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Abstract: Thanks to their capability to learn generalizable descriptors directly from images,
deep Convolutional Neural Networks (CNNs) seem the ideal solution to most pattern recognition
problems. On the other hand, to learn the image representation, CNNs need huge sets of
annotated samples that are unfeasible in many every-day scenarios. This is the case, for example,
of Computer-Aided Diagnosis (CAD) systems for digital pathology, where additional challenges are
posed by the high variability of the cancerous tissue characteristics. In our experiments, state-of-the-art
CNNs trained from scratch on histological images were less accurate and less robust to variability than
a traditional machine learning framework, highlighting all the issues of fully training deep networks
with limited data from real patients. To solve this problem, we designed and compared three transfer
learning frameworks, leveraging CNNs pre-trained on non-medical images. This approach obtained
very high accuracy, requiring much less computational resource for the training. Our findings
demonstrate that transfer learning is a solution to the automated classification of histological samples
and solves the problem of designing accurate and computationally-efficient CAD systems with
limited training data.

Keywords: convolutional neural networks; deep learning; histological image analysis; computer-aided
diagnosis systems; transfer learning

1. Introduction

Histological image analysis is the gold standard for the primary diagnosis and assessment of c
large number of cancers [1]. Typically, when a cancer is suspected, the patient undergoes a biopsy,
and a thin layer of sample tissue is resected and mounted on a slide after fixation and staining,
for example by Hematoxylin and Eosin (H&E). Then, the slide is analyzed by a pathologist looking for
possible alterations of the normal tissue architecture, categorized into a number of classes of interest.

The diffusion of digital scanners, able to transform the physical histological slides into
multi-resolution digital resources called Whole-Slide Images (WSIs), is rapidly changing the workflow
of clinical laboratories [2]. Traditional histopathology, based on visual evaluation of the samples directly
under the microscope, is being progressively abandoned in favor of Computer-Aided Diagnosis (CAD)
systems, fostering a complete automatization of downstream image analysis.

On the one hand, automated image analysis is a major improvement on human assessment,
which has been majorly affected by inter- and intra-observer variability [3]. On the other hand, it is
challenged by the size (in the order of gigapixels), as well as by the high complexity and variability of
the histological images. The origin of such variability is three-fold: (i) “biological”, due to different
cells (either cancerous or not) and corpuscles of variable appearance normally coexisting in a specimen;
(ii) “pathological”, due to unpredictable alterations of the tissue architecture induced by the cancer;
and (iii) “technological”, due to inconsistent staining, as well as to a typical lack of standards in the
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image generation and acquisition process. On these grounds, the design of automated algorithms for
the accurate assessment of histological images is still a very open research problem.

The most consolidated systems for histopathology assessment typically rely on classic texture
analysis [4]. Image texture provides information about the spatial arrangement of color or intensities
in an image. Hence, when applied to histological images, it can be used to characterize the spatial
arrangement of the cells or in general the architecture of a tissue [5]. Systems based on texture analysis,
as the name suggests, leverage the extraction of a limited set of texture and morphometric descriptors
from the histological images; for example, statistic descriptors based on the Grey-Level Co-occurrence
Matrices (GLCM), Local Binary Patterns (LBPs) and its variants, features based on Gabor or wavelet
transform, and key-point detectors and descriptors such as Speeded-Up Robust Features (SURF) [6,7].
The local features set, eventually encoded into compact dictionaries by means of clustering techniques,
as in the Bag Of Features method (BOF) [8], is then fed into a classifier to predict the label of the
input specimens [9].

The major issue of all the classical texture-analysis approaches is typically the dependency on
a fixed set of handcrafted features for the image representation [4,5]. Indeed, pre-designing the
features based on a priori assumptions on the patterns that are most important for the classification
intrinsically limits the robustness and generalization capabilities of a system. In the specific case of
histopathology, many challenges are posed by the high intra-class variability, as well as by a general
lack of agreement among the medical community on the histological characterization of complex
pathologies (especially in the case of rare or lesser-known forms of cancer). To overcome this issue,
in this work, we address the problem of automated histological classification using a feature learning
approach, where the expert system learns a set of discriminant features directly from the images
without any a priori constraint on the image representation.

Among feature learning methods, deep learning and, more specifically, Convolutional Neural
Networks (CNNs) have now become a major trend in many computer vision and medical tasks [10–12].
In CNNs, a number of convolutional and pooling layers learn by backpropagation the set of features
that are best for classification, thus avoiding the design of handcrafted texture descriptors. Nonetheless,
the necessity of training the networks with a huge number of independent annotated images
(typically in the order of tens of thousands at least) is still an open issue, which limits their usability in
the everyday clinical setting.

Transfer learning (i.e., using CNNs pre-trained on different types of images, for which large datasets
are available) seems a good solution to this problem, but only on the condition that the transfer happens
between two similar imaging domains [13]. Only recently, cross-domain transfer learning has also
been considered, with some promising results even in histological image analysis [14,15]. This opens
the way to more in-depth research on the practical use of CNNs (and pre-trained CNNs in particular)
in everyday histopathology, with typical problems being the limited availability of computational
resources and annotated datasets.

In this work, we evaluate a CNN-based approach to perform the automated assessment of
histological samples, targeting multi-class image characterization problems with H&E-stained WSIs
as the input. More specifically, we seek an answer to the following research questions: (i) Are
CNNs a good solution for histopathological image classification, as they are in other computer vision
applications? (ii) How is it possible to cope in practice with the scarcity of annotated training samples?
(iii) Is transfer learning a viable solution, and how should the transfer learning system be designed to
boost the accuracy and generalizability of the results?

To answer such questions, we fully train several CNN models on histopathological images and
assess their accuracy on an independent test set. This technique is experimentally compared with three
different transfer learning approaches, leveraging on CNNs pre-trained on a dataset from a completely
different context. The first transfer learning approach uses the pre-trained CNN to extract a set of
discriminative features that will be fed into a separate support vector machines classifier. The second
approach fine-tunes on histological images only a few stages of the pre-trained CNN. The third
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approach uses the weights learned from a different context just to initialize the training. Finally,
we perform a comprehensive comparative assessment and in-depth discussion of the transfer learning
capabilities of CNNs in the domain of digital pathology. The final aim of our investigation is to provide
a generalizable transfer learning framework, both in terms of architecture and training paradigm,
that can be successfully applied to any other classification problem affected by intra-class variability
and a lack of training data.

A very preliminary version of this study was recently presented in a conference paper,
targeting the specific problem of colorectal image classification [16]. In the current paper, we address
the problem of histological image classification from a general point of view, using colorectal polyps
assessment, which is an important and challenging problem in histopathology and medicine, just
as a case study. Further experiments on three additional datasets, targeting different histological
categories and anatomical tissues (i.e. cardiovascular, bone, and pleural tissues), are also provided
in order to prove the generality and robustness of our findings. On top of that, we extend
our investigation to several CNN models, with different depth and architectural characteristics,
and introduce an additional transfer learning approach to our study. Finally, we add a traditional
machine learning framework, based on BOF encoding and the SVM classifier, as a reference for the
accuracy assessment.

This paper is organized as follows. In Section 2, we characterize the main case study and the
datasets used for our experiments. In Section 3, we introduce the CNN models and describe in detail
the design and strategy of the histological classification approaches. In Section 4, we report our
experimental results. In Section 5, we discuss our main findings. Finally, Section 6 concludes the paper.

2. Materials

In this section, we describe our main case study and characterize the datasets used in our
experiments. All the image data are freely available from the authors on request.

2.1. Colorectal Polyps Assessment

In our work, we chose the histopathological assessment of colorectal polyps as the main case study.
This is a complex multi-class classification problem, where the categories are subject to a significant
level of intra-class variability. Hence, it is a relevant case study for classification techniques that do not
leverage on a fixed set of pre-designed features.

According to the World Health Organization, Colorectal Cancer (CRC) is the second most common
tumor worldwide. While CRC is associated with high (around or above 90%) chances of 5-year relative
survival when it is found at a very early stage, only around 40% of the colorectal polyps are found and
removed before they eventually develop into malignant tumors. This has a tremendous impact on
the mortality rate and makes CRC one of the leading causes of cancer-related death in most Western
countries [3,17]. The issue is receiving considerable attention from the healthcare systems, which are
now highly investing in mass-screening programs and diagnostic systems for CRC.

From a histological point of view, CRC generally originates from the most internal layer of the
intestinal wall as an abnormal tissue growth called a polyp or adenoma, whose irregular neoplastic cells
tend to infiltrate the other layers of the wall. During a colonoscopy, the physician visually inspects
the lining of the colon and identifies the polyps, which are eventually resected via biopsy to undergo
histopathological analysis.

A growth on the inner surface of the colon that does not show specific architectural irregularities
compared to healthy tissue and carries a very low risk of developing a cancer is called a hyperplastic
polyp. Adenomas, on the other hand, can show different types of tissue irregularities, which are
associated with different types of precancerous growth. According to most of the literature on
CRC, there are two major classes of precancerous colorectal polyps. The first class is conventional
adenomas, which are the precursor of around 70% of all colorectal cancers. Depending on their
architecture, conventional adenomas can be classified as either tubular or villous or tubulo-villous,
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in case there is a mixture of the two elements. The second class of precancerous polyps, serrated
adenomas, have a specific saw-tooth appearance and are currently understood to be the precursor of the
remaining 30% of colorectal cancers, but from a pathway of genetic alterations that is different from
the conventional adenomas.

In the light of the above, identifying and categorizing the polyps at a very early stage has
important implications for successful detection, surveillance, and personalized treatment of different
types of colorectal cancers [3,17].

Our previous work on colorectal image analysis targeted a simplified classification problem
where adenomas were treated as a unicum, overlooking their specific sub-classes [16]. In this paper,
we address the full histological assessment of colorectal polyps (malignant, non-malignant, and cancer
precursors), considering five main histological categories: (i) Adenocarcinoma (AC), where there is
evidence of a conclamated CRC; (ii) Hyper-plastic polyp (H); (iii) traditional Serrated adenoma (S);
(iv) Tubular adenoma (T); and (v) Villous adenoma (V). Several examples of each category are shown
in Figure 1.

Figure 1. H&E samples of colorectal polyps. The figure shows five different histological categories of
polyps, one per line: (i) Adenocarcinoma (AC); (ii) Hyperplastic polyp (H); (iii) Serrated adenoma (S);
(iv) Tubular adenoma (T); (v) Villous adenoma (V).

For our study, we obtained 41 hematoxylin and eosin colon tissue slides from the Virtual Pathology
Slide Library of the University of Leeds, a repository of histological samples that have been digitized
and curated by a trained pathologist. The digitalized slides are stored with their anonymized clinical
information and publicly available at http://www.virtualpathology.leeds.ac.uk/.

Each slide belongs to a single patient diagnosed with one of the five classes of lesions reported in
Figure 1. The original data were in the form of WSIs (also known as virtual slides), the de-facto standard
of the modern histological scanners. To facilitate efficient viewing via specialized vendor-supplied
software, these very large files were encoded into multilayered pyramidal structures across multiple
resolutions (e.g., 1×, 20×, 40×).

To make the histological images usable by convolutional neural networks, we cropped the
WSIs into a large number of small square patches. As the characterization of the colonic polyps
depends on both morphological and textural information (respectively, the shape and structure and
the cytological characteristics of the glands), the choice of the magnification factor for the cropping
may be crucial. More specifically, lower magnifications ensure a better view of tissue architecture,

http://www.virtualpathology.leeds.ac.uk/
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while larger magnifications provide a better characterization of the micro-textural characteristics of the
cells (see the two examples in Figure 2). On the other hand, the number of independent patches that
can be cropped from the same WSI is proportional to the magnification factor.

Figure 2. Colorectal tissue patches of a tubular adenoma at two different magnifications: 20× (left)
and 40× (right).

For our experiments, we cropped the WSIs into non-overlapping patches at two different
magnification factors: 20× (patch-size of 2178 × 2178 pixels) and 40× (1089 × 1089 pixels), as reported
in Table 1, and we tried to establish which magnification factor provided the best compromise between
macro- and micro-textural representation. For this purpose, we ran preliminary tests with either
20× and 40× patches, as well as with both the magnification factors put together, and we found that
20× ensured the best performance in terms of classification accuracy on the five targeted classes of
colorectal polyps. Hence, for the sake of readability, in the following, we show and discuss only the
results obtained on the 20× dataset.

For training and testing purposes, our dataset was divided into two disjointed sub-cohorts,
comprised of 32 patients for training and 9 for testing (see Table 1).

Table 1. Colorectal image dataset. Characterization of the independent sets used for training and
testing purposes.

Train Test Tot

# patches 20× 10,052 2448 12,500
40× 15,876 4124 20000

# patients 32 9 41

In order to avoid class imbalance, irrespective of the image magnification, both the training and
test sets contained an almost equal number of patches of the five different categories. To compensate
for possible color discrepancy, before being fed into the classifier, all the patches were normalized by
the mean and standard deviation computed over the entirety of the training data.

2.2. Cardiovascular, Bone, and Pleural Tissue Assessment

To prove the generality of our findings, we used three additional datasets, targeting different
histological categories and anatomical tissues:

1. a cardiovascular tissue dataset, with five different histological categories: loose Connective
tissue (CN), smooth muscle of Muscular Artery (MA), smooth muscle of the large Vein (VE),
smooth muscle of the Elastic Artery (EA), and Cardiac muscle of the heart (HE). Images and
corresponding annotations were obtained from [18].

2. a bone tissue dataset, again with five categories of interest: T Cells (TC), Osteoclasts (OS),
Hydroxyapatite (HD), Parenchyma (PA), and regions with no clinical interest (VT). Images and
annotations were obtained from a pathologist.
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3. a pleural tissue dataset, with two categories of interest: Epithelioid Mesothelioma (EM) and
Sarcomatoid Mesothelioma (SM). Images and annotations were obtained from a pathologist.

As can be gathered from the examples in Figure 3, the architectural characteristics of the first two
datasets were especially different from our main case study (i.e., colorectal tissue), as well as from
each other. Furthermore, while the cardiovascular dataset included classical H&E stained histological
images, the tissue bone dataset was obtained with a immunohistochemical protocol, using FAST
RED, FAST BLUE, and DAB chromophores for the staining. The third dataset was the most similar to
the colorectal one from a histological point of view, as they both included epithelial tissue samples,
but from a completely different anatomical location (i.e., lung pleura).

Figure 3. Additional histological datasets (examples of annotated patches). (a) Cardiovascular tissue
dataset: (1) loose connective tissue, (2) smooth muscle of muscular artery, (3) smooth muscle of the
large vein, (4) smooth muscle of the elastic artery, and (5) cardiac muscle of the heart. (b) Bone tissue
dataset: (1) regions with no clinical interest, (2) parenchyma, (3) hydroxyapatite, (4) osteoclasts (the cell
of interest is circled in blue), and (5) T cells (the cell of interest is circled in red). (c) Pleural tissue dataset:
(1) epithelioid mesothelioma and (2) sarcomatoid mesothelioma.

All datasets consisted of 5000 annotated patches, equally balanced among the available classes.
Eighty percent of the available patches were used for training and validation purposes and the
remaining 20% for testing.

3. Methods

Convolutional Neural Networks (CNNs) are a class of feed-forward neural networks that have
become in a very short time a major trend in most of the computer vision and pattern recognition
applications. CNNs belong to the category of deep networks, where the depth is given by the presence
of a high number of hidden stages compared to regular neural networks. More specifically, a CNN
contains two different types of trainable stages:

1. a large number of locally-connected layers (the higher the number, the larger the depth of the
CNN), devoted to learning the image representation. The features are learned on a hierarchical
basis, with the first layers typically learning low-level features (e.g., simple edges) and successive
layers learning features at a progressively-increasing level of abstraction (e.g., complex patterns
and objects).

2. a small number of fully-connected layers at the end of the network, devoted to learning the
classification task and basically acting like a traditional multilayer perceptron.

The possibility of combining a large depth with local connectivity allows learning a comprehensive
set of image descriptors with a relatively low number of parameters to be learned.

From a computational point of view, the locally-connected stages of a CNN have two main
building blocks:
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1. Convolutional (CONV) blocks, which perform 2D convolution operations and eventually apply
a non-linear activation function (for example, a Rectified Linear Unit (ReLU)) on the input
image. Based on the trainable parameters of the kernels, the blocks can detect different types of
local patterns.

2. Pooling (POOL) blocks, which perform a non-linear down-sampling of the input (for example,
by max or mean functions). This has the double effect of reducing the number of parameters
of the network, hence reducing the risk of overfitting, and of making the image representation
spatially invariant.

While the CNN models like the LeNet consisted of simple regular sequences of very few CONV
and POOL layers [19], the progressively wider availability of inexpensive computational resources
and hardware acceleration has enabled over the years the design of much deeper models, such as
AlexNet [20] and VGG [21], as well as of complex blocks dedicated to more refined functions;
for example, Inception [22,23], which concatenates multiple CONV and POOL blocks to obtain
multi-level feature extraction, and ResNet [24], which leverages identity shortcut connections between
different blocks to reduce the so-called vanishing gradient effect (i.e., the progressive reduction of the
gradient error term through a large number of layers). This evolution in depth and complexity is
well represented by the chronological list of winners of the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) [25], a widely-known object recognition contest that has been dominated by
CNNs since 2012.

3.1. CNN: Full Training

The most straightforward way of addressing histological classification problems with CNNs is to
fully train the network on a set of annotated histological samples (i.e., the colorectal image dataset
described in Section 2.1) and then to use it to classify new unlabeled samples, sharing the same
characteristics of the ones used for training.

To investigate different depths and architectural characteristics, in our work, we experimented
with full training on six different CNN models (see the complete list in Table 2, where SimpleNet is
a home-designed shallow network, consisting of just one CONV and one Fully-Connected (FC) layer,
and the others are models from the recent literature, with progressively higher depth).

Table 2. Full training: CNN models. Each row of the table reports: name, number of Convolutional
(CONV) and Fully-Connected (FC) blocks, and, where available, the top-5 % error on the ImageNet
dataset, as well as the reference publication.

# CONV # FC ImageNet Top-5 Error Ref.

SimpleNet 1 1 n.a. n.a.
LeNet 2 2 n.a. [19]
AlexNet 5 3 16.4% [20]
VGG-16 16 3 7.4% [21]
Inception-v3 47 1 5.6% [23]
ResNet-50 49 1 5.3% [24]

1 home-developed.

All the CNNs were developed within the Keras framework [26], strictly following the
implementation described in the corresponding publications (see the last column of Table 2).
The networks were trained with a backpropagation paradigm, an iterative process involving multiple
passes of the training dataset until the model converges to an optimal configuration of the parameters.
At each training step, the whole dataset flows from the first to the last layer in order to compute
a classification error, which is quantified by means of a loss function (in our implementation,
the categorical cross-entropy). Then, the error term flows backward through the net. At each
training epoch, the model parameters (i.e., the network weights) are tuned in the direction that
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minimizes the classification error on the training data. More specifically, our optimization algorithm
applied a Stochastic Gradient Descent (SGD) implemented with a momentum update approach [27]
to minimize the categorical cross-entropy function between the five classes of interest. Ten percent of
the training set (i.e., validation set) was used to monitor the training process and optimize the choice
of hyper-parameters of the net. This validation set was completely independent of the images used
for testing purposes and was solely used to compute the accuracy metric upon which the training
process was optimized. Based on this, we imposed a Learning Rate (LR) equal to 0.0001, a Momentum
(M) equal to 0.9, and a Batch Size (BS) of 32 images. To decrease the computational costs and reduce
overfitting, we implemented an early stopping criterion, which interrupts the training process when
validation accuracy does not improve for 10 subsequent epochs [28]. To ensure an efficient exploration
of the solution space, we also applied a variable LR strategy, progressively reducing LR each time the
validation accuracy did not improve for 5 consecutive epochs.

For the full training approach, CNNs’ weights were randomly initialized and then trained on the
colorectal cancer training dataset described in Section 2.1. The training was performed on a Linux
Infiniband-QDR MIMD Distributed Shared-Memory Cluster provided with a single GPU (NVIDIA
Tesla K40, 12 GB, 2880 CUDA cores).

3.2. CNN: Transfer Learning

As discussed in the previous sections, a CNN can be seen as a cascade of trainable filter banks,
where the successive blocks are devoted to detecting patterns at an increasing level of abstraction,
from the lowest (i.e., edges or simple shapes), to the highest (objects and complex shapes). Hence,
while the top-most blocks are tailored to a specific classification task, the lower-level ones are ideally
generalizable to a large number of applications. Based on this concept, a CNN that was trained on
a certain dataset can be transferred to a different context or even used as a feature generator for more
than a classification task. This approach, which goes by the name of transfer learning, potentially solves
the issue of fully training the network on a huge number of labeled training images.

In our work, we chose as the base for transfer learning a VGG-16 architecture, which in our
preliminary experiments provided the best trade-off between representation depth, computational
costs, and simplicity of interpretation [21]. In spite of its depth, VGG-16 is indeed very simple
architecture-wise, as it consists of a linear sequence of convolution and pooling blocks all of the
same size and characteristics (3 × 3 and 2 × 2, respectively) and a three-layered Fully-Connected
block (FC). Conceptually, the locally-connected stages can be represented as a simple sequence of 5
macro-blocks, each ending with a POOL layer (see Figure 4). This linear structure is very convenient
for our study, as it allows easy interpretation of the feature extraction process, as well as of the impact
of successive blocks on the development of image representation.

Figure 4. Architectural representation of the VGG-16 deep network used for transfer learning
(main building blocks).
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All the non-linear transforms in the model were ReLU, except for the last fully-connected layer,
which had a softmax activation function. The stride was fixed to 1 pixel for convolution and padding
and to 2 pixels for max pooling. Differently from the original VGG-16 model, in our implementation,
the size of the last fully-connected layer was fixed to 5, matching the number of categories of our
classification problem.

In our transfer learning experiments, