3.1 version toolkit of CloudSIM to create the PMs and VMs and to initially
submit VMs to PMs. The experiments were performed on a computer with a 2.4 GHz Intel Xeon CPU
E5-2680 v4 and 32 GB of RAM. The OS that was utilized is 64-bit Linux.

We evaluate the performances of the algorithms under homogeneous and heterogeneous
cloud data center environments. The two algorithms, namely, BGWO-VMP and DGWO-VMP, are
compared to other algorithms, namely, FFD [45], OEMACS [26], RGGA [19], ACO [39], MACO [40],
HACOPSO [41], and PSO [42], in terms of efficiency. FFD is classified as a deterministic algorithm and
yields a result that is equal to or less than 11/9* OPT+1. Therefore, FFD can represent both heuristic
and deterministic solutions to the NP-hard problems. A comparison of SA and GA for solving VMP
is proposed in [46]. The authors show that the GA-based method slightly outperforms the SA-based
method. Thus, we compared our approach against a GA-based algorithm, RGGA [19], not an SA-based
algorithm, [36]. In addition, GWO is a population-based algorithm as well as GA, where SA is a single
solution based algorithm.

The related parameters for BGWO-VMP and DGWO-VMP are a = 2, which is linearly decreased
over the course of the iterations, and r1 and r2, which are random vectors in [0, 1]. Few parameters
must be set for BGWO-VMP and DGWO-VMP; this is one of their main advantages. The parameters of
the other algorithms have been set according to their original literature. We suppose that the resource
utilization can reach 100%. For BGWO-VMP, the proposed implementation uses 100 iterations with
an early stop of five iterations. For DGWO-VMP, the proposed implementation uses 100 iterations;
there is no early stop condition, as the results of this algorithms may be not improved by many
successive iterations.

4.1. Bottleneck of a Resource Homogeneous Environment

To evaluate the efficiency of BGWO-VMP and DGWO-VMP, we adopt the dataset that was
proposed in [26]. The dataset of the VMs and PMs in the cloud data center has a bottleneck resource.
This test is more interesting and difficult than the typical test, in which the ratio of the total requirements
of CPU and memory is 10:9. Eight instances have been created, which have sizes that range from 100
to 2000 and are numbered from Al to A8. Each PM has a 16-core CPU and 32 GB RAM. Each VM has a
CPU requirement of 1-4 cores and a memory requirement of 1-8 GB, which are randomly generated
from discrete uniform distributions.

The probability of 4-core VM is 0.25, and that of 7 or 8 GB VM is 0.125. In this case, the CPU is the
bottleneck resource and the ratio of the CPU and RAM requirements is approximately 10:9. The optimal
solution in a random generation is unknown. Consequently, a lower bound on the optimum solution
can be estimated as the maximum ratio of the sum of the VM requirements to the sum of the PM
capacities, which depends on the dataset that is generated by the discrete uniform distributions.

Table 1 lists the results of the algorithms. BGWO-VMP, DGWO-VMP, and OEMACS yield the
best solutions. However, BGWO-VMP and DGWO-VMP yield the best result for most of the instances.
Specifically, BGWO-VMP and DGWO-VMP yield the best results for problems of larger size, which is
observed for instances A6, A7, and A8. Hence, BGWO-VMP and DGWO-VMP outperform the other
compared methods.
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Table 1. Experimental results for the bottleneck resource test in a homogeneous environment (the best

results are in bold).

Noo. M BGWO DGWO OEMACS RGGA ACO MACO HACOPSO PSO FFD
Al 100 16 16 16 16 16 16 16.93 17 18
A2 200 32 32 33 33 33 33 34 34 37
A3 300 48 48 46 46.03 46.63 47 47 50 53
A4 400 63 63 64 64.3 64.33 65.9 65.1 66 74
A5 500 78 78 77 77.63 78.93 81.93 80.5 85 91
A6 600 94 94 95 95.77 96.73 99.16 99.2 101 111
A7 1000 158 158 159 16123 161.86  168.86 174.66 164 184
A8 2000 316 316 317 319.64 32273  339.33 345.66 357 366

Figure 3 shows the number of active PMs that are used to host the largest two sets of VMs:
A7 and A8. BGWO-VMP and DGWO-VMP yield the best results.

Figure 4 shows the mean utilizations of CPU and RAM for active PMs on instance AS.
The bottleneck resource is the CPU, of which the utilization is approximately 100% by BGWO-VMP
and DGWO-VMP, compared to 90% utilization of RAM. Hence, the generated VMs are balanced on
PMs. Thus, both resources are utilized to maximum capacity. OEMACS have the same utilizations of
CPU and RAM, where the CPU and RAM are almost fully utilized. BGWO-VMP and DGWO-VMP
yield an efficient distribution compared to other algorithms.
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Figure 3. Numbers of active physical machines (PMs) for homogeneous instances of large-sized
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4.2. Large-Scale Heterogeneous Environmentt

In a real cloud computing data center, all PMs are often heterogeneous. In contrast to the first
test, in which the PMs were homogeneous, this test considers heterogeneous PMs and CPU-intensive
and RAM-intensive VMs. Two types of PMs, namely, type fo, which has a 16-core CPU, 32 GB RAM,,
and Py.x = 215 W, and type t;, which has a 32-core CPU, 128 GB RAM, and Py;sx = 300 W, are used.
We generate 9m /10 PMs of type ty (m VMs) and m /10 PMs of type t;. The rationale behind this is to
force the placement strategy to use both types because the number of PMs of type t; is not sufficient
for hosting all VMs. Problem instances of five sizes, which are numbered from B1 to B5, are generated
by discrete uniform distributions over [1, 8] for CPU and [1, 32] for memory. The bottleneck resource
in this datacenter is the memory.

In Table 2, the poorest result among all heuristic algorithms is obtained by FFD for all instances
except B8, where the worst result is obtained by the MACO algorithm.

The MACO algorithm obtains the second worse result after the FFD for all instances; hence,
this algorithm is not suitable for the heterogeneous environment. Moreover, when the size of the
problem increases, the result of MACO decreases in quality. DGWO-VMP produces a satisfactory
result; however, this result is worse than those of RGGA, OEMACS, and BGWO-VMP.

The BGWO-VMP algorithm yields the best result for hosting the VMs on PMs comparing to
OEMACS and RGGA. BGWO-VMP yields the best result on (B2, B3, B5), where only 43, 64, and
105 PMs are used to host 200, 300, and 500 VM, respectively. According to the average number of
active PMs for thirty independent runs on each instance, the BGWP-VM algorithm typically yields
the best results. The design of the BGWO-VMP algorithm and its update stage provide a satisfactory
diversity of solutions, where the VM visits most of the possible PMs, which facilitates the hosting of
the VMs on the minimal number of PMs with minimal waste of resources.

Table 2. Number of active physiacl machines (PMs) for the bottleneck resource test in the heterogeneous
environment (the best results are in bold).

Noo. M BGWO DGWO OEMACS RGGA ACO MACO HACOPSO PSO FFD

Bl 100 19 20.2 19 19.33 23.13 28.267 24.56 21 32
B2 200 43.2 44 45 45.26 55.26 68.26 57.76 57.2 75
B3 300 64 66 68 68 79.13 106.86 79.36 794 102
B4 400 85.5 89 81 82.36 103.06  137.16 114.4 105 131
B5 500 105.7 110.3 107 10796  127.06  178.36 133.66 130 167

Figure 5 shows the number of active PMs for the largest two instances, namely, B4 and B5, in a
heterogeneous environment. The best results for B4 were obtained by OEMACS, where only 81 active
PMs are used to host 400 VMs. For B5, the best results were obtained by BGWO-VMP, followed by
OEMACS, where only 105 and 107 PMs are used to host 500 VMs.

Figure 6 shows the average utilizations of all active PMs and of type 1 and type 2 PMs. The FFD
algorithm has the lowest resource utilization, where FFD assigns VMs without maximizing the resource
utilization or balancing the resource utilization for active PMs. According to the gap between the
CPU and RAM utilizations, the distribution of FFD is poor. PSO assigns the VMs in the same way
and produce substantial residual capacity for both types of PMs. The ACO, MACO, and HACOPSO
algorithms yield better improvements than the FFD and PSO algorithms. However, the gap between
the CPU and RAM utilizations can be used to decrease the number of active PMs with a satisfactory
distribution for VMs.

BGWO-VMP, OEMACS, and RGGA produce satisfactory distributions by exploiting the resources
to a high level. However, for the BGWO-VMP algorithm, the CPU and RAM utilizations of type
1 PMs are the highest with a very good balance between them compared to OEMACS and RGGA.
In addition, the CPU and RAM utilizations of type 2 PMs are lower compared to OEMACS and RGGA;
hence, the BGWO-VMP algorithm prefers to host VMs on type 1 PMs to the maximum extent and use
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the type 2 PMs to host the remaining VMs. The gap between the CPU and RAM utilizations of type
2 PMs for the BGWO-VMP algorithm is due to the RAM being the bottleneck resource that limits the
consolidation and the balance level. In other words, BGWO-VMP obtains the highest consolidation
and a better balance of VMs, which reduces the number of active PMs.

For DGWO-VMP, the CPU utilization of type 1 PMs is higher compared to the OEMACS algorithm,
while the CPU utilization of type 2 PMs is lower compared to OEMACS. DGWO-VMP obtains
a good balance between the CPU and RAM utilizations but leaves more residual capacity than
OEMACS. This results in an increase in the number of active PMs for the DGWO-VMP algorithm
compared to OEMACS.
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@DGWO-VMP

& OEMACS

MRGGA

=ACO

MACO

Number of active PMs

HACOPSO

oPSO

FFD

500

Number of VMs

Figure 5. Number of active PMs for heterogeneous instances of large-sized problems B4 and B5.

ElAverage CPU for allPMs &) Average RAM for all PMs 2 Average CPU for typel PMs

[ Average RAM for typel PMs & Average CPU for type2 PMs [ Average RAM for type2 PMs

Figure 6. Average utilizations of CPU and RAM of active PMs of type 1 and type 2 on B5.

4.3. Power Consumption

Figure 7 shows the power consumption in the homogeneous environment. BGWO-VMP and
DGWO-VMP obtained the lowest power consumptions comparing to the other algorithms. Compared
with FFD on A8, BGWO-VMP and DGWO-VMP reduced the power consumption effectively by
approximately 10.75 kW. Compared with OEMACS on A8, BGWO-VMPand DGWO-VMP reduced the
power consumption by approximately 0.215 kW. Improving resource utilization by BGWO-VMP and
DGWO-VMP to the maximum extent, as shown in Figure 4, by consolidating the VMs and shutting
down the idle PMs reduced the power consumption efficiently.
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Figure 7. Power consumptions of various algorithms in the homogeneous environment.

Figure 8 depicts the energy consumption on the heterogeneous environment. BGWO-VMP has
the lowest power consumption among the algorithms. Compared with FFD on B5, BGWO-VMP and
DGWO-VMP reduced the power consumption effectively by approximately 8.43 kW and 6.38 kW,
respectively. Compared with OEMACS on B5, BGWO-VMP reduced the power consumption by
approximately 239.7 W, while OEMACS consumed less than DGWO-VMP by approximately 1.8 kW.
In the heterogeneous bottleneck resource environment test, DGWO-VMP succeeded in reducing the
power consumption by improving the resource utilization, as shown in Figure 6; however, it does not
yield the same satisfactory result as BGWO-VMP, which produces an average power consumption that
exceeds those of BGWO-VMP and OEMACS. However, the power consumption by DGWO-VMP is
still less than that of MACO, HACOPSO, PSO, and FFD.
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Figure 8. Power consumptions of various algorithms in the heterogeneous environment.
4.4. Further Analysis of BGWO-VMP and DGWO-VMP

In this section, we study the influences of the number of wolves involved in hunting the prey and
the number of iterations on the quality of the solution. We begin our investigation with the number of
wolves. We vary the number of wolves from 5 to 30 with a step size of 5. The number of iterations
is set to 60. We chose Al and A8 from the homogeneous environment tests and B1 and B5 from the
heterogeneous environment tests. The average number of active PMs for each number of wolves is
shown in Figure 9 for both BGWO-VMP and DGWO-VMP.

Figure 9a,b shows the number of active PMs for the BGWO-VMP and DGWO-VMP algorithms,
which remain constant with the increase in the number of wolves for Al. Both algorithms yield the
best results with the minimal number of wolves. For A8, DGWO yields the best result faster than
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BGWO-VMP with 5 wolves, and the result is slightly improved when we increase the number of
wolves. BGWO-VMP starts with a large number of active PMs with 5 wolves, improves its result to a
minimum number of active PMs with 20 wolves, and becomes stable. The discrete improvement is
faster than the binary, but the binary is more robust.

Figure 9¢,d shows the numbers of active PMs for the BGWO-VMP and DGWO-VMP algorithms
in the heterogeneous environment. For B1, both algorithms start with nearly the same result with
5 wolves and DGWO-VMP converges faster than BGWO-VMP. However, the results of both algorithms
continuously improve as the number of wolves increases. For B5, BGWO-VMP obtains its best result
with 5 wolves, which is superior to that of DGWO-VMP. DGWO-VMP improves its result faster than
BGWO-VMP, which gradually improves its result as the number of wolves increases. With 20 wolves,
the result of BGWO-VMP utilizes 105 PMs and that of DGWO-VMP utilizes 110 PMs.

We conclude that the results of both of the algorithms improve as the number of wolves increases;
however, BGWO-VMP is more stable than DGWO-VMP. Moreover, the results are quickly improved
from 5 to 20 wolves and change slightly from 20 to 30 wolves.
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Figure 9. Influence of the number of wolves in BGWO-VMP and DGWO-VMP for both homogeneous
and heterogeneous environments. (a) Homogeneous BGWO-VMP; (b) Homogeneous DGWO-VMP;
(c) Heterogeneous BGWO-VMP; (d) Heterogeneous DGWO-VMP.

The results of the investigation about changing in the number of iterations on the number of
active PMs is shown in Figure 10. We consider A8 from the homogeneous environment and B5
from the heterogeneous environment as examples for this study. We vary the number of iterations
from 10 to 100 with a step length of 10. For A8, BGWO-VMP starts with many active PMs with
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10 iterations, in contrast to DGWO-VMP, which starts with few active PMs and the same number of
iterations. For BGWO-VMP, the best result is obtained after 60 iterations and becomes stable, as shown
in Figure 10a. For DGWO-VMP, the best result is obtained after 50 iterations and becomes stable,
as shown in Figure 10b. Hence, when the number of iterations increases, the number of active PMs
decreases for both algorithms. However, BGWO-VMP requires more iterations than DGWO-VMP,
which makes DGWO-VMP faster than BGWO-VMP in terms of its design and the number of iterations.

For B5, BGWO-VMP begins with fewer active PMs than DGWO-VMP with 10 iterations. Then,
the number of active PMs gradually decreases as the number of iterations increases until the best result
of BGWO-VMP is obtained after 70 iterations, as shown in Figure 10a. For DGWO-VMP, the number of
active PMs decreases as the number of iterations increases and its best result is obtained after 50 iterations,
as shown in Figure 10b. However, BGWO-VMP requires more iterations than DGWO-VMP in both the
homogeneous and heterogeneous environments and obtains fewer active PMs.
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Figure 10. Influence of the number of iterations on BGWO-VMP (a) and DGWO-VMP (b) for both
homogeneous and heterogeneous environments.

From the results of this study, we conclude that BGWO-VMP outperforms DGWO-VMP
in solving the VMP optimization problem. BGWO-VMP represents the VMP problem solution
as a two-dimensional array, while DGWO-VMP utilizes a one-dimensional array for the same
purpose. Thus, the former obtains its solution over a wider search space in comparison to the latter.
However, the convergence time of BGWO-VMP is increased. DGWO-VMP is faster than BGWO-VMP.
The running time of BGWO-VMP is approximately an order of magnitude longer compared to the
OEMACS method on average; BGWO-VMP is approximately twice as slow as OEMACS on average.
OEMACS reported results that are based on five ants and use approximately five iterations, while
B/D-GWO-VMP reported results that are based on 20 wolves and use 100 iterations. This exemplifies
the time difference between the proposed method and the most efficient state-of-the-art method.
For instance, the running times for B3 are 1.1, 0.7, and 0.45 s for BGWO-VMP, DGWO-VMP, and
OEMACS, respectively.

5. Conclusions

In this paper, the VMP optimization task is formulated as a combinatorial problem. In this context,
we propose utilizing GWO to address this problem. The problem is addressed via binary and discrete
approaches. Binary approaches yield better overall performance in terms of reducing the number of
active physical servers due to a superior ability to represent the problem. However, these advantages
come at the cost of the running time; discrete approaches are faster than binary approaches by an order
of magnitude. This is because the discrete approach has a quicker convergence in comparison, and the
process of RIS, to correct the infeasible solutions, is rarely used to only correct the overload situation.
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In comparison to the discrete approach, the binary approach executes the process of RIS more, and it
converges slower.

The proposed method is examined via a set of experiments with various VM sizes on heterogeneous
and homogeneous physical server environments. The experimental results demonstrate that the proposed
method realizes a larger reduction in the number of active physical servers in comparison to the
state-of-the-art methods. For future work, we will extend the proposed model to include the objectives of
the dynamic VMP class. These objectives include minimizing the consumed bandwidth of VM migration,
minimizing the migrated VM shutdown times, and minimizing SLA violation of the migrated VMs, in
addition to the considered objective, which is to minimize the power consumption.
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