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Abstract: This paper analyzes the properties of a class of congestion-free multistage switching
networks (MSSNs) are butterfly-based and suitable for embedded programmable devices,
which require sustaining static multicast connectivity. These MSSNs are fully synthesizable and
enable the design of programmable IPs with typical size in the order of 1 KLUT, coupling flexibility
with fast turn-around time. The non-blocking property for static connection of this class of MSSN is
discussed. Our analysis shows pros and cons of adopting radix-2 or radix-4 MSSN structures, as well
as the impact of bypass-paths to make the network fully hierarchical and locality-aware thanks
also to a dedicated programming strategy. Implementation experiments carried out on STM CMOS
65 nm technology show the availability of various area-speed trade-offs, resulting in a range of '2×
in frequency and a range of '4× in area. Depending on the specific application-field, an optimal
interconnect definition is thus achieved without compromising the routability properties. In this
respect, the paper proposes a simplified application-driven model for evaluation of the best MSSN,
including bypass-adoption and radix selection.

Keywords: reconfigurable logic; embedded field programmable gate array (FPGA); multistage
switching network (MSSN)

1. Introduction

Nowadays, embedded programmable logic devices (ePLDs) can be applied in system-on-a-chip
(SoC) designs to increase flexibility, widen their market, and curb soaring nonrecurring engineering
(NRE) costs [1–6]. Embedded Field Programmable Gate Arrays (eFPGAs) are a class of ePLD that
can provide computational advantages in terms of Giga Operations Per Second/mm2 (GOPS/mm2)
over processors and Digital Signal Processors (DSPs) [7], although several well-known drawbacks,
mainly in terms of area, have historically restricted their use on the market of SoCs. In fact, the tight
relationship between costs and silicon-area has historically driven the SoC market, especially for
mid- to high-volume applications. For that reason, eFPGA cores must provide added value to the
system but only take up a small percentage of the overall device area. To be effective we can estimate
the target computational complexity around 1–10 KGates. For that, the typical size of such device
can be evaluated in the order of '1 KLUT, eventually enhanced by hardwired DSP accelerators,
hence the target application is not high-density computation but simple Finite State Machines (FSMs).
An application domain of such a class of small-size eFPGA is the Smart-Power world that is demanding
“intelligence” to improve efficiency [8]. Power applications, e.g., motion- and lighting-control,
are mostly based on a control-driven paradigm which leverages simple controllers—e.g., finite-state
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machines (FSMs)—with few inlets/outlets and states. To be easily embedded in a more complex
system, the eFPGA is designed to be fully synthesizable—hence following a soft-core approach.
This enables the possibility to optimize the eFPGA template by using standard implementation flow,
based on standard cells, thus proving portability to different technology nodes. This feature allows the
implementation of the device on CMOS technologies, as well on BCD (Bipolar, CMOS, and DMOS)
technologies tailored for Smart- Power applications. The eFPGA soft-core approach provides easier
floorplan in system-on-chip where high-power devices and analog circuits take up the majority of
the area since it allows the digital section to fully adapt among other parts, contrary to the eFPGA
hard-macros approach. It is important to observe that the different size of such a device with respect to
state-of-the-art commercial FPGA, which is nowadays easily reaching the million-gate target, and is
justified and required by the strongly different economic model, as shown in [3]. In fact, wide bit-level
programmability, such as that one provided by FPGAs, is justified only in case of many low-volume
applications (NRE-dominated cost model).

Recent works [4,6,8,9] have shown that for eFPGA a soft-core approach can guarantee
integration advantages (e.g., floorplan, technology flavors, and portability) and improved flexibility
(e.g., customization of array size and availability of DSP enhancements). In [4] we introduced a
template for soft-core eFPGA, analyzing the challenges and added values given by a fully synthesizable
approach. Foundation of programmable routing is a multistage switching network (MSSN), a solution
that enables synthesizable and flexible design, one of the key points of our approach. Since the area
of MSSN typically growth with O (N × log N), this solution is effective only for small-size eFPGA
cores. Indeed, increasing the amount of resources to be connected, the area-penalty associated to
congestion-free MSSNs become unsustainable and stages/paths depopulation must be arranged [10].

This article complements [4] and is an extension of [5] where preliminary results of the analysis of
MSSN as interconnect structure for small programmable IPs are discussed. Indeed, although eFPGA
internal communication through the MSSN requires just static connection, a detailed analysis of the
MSSN characteristics and trade-offs on eFPGA domain is missing in [4] and is the focus of the present
paper. We will show both MSSN compatibility with soft-core design methodologies and its intrinsic
congestion-free properties, which are analyzed for different architectural flavors.

The paper is organized as follows. Section 2 introduces the MSSNs in the eFPGA scenario
also reviewing related works, while Section 3 details rules to design multicast MSSN to achieve
static congestion-free connectivity. Section 4 analyses the rearrangeably non-blocking (RNB) features
of the MSSN we proposed in [4], extending the analysis to other structures with the same RNB
properties. Section 5 discusses the programming tool developed to configure those MSSNs.
Sections 6 and 7 quantitatively analyze congestion-free MSSNs in terms of area/speed tradeoffs
for different architectural options, including radix-2 or radix-4 MSSN, as well as bypass paths. Section 8
summarizes the conclusions.

2. Related Work

Embedded FPGAs, like the larger stand-alone FPGAs, are arrays of computational logic blocks
(LB) connected using programmable routing [11]. Overall efficiency of an eFPGA is deeply affected
by routing, since it greatly impacts area and performances and is responsible for the efficiency of
the connections [10,12]. With the growth in complexity of the target applications, research work
has been spent in overcoming the penalties related to bit-level programmability and in alleviating
routing congestion issues. Leveraging on Rent’s rules, hierarchical interconnects were thus proposed
to diminish complexity issues, enabling reduction of the area overhead of programmable routing
through local crossbars capable to connect clusters of LB [13–15].

Multistage switching networks (MSSN) are a kind of hierarchical interconnection network built
using many small crossbars, typically called switch elements (SE) (Figure 1).
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Figure 1. An N × N (with N = 16) Banyan multistage switching network (MSSN) featuring butterfly
topology.

Depending on its topology and/or its ability to perform connection between input and output
ports, a MSSN can be:

• Non-blocking, if it can connect each I/O pair regardless of the existing connections on the network.
• Blocking, if it cannot connect all the requests.

Among the non-blocking networks, a network is strictly non-blocking (SNB) if any connection can
be set up incrementally without the need to rearrange (i.e., reroute) any of the connections already
in place, while it is rearrangeably non-blocking (RNB) if one or more existing connections may have
to be rearranged to permit a new connection. All the previous definitions can be used for unicast
(one-to-one), multicast (one-to-many), or broadcast (one-to-all) traffic.

MSSNs for eFPGAs must support multicast connectivity but, since circuits have static
connectivity, the utilization of RNB networks is equivalent to SNB, allowing congestion-avoidance
with fewer resources. In the eFPGA scenario, the application of MSSNs can provide some
straightforward advantages:

1. The modularity of the network potentially adapts to a soft-core approach. Each SE can be
either implemented by standard-cells or optimized at circuit level as a single coarse-grained cell,
without affecting synthesizability.

2. MSSN routability properties improve the flexibility of eFPGA design, allowing architectural
variations (e.g., size and I/Os number) without the need of specific skills in congestion analysis
and prevention.

3. The routability analysis is simplified, since the blocking properties of an MSSN are well-defined
and predictable in terms of topology, as discussed in Section 4.

Some examples of application of hierarchical interconnects in eFPGA are found in the literature.
M2000 (Abound Logic) proposed an MSSN with local crossbars based on a Clos network [16],
while Leopard Logic proposed a butterfly-based hierarchical network [17]. In [10,18] an MSSN
based on butterfly topology is discussed with depopulation of the upper stages of the network and an
isomorphic transformation to solve the radix-boundary problem [19], a limiting factor of MSSN in the
field of FPGAs. Nevertheless, area saving is balanced by the fact that this network is no more proven
to be RNB, although authors indicates the availability of enough bandwidth based on Rent’s rule.
Another example of multi-level interconnect dimentioning based on Rent’s rule applied to logarithmic
paths is provided by [20], which overcomes boundary-radix issue by adding shortcuts and staggering.
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In [4] we proposed an eFPGA template core with MSSN-based interconnect: all the performance
analysis and results refer to the overall eFPGA core, composed of both logic blocks and interconnect.
For the proposed eFPGA the utilization of a MSSN to realize the interconnect structure represented a
key enabler, but not the unique aspect; a detailed analysis and exploration of a class of MSSN suitable to
realize the interconnect structure of synthesizable small size programmable IPs was missing in [4] and
is the goal of this paper, which extends and formalizes preliminary results discussed in the M. Cuppini
PhD Thesis [5]. The RNB feature of the class of MSSN we propose is discussed in Section 4, whereas a
dedicated configuration strategy allows to achieve a straight-as-possible policy in order to minimize the
boundary-radix problem, as discussed in Section 5. Different architectural options, including values of
radix and level of bypass exploitation are analyzed and compared showing area-frequency trade-offs
in Sections 6 and 7 [14,15].

3. Multicast Multistage Switching Networks

The field of RNB multicast networks is quite wide [21], but for eFPGA application we consider
architectures capable to guarantee a small area overhead for a number N × N of I/Os that can reach
some thousands of points with reduced timing penalties. For that, among all the MSSNs applied in
telecommunication fields [21–24], the starting point for PLD domain are the Banyan networks [25],
and their topological equivalent versions [25,26] (e.g., Omega, Shuffle, Butterfly), since they are a class of
low-latency multistage networks.

N × N Banyan networks, as shown in Figure 1 for N = 16, are built using 2× 2 switch elements
organized in O (log2 N) stages [27], and for this reason they are also called log2 N-networks [28].
Thanks to low-latency and recursive architecture, since an N-input network can be recursively
decomposed into two N/2 sub-networks, and so on (as shown in Figure 1), Banyan networks are very
attractive MSSNs [25]. The main drawback is that Banyan networks are blocking, also for unicast
traffic. To obtain RNB features, Banyan networks need additional resources to the baseline structure:
the resulting networks are called Multi-log2 N networks [28]. One such approach typically used in
the literature to get an RNB network is the Horizontal Cascading (HC) of two baseline log2 N-networks
(Figure 2a): Benes networks [29,30] are an example of this technique, since they are built by cascading
two baseline networks back-to-back. However, the HC approach implies complex routing algorithms
(due to a large amount of reconfiguration activity) [28].

Figure 2. Example of construction of Multi-log2 N networks: with horizontal cascading (a) and vertical
stacking (b) technique.
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As an alternative, the vertical stacking (VS) technique was introduced [27]. According to this
scheme (Figure 2b), in a Vertically-Stacked MSSN (VS-MSSN) various different copies (called planes)
of a baseline log2 N network are created and connected to I/Os through an input (output) stage of
demultiplexers (multiplexers). As regards multicast, in [31] the condition on the number of planes p
necessary to obtain RNB features in VS-MSSNs is expressed as:

p ≥ 2b
n
2 c (1)

where n is the number of stages of the N × N baseline log2 N network, such that:

n = log2 N. (2)

In [32] a class of non-blocking networks built with a combination of HC and VS was proposed.
Thanks to this approach, obtained by adding x extra stages to each baseline plane, the condition for
RNB unicast is proven:

p ≥ 2b
n−x

2 c. (3)

This solution can lead to a reduction of the total hardware complexity, since adding x (lower than
n) horizontal stages allows one to save one (or more) whole planes. Reference [32] proves Equation (3)
for one-to-one connection, while [33] generalized the properties defined by [28] for vertical stacking
also for multicast connection. We have intensely tested the proposed MSSN in multicast applications,
without finding any unresolved conditions. From a qualitative point of view, the equivalence between
horizontal and vertical decomposition finds it foundation in the fact that they are different strategies
to provide the same paths multiplicity in connecting a generic input-output pair under the condition
defined by (3). Simultaneously, the combination of HC and VS open the way for exploring various
trade-off between hardware complexity and latency.

4. MSSN for Embedded Programmable Devices

4.1. MSSN Based on 2× 2 Switches

The MSSN architecture we propose in [4] features a Benes-like topology with butterfly connectivity,
and is shown in Figure 3a. Based on 2 × 2 switches, an N × N I/Os MSSN features ns stages,
with Ns = N switch blocks per stage, so that:

ns = 2 log2 N + 1 (4)

Among these, one input stage (INstage) composed of Ns(1× 2) switches and one output stage
(OUTstage) formed of Ns(2 × 1) switches are used as demultiplexing/multiplexing stages for the
vertical stacking technique (see Section 3), while the remaining (2 log2 N− 1) middle stages (MIDstages),
each composed of Ns(2× 2) switch elements, are used to form the MSSN planes. Equation (4) becomes:

ns = 1INstage + 1OUTstage + (2 log2 N − 1)MIDstage (5)

This MSSN architecture (shown in Figure 3a) is topologically equivalent [34], i.e., with the same
graph, to that in Figure 3b. Such a network has p = 2 planes p1 and p2), each made of an N × N
Banyan network, and x = log2 N − 1 extra stages. Since, according to Equation (2), the stages number
of a N × N baseline log2 N network is n = log2 N, condition (3) becomes:

2 ≥ 2b
log2 N−(log2 N−1)

2 c = 2b
1
2 c = 1 (6)

and is satisfied for any value of N with p = 2.
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Figure 3. An N × N (with N = 8) flat version of the proposed MSSN: original architecture (a) and
rearrangeably non-blocking (RNB)-proof unicast topologically equivalent version (b).

It must be specified that a lower number of extra stages x should suffice to satisfy condition (3),
since with p = 2 and n = log2 N, only x = log2 N − 2 extra stages are strictly required; such an
area-penalizing choice, a complexity increase proportional to N, was made with a view to obtaining
a symmetry feature that opens the way to architectural enhancement of the MSSN described in the
following paragraph.

4.2. MSSN with Bypass Enhancement

Adding extra stages to obtain RNB features makes latency a critical point of the network. For that
reason, and to overcome the fact that butterfly topologies cannot exploit traffic locality, an alternative
hierarchy-aware folded version of the MSSN was devised. Leveraging on its symmetry properties,
the flat (Figure 3a) MSSN can hence be folded at the central stage, creating a bypassed architecture [4] in
which, thanks to the addition of a set of dedicated U-turn connections to the basic switches, an intrinsic
hierarchical structure can be exploited. As shown in Figure 4, the application of U-turn connections to
each stage of a folded MSSN allows groups (HS) of U-switches at stage S to be created, which define
butterfly-based sub-networks: this potentially allows the upper levels of the hierarchy to be bypassed,
thus exploiting local connectivity without any impact on congestion. As an example, in Figure 4 the
sub-network obtained grouping the H2 upper switches allows any connections between I/O from 0 to
3 to be performed bypassing the upper level H3 of switches.
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Figure 4. Folded bypassed MSSN enhanced with U-turn bypasses.

The bypassed version of the MSSN inherits the RNB properties from the flat topology. In fact,
as shown in the unfolded view of Figure 5, U-turn bypasses allows non-adjacent stages to be bridged
thanks to the addition of dedicated logic, extra pins, and independent configuration bits to each basic
SE. We obtain more routing paths and available connections, allowing each bypassed sub-network to
keep the same RNB characteristics as flat architecture. With reference to Figure 4, each switch at stage
S, for S from 1 to log2 N − 1, is composed by source and target U-switches, while the switch in the
central stage (S = log2 N) is a simple basic switch.

Figure 5. Flat MSSN with bypass enhancement: unfolded view and U-switch structure description [5].

Regardingto the area penalties, these are balanced by performance improvements. Benefits will
accrue when the area increase becomes an investment by computational density growth. This aspect
will be analyzed in Section 7.

4.3. Radix-k MSSN

The previous analyses is extended to networks with k × k switch elements in the MID stages.
Parameter k is the radix of the network. MSSN described in Figure 3 is hence a radix-2 flat MSSN
(with N = 8), while Figure 6 shows a radix-4 flat network, with N = 16. With reference to Figure 2b,
this network is equivalent to a MSSN with two planes, each made of a N × N Banyan network with
x = logk N − 1 extra stages, in addition to input/output switches.

Focusing on butterfly-based N × N MSSNs, and generalizing condition (2) for a generic radix-k,
the number of stages becomes:

n = logk N. (7)
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Figure 6. An example of radix-4 16× 16 flat MSSN.

Adding x extra stages as before, namely x = n− 1 = logk N − 1, the total number of network
stages ns for horizontal cascading strategy is:

ns = 1INstg + 1OUTstg + n + x = 1INstg + 1OUTstg + (2 logk N − 1)MIDstg (8)

which takes the form of (5) when k = 2.
Hwang and Lin [35] generalized the condition (3) for a generic radix-k for unicast connectivity,

demonstrating that the number of vertical planes p necessary in order that the networks have the RNB
feature is:

p ≥ kb
n−x

2 c. (9)

From the previous definitions of number of stages n and extra stages x, condition (9) evolves into:

p ≥ kb
logk N−(logk N−1)

2 c = kb
1
2 c = 1. (10)

Therefore, taking p = 2, (10) becomes always satisfied for any value of both number N of I/Os and
radix-k. IN, OUT, and MID stages are all composed of Ns SEs, with NS = N

k · p. Since p = 2, NS = N in
a radix-2 MSSN, while NS = N/2 in a radix-4 MSSN. Regarding the multicast connectivity, we have
carried out numerous routing tests without finding any critical situation for the routing scheme.

5. MSSN Programming Strategy

In order to speed up architectural exploration and validation, we implemented a software tool
capable to provide both the register-transfer-level (RTL) MSSN description and the configuration
bitstream according to the user application. The target architecture is described specifying MSSN
parameters, such as the number N of I/Os and number ns of stages. In addition, it allows one to specify
the switch elements (SE) used (i.e., radix-k) at each stage and the intra-stage connectivity patterns
(e.g., the two butterfly topologies in Figure 3a,b and stages with bypass enhancements as in Figure 5).

Following [4], the MSSN routing engine is an iteration-based path-finding algorithm. The nets are
sorted and routed sequentially taking into account the available resources (i.e., the SE). Net sorting is
done based on criticality, which tracks the historical difficulty to route each net and is updated after
each routing iteration according to the success/fail current attempt. Iterations stop when all the nets
are routed successfully. The algorithm splits multi-fanout nets into independently routed single-fanout
nets that can share routing resources.
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Path-finding strategy is based on Dijkstra’s algorithm for weighted graphs [36]. The SEs represent
the graph nodes connected by weighted edges, which correspond to the wires used to connect MSSN
stages. The algorithm tries to find the cheapest path among all available ones, whereas the cost of a
path is the sum of the traversed wire’s weights. Weights are a fundamental part of the architecture
description: they drive routing policy toward preferred solutions and impact convergence speed.
We found that assigning lower weights to bypasses and straight paths (zeroing weight for sharable
resources) allows to achieve an as-straight-as-possible policy which resulted the best solution for both
convergence and bypass utilization (Figure 7). Thanks to this approach, we found that, on networks
with dimensions up to 4K I/Os, the number of iterations needed to solve the routing lies in average
between 5 and 10.

Figure 7. Three different multi-fanout paths connecting IN2 to OUT0, OUT1, and OUT2 in order of
cost: with bypass enhancement (a), with the as-straight-as-possible policy (b), and using diagonal
wires (c).

The utilization of a butterfly-based MSSN as interconnection infrastructure also changes the
distance metric used on the placement algorithms [4]. In fact, trying to minimize the net delays,
traditional placement algorithms for FPGA or ASIC (Application-Specific Integrated Circuit) have
the goal to minimize the distances among cells, whereas the distance is measured in a 2D space (be it
the L1 Manhattan distance or L2 distance), tightly coupled with the Elmore delay associated to the
connection. On a hierarchical butterfly MSSN, i.e., with bypass enhancement, the delay is associated to
the number of stages to be crossed to connect two points. As visible in Figure 4, the distance among
primary I/Os is not linear, but follow some steps which also depend on the radix of the network.
With reference to Figure 4, only switches up to H1 must be crossed to connect IN2 to OUT3, while all
the switches up to H3 are crossed when the required connection is between IN3 and OUT4. This aspect
is known as the boundary-radix problem [10] and is a limiting factor for the use of such networks in
large FPGA. In small size eFPGAs, as the ones we are tackling, this problem is mitigated by replacing
2D distance metric with a wire length defined as, for generic radix-k:

wire length =

{
2 · Smin, for Smin = logk N
2 · Smin + 1, otherwise

(11)
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where Smin (between 1 and logk N) is the minimum stage S subtending all the points to be connected,
as discussed in [4], and +1 is due to the bypass connection. This way, the placement tool tries to
limit to Smin the number of switches crossed to achieve a full exploitation of the hierarchical topology.
A different approach has been followed by [10] where the boundary-radix problem has been addressed
in hardware by isomorphic transformations, which makes the MSSN less regular.

6. Flat MSSN Performance versus Radix-k

In this section, we show the implementation results of two flat MSSNs featuring radix-2 and
radix-4, respectively. The purpose of this analysis is to demonstrate that the synthesizability allows one
to exploit a significant design space to find the best radix for a given class of applications. The test-case
we consider is a 1024× 1024 I/Os flat MSSN. According to Equation (5), the radix-2 network features
ns = 21 stages, including:

• one IN and one OUT stage with Ns = N (1024) 1× 2 (2× 1) switches;
• 2 log2 N − 1 = 19 MID stages with Ns = N (1024) 2× 2 switches.

For radix-4 MSSN, the number ns of stages, defined by (8) with k = 4, is ns = 11, and the RNB
property is obtained with half the switches per stage (Ns = N/2 = 512) compared to the radix-2,
but with a more complex structure (Figure 6). The MSSN hence features:

• one IN stage composed of Ns = 512 2× 4 switches;
• 2 log4 N − 1 = 9 MID stages with Ns = 512 4× 4 switches;
• one OUT stage composed of Ns = 512 4× 2 switches.

For both architectures a set of physical synthesis have been performed using Synopsys Design
Compiler Graphical [37] targeting STMicroelectronics CMOS 65 nm LP 1.2 V standard cell libraries.
Adopted physical synthesis flow was industrially qualified by the foundry to be well correlated
with implementation and silicon. This notwithstanding, some place-and-routes were carried out
to further verify feasibility of the approach (especially against routing congestion) on few relevant
cases, resulting in a good correlation in line with Electronic Design Automation (EDA) vendor figures.
Since target technology makes available standard cells with 3 different voltage thresholds (Low,
Standard, and High Voltage Threshold—LVT, SVT, HVT), a couple of different standard cells mixes
were analysed: a SVT-only for area-optimization and a mix of HVT+SVT+LVT to target high-speed
optimization (HVT are included for leakage optimization on configuration structures). Time-to-fly
between one input and one output is the critical path of the network and thus is constrained by the
target implementation period, whereas all the configuration pins of the MSSN switches are quasi-static
paths and were considered false-paths.

Post-synthesis results are provided in Table 1 for both MSSNs, targeting either area or speed
optimization. The resulting design space is significant, with a range of '2× for frequency and a range
of '4× in terms of area for both radix-2 and radix-4 MSSNs. It shows that the radix-4 solution radically
increases area in min-area implementations (+35%), while in the max-speed case the area penalty is
lower (+11%). This is due to both the synthesis optimizations criteria adopted and the fact that in the
min-area case we considered two iso-frequency (200 MHz) implementations, while in the max-speed
case we reached different frequencies (400 vs. 480 MHz).

Table 1. CMOS 65 nm 1024× 1024 flat multistage switching networks (MSSN) post-synthesis summary:
radix-2 and radix-4.

Implementation Results
Radix-2 Radix-4

Min Area Max Speed Min Area Max Speed

Area [mm2] 0.20 0.80 0.27 0.89
Impl. Freq. [MHz] 200 480 200 400

Cells Mix SVT H+S+LVT SVT H+S+LVT



Electronics 2019, 8, 272 11 of 19

Each MSSN architecture was also implemented changing the target frequency between the
min-area and the max-speed targets. The obtained results are reported for iso-frequency values
in Figure 8a, showing similar trends for both architectures: radix-2 MSSN provides better area
performance for any frequency value. With the purpose of comparing the two architectures in terms of
frequency performance, Figure 8b reports the implementation results for iso-area values: again in this
case, radix-2 MSSN guarantees better performance, with a wider gap for low area values.

Figure 8. 1024× 1024 I/Os Flat MSSN radix-2 (B2) versus radix-4 (B4): iso-frequency (a) and iso-area
(b) post-synthesis results.

This area increase can be justified with a “handcrafted” analysis of the logic complexity of both
architectures in terms of number of equivalent MUX2:1. Flat radix-2 MSSN requires ns stages as
defined in (5); observing Figures 3a and 5, it can be noted that input stage does not require any MUX,
output stage is composed by a single MUX2:1 and middle stages by two MUX2:1. By considering
Ns = N switches per stage, the total number of equivalent MUX2:1 (MUXeqradix-2) can therefore be
expressed as:

MUXeqradix−2 = Ns + (2 log2 N − 1)× Ns × 2.

For N = 1024, radix-2 MSSN features therefore ' 40K equivalent MUX2:1. On the other
hand, in a radix-4 MSSN the middle 4× 4 switches (Figure 6) can be seen to be made of 4 MUX4:1,
each corresponding to 3 MUX2:1, the 4×2 switches in output stage require 2 MUX4:1 while the input
stage still does not require any MUX. From (8) and considering Ns = N/2 switches per stage, the total
number of equivalent MUX2:1 (MUXeqradix−4) can be therefore expressed as:

MUXeqradix−4 = Ns × 2× 3 + (2 log4 N − 1)× Ns × 4× 3.

For N = 1024 the total number of equivalent MUX2:1 proves to be '58K, a +45% increase with
respect to the radix-2 solution. Despite of that, a class of applications where radix-4 structure provides
better performance will be observed in Section 7.3. In addition, this overhead can be mitigated
leveraging on optimized standard cells libraries capable to reduce the intrinsic MUX4:1/MUX2:1
area-ratio thanks pass-transistor exploitation.
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7. Flat versus Hierarchical MSSN Performance

This section evaluates hierarchical MSSNs featuring U-turn bypasses, focusing on finding the best
tradeoff between area overhead, due to the additional logic in the U-switches, and the improvements
in frequency performances. This will help compare the radix-2 and radix-4 MSSN more effectively,
like the flat MSSN versions.

The test case we consider is again a 1024× 1024 I/Os MSSN, radix-2 and radix-4, with U-turn
bypasses applied to realize either a fully-bypassed network (fully), with bypasses at each MSSN stage,
or a half-bypassed one (half ), with bypasses only at odd stages. STM CMOS 65 nm LP is still the target
technology, considering two different mixes of standard cells: SVT-only for area optimization and full
mix with H+S+LVT for high-speed.

Post synthesis results for all three versions (flat, half, and fully) are shown in Table 2 for radix-2 and
Table 3 for radix-4 MSSN, with two different implementations optimized by area or by speed: for both,
the area overhead introduced by the bypass enhancement is straightforward. As for the flat version,
the half- and the fully-bypassed architectures were implemented varying the target implementation
frequency according to the values in Table 2. As previously defined, implementation frequency is the
time-to-fly between MSSN input and output; the delay due to crossing switches of all MSSN stages is
therefore considered.

Table 2. CMOS 65 nm 1024× 1024 radix-2 MSSN post-synthesis results.

Implementation Results
Min Area Max Speed

Flat Half Fully Flat Half Fully

Area [mm2] 0.20 0.34 0.40 0.80 0.89 1.01
Impl. Freq. [MHz] 200 200 180 480 445 395

Cells Mix SVT H+S+LVT

Table 3. CMOS 65 nm 1024× 1024 radix-4 MSSN post-synthesis results.

Implementation Results
Min Area Max Speed

Flat Half Fully Flat Half Fully

Area [mm2] 0.27 0.33 0.49 0.89 0.90 1.1
Impl. Freq. [MHz] 200 200 200 400 365 367

Cells Mix SVT H+S+LVT

7.1. MSSN Delay Model and Validation

In [4] we developed a post-synthesis application-aware analysis to evaluate the performances
improvement thanks to the introduction of bypassed switching elements. Different benchmarks were
mapped (through the custom eFPGA CAD flow) on both the flat architecture and the fully-bypassed
radix-2 version of the eFPGA. This showed that introducing a bypassed MSSN allows increasing
the working frequency by a factor, frequency gain, from '20% to '60% depending on the target
application and therefore on the capability to exploit the bypass feature. Starting from these data,
in [4] we then proposed a computational analysis that takes into account eFPGA critical path length
(i.e., the longest combinational path composed of both LB and MSSN delays) based on the ability of
bypass enhancement to guarantee frequency gains in a range between 20% and 60% with respect to the
flat version. In that analysis one of the key assumptions is that the internal MSSN stages, both in the
flat and in the bypassed version, feature homogeneous delays, so that the delay associated with a single
stage in an MSSN with ns stages is approximated as:

STGdly =
TMSSN

ns
(12)
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where TMSSN is the delay of the whole MSSN (i.e., the implementation period in Tables 2 and 3). As an
example, for the radix-2 fully-bypassed implementation, TMSSN is 2.53 ns for max speed and 5.5 ns for
min area.

Hence, according to (12), in the evaluation of the eFPGA critical path the effective MSSN IN2OUT
delays is considered to be proportional to the stage (S in 1 to log2 N) in which the U-turn connection
was exploited (e.g., the HS group of switches in Figure 4), so that:

IN2OUTDELAY(S) =

{
STGdly[(2S− 1) + 2], S = log2 N
STGdly(2S + 2), otherwise

(13)

where the 2S factor is due to the fact that the network has to be crossed back and forth (corresponding
to crossing the source and target switches in Figure 5) and the +2 take into consideration input and
output stage. The case S = log2 N corresponds to non-exploitation of the bypass: all MSSN stages are
crossed and the IN2OUT delay reduces to the implementation period TMSSN .

In order to validate the model based on (12) and (13), and adopted in [4], in Figure 9 we show the
difference between piecewise linear model (13) and a set of real (post synthesis) input-to-output delays
for the fully-bypassed radix-2 implementation. Such delays were obtained, both in the max speed and
min area implementations of the fully-bypassed 1024× 1024 I/Os radix-2 MSSN of Table 2, by forcing the
timing analysis tool to exploit the bypass connections at different MSSN stages (Sn, with n = 1, 2, . . . , 10,
in the horizontal axis in Figure 9). Sn = 10 corresponds to non-bypass exploitation. Since for each
input/output pair the 1024× 1024 I/Os MSSN provides 1024 possible paths, the results are represented
as clusters of points. Solid lines (one for the max speed and one for the min area case) represents the
piecewise linear model obtained from (13).

Figure 9. 1024× 1024 I/Os radix-2 MSSN in-to-out delays (with bypass exploitation at different stages)
compared to model (13) varying the MSSN stage S in which the U-turn connection is exploited.

It can be observed that piecewise linear model (13) represents a sort of “worst-case” compared to
the mean values, lines with circular markers, or to the ninetieth percentile values, triangular markers,
of real delays. The only cases where the model under-estimate the network delay are those which
consider a bypass exploitation at the lowest levels (S1, S2, and S3 in Figure 9) of the MSSN hierarchy
in the max speed implementation. However, when considered in the evaluation of a completely
programmable device, such a gap in the approximations would hardly affect computation of the
critical path, since dominated by the contribution of the computational logic block (LB) delay.

Similar results were obtained when taking into account a radix-4 architecture and data from
Table 3, where the stage delay is larger than that in a radix-2 architecture, due to the greater complexity
of radix-4 switch elements (Figure 6).
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The previous results allow us to validate model (13) and to apply it to the comparison between
different MSSN architecture options, as will be done in Sections 7.2 and 7.3.

7.2. MSSN Effective Frequency Versus Bypass Exploitation

To evaluate the area/speed tradeoff of different MSSN architectures, in this paragraph we use
model (13) to perform a computational density analysis considering interconnect structures with
the same area but different number of stages with U-turn connections. Whereas for the flat MSSN
(Section 6) we considered the implementation frequency as a figure of merit, since the network delay
corresponds to the MSSN full latency, in the bypassed MSSN the actual working frequency has to be
taken into account. A bypassed MSSN (Figure 4) provides shorter paths for logically near I/O pins,
and thus the working frequency depends on the locality of the connections required by the applications.
As explained in Section 5, locality is tackled by optimized routing strategy, which targets the best
bypass utilization. As an example, Figure 7a,b show two paths exploiting (a) and non-exploiting (b) a
bypass enhancement, respectively. According to (13), the effective delay of path (a) where the stage S
in which the bypass is exploited is S = 2 would be lower than the one in (b) where S = log2 N = 3
thanks to bypassing switch S3.

Figure 10 [5] reports the effective frequency of a flat MSSN together with what is achievable by
a bypass-enhanced MSSN, assuming four ranges of frequency gain corresponding to different levels of
bypass exploitation (0% non-exploitation of the bypasses, 20%, 40%, 60%).

Figure 10. 1024× 1024 I/Os radix-2 MSSN effective frequency versus area for different frequency gain
thanks to bypass exploitation: flat vs. half-bypassed (a) and fully-bypassed (b).
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As reported in Table 2, the minimum area necessary to realize a flat version of MSSN is 0.2 mm2,
0.34 mm2 for half-bypassed and 0.4 mm2 for fully-bypassed. The post-synthesis results in Table 2 are
referred to the full-latency of the MSSN (0% bypass exploitation). Hence, targeting small area devices
(<0.34 mm2) the flat MSSN is the unique solution among those listed. The half-bypassed architecture
(Figure 10a) proves advantageous for area >0.44 mm2, since it allows to achieve higher frequencies
even if the frequency gain is around 20%, while reaching time-to-fly frequency values beyond 700 MHz
when the area is not a tight constraint.

The same idea is applied to the fully-bypassed MSSN (Figure 10b), where frequency >450 MHz
can be reached with greater area budgets, while for area <0.8 mm2 the flat MSSN can provide higher
speeds even with frequency gain >40%. Compared to the half-bypassed solution, and below 650 MHz,
fully-bypassed architecture enables lower frequencies, owing to increased design density. On the other
hand, a fully-bypassed MSSN provides a higher probability of bypass exploitation. With a passing
reference to this aspect, in this analysis we have decided not to take into account architectures with a
lower application of bypasses (e.g., realizing a quarter-bypassed MSSN), since with a lower probability
of bypass exploitation the frequency gain values might no longer be applicable.

Applying the same analysis to a radix-4 MSSN, we achieved similar results: advantages provided
by introducing U-turn bypasses, either in half stages or in the full network, only become evident
targeting high frequencies, with the drawback of additional area requirements.

7.3. Comparison between Different Radices for Hierarchical MSSN

The IN2OUTDELAY(S) validated in Section 7.1 is then used to perform a comparison in terms of
area/speed tradeoffs for different radix in hierarchical MSSN. In Section 6 we showed that, in a flat
architecture, an MSSN featuring radix-2 switches is able to guarantee better area and implementation
frequency performances than its equivalent radix-4 version. Given this comparison, and since in the
previous sections we proved that both the half-bypassed and the fully-bypassed architectures can improve
effective working frequency with respect to flat architecture, an analysis of the tradeoffs between area
occupancy and the opportunities presented by U-turn bypasses in both radix-2 and radix-4 MSSN is
performed in this paragraph.

Variation of MSSN radix implies different exploitation of the locality of the connections. In fact,
the number of stages to cross in order to connect two MSSN I/Os proves to be different. By way
of example, as shown in Figure 11 [5], in a 16× 16 I/Os radix-2 fully-bypassed MSSN the minimum
common stage, S in (13), connecting IN0 to OUT7 is stage S = 3, while in the corresponding radix-4
topology only stage S = 1 has to be crossed. In the radix-2 architecture the number of points (inputs
and outputs) subtended from a cone of height S is:

POINTS2(S) = 2S (14)

while in the radix-4 architecture:

POINTS4(S) =

{
2 · 4S, S < log4 N
4S, S = log4 N

(15)

where the 2 factor is due to the fact that each IN and OUT stage is connected to two I/Os
(Figures 6 and 11b). Extending to a generic radix-k, the number of points turns out to be:

POINTSk(S) =

{
α · kS, S < logk N
kS, S = logk N

(16)

for S from 1 to logk N. In the previous equation α (>0) is a factor that takes into account the number of
inlets (outlets) connected to each IN/OUT stage α = N

NS
. From the preceding definitions of Section 4.3:
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α =
N
NS

=
N
N
· k

p
=

k
p

.

To understand Equaiton (16), let us re-write it as:

POINTSk(S) =

{
α · kS, S < logk N
α
α kS = α · kS · p

k , S = logk N
(17)

Figure 11. Example of fully-bypassed MSSN connectivity with 16× 16 I/Os: radix-2 (a) and radix-4 (b).

For a generic stage S, the number of points subtended from a cone of the previous stage (S− 1) is:

POINTSk(S− 1) = α · kS−1. (18)

Therefore, at the “current” stage S, the points subtended are those of the previous stage (S− 1)
multiplied by k if S isn’t the central stage of the network (S < logk N). In the case of stage S = logk N,
the different planes (Figure 2) are merged in the central stage (Figure 4) hence, the total number of
points is the sum of the points of the previous stage of each p plane (i.e., multiplied by p). Thanks to
(18), (17) can be written as:

POINTSk(S) =

{
POINTSk(S− 1) · k = αkS−1 · k = α · kS, S < logk N
POINTSk(S− 1) · p = αkS−1 · p = kS, S = logk N

which corresponds to (16). The half-bypassed and fully-bypassed version of a 1024× 1024 I/Os MSSN,
both radix-2 and radix-4, were compared. Assuming that the CAD tool discussed in Section 5
places MSSN I/Os minimizing their distance forcing S = Smin, we analyzed the number of stages,
hence the delay, required to connect two I/Os placed at different distances, according to wire-length
definition (11). A set of implementations, including both max speed and iso-area, were considered: for
each, the stage delay was calculated according to (12), and the IN2OUTDELAY computed with (13).

Figures 12 and 13 report the results for different distances between two MSSN I/Os that are to be
connected. The results obtained (HVT+SVT+LVT implementations) show that there is not a unique
solution for the MSSN architecture. Design constraints and the capability of the CAD to exploit bypass
affect the MSSN architectural choice. In the max speed implementations (Figure 12) the radix-4 MSSN
(dashed lines) proves advantageous, i.e., less delay in the average, only when the distance between
points is not too large. On the contrary, for iso-area implementations (Figure 13), radix-4 MSSN (dashed
lines) allows lower interconnect delay for any distance between points in the half-bypassed structure
and in the fully-bypassed version is still advantageous in the average for small distances between I/Os,
i.e., when application fields exploit local connectivity.
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Figure 12. Max-speed implementations: delay vs. topological distance between two I/Os for a
1024× 1024 fully-bypassed and half-bypassed MSSN.

Figure 13. Iso-area implementations: delay vs. topological distance between two I/Os for a 1024× 1024
fully-bypassed and half-bypassed MSSN.

The analysis can be extended to larger values of radix-k. It is worth noting that the area occupation
of k× k switch element increases with O(k2) while the granularity of bypass exploitation decreases,
hence reducing the probability of performance gain.

8. Conclusions

We presented an analysis of a class of MSSN suitable for the implementation of routing in
ePLD, i.e., soft-core IPs with size in the order of 1 KLUTs, showing full-static multicast connectivity
capabilities and the possibility to be synthesized. We described also a parametric programming tool
which allows many architectural variations to be applied without affecting the overall routability
properties. The implemented programming strategy allows to achieve a straight-as-possible policy in
order to minimize the boundary-radix problem, which could affect the performance of hierarchical
log-networks.

The MSSNs were implemented in STM CMOS 65 nm technology: the results reveal a significant
design space in terms of area/speed tradeoffs, resulting in a range of '2× for frequency and a range of
'4× in terms of area. Furthermore, the introduction of U-turn bypasses enabled the design space to be
enlarged, providing a frequency performance improvement (up to +60%), at the expense of increased
area occupancy.

The parametric MSSN structure was also exploited varying the radix: a comparison between a
radix-2 and a radix-4 was then performed, for both bypassed and non-bypassed architectures. The results
show that the area-frequency tradeoff is in favor of the radix-2 architecture for low area budgets, while
the radix-4 solution is able to provide a better exploitation of the connection locality.
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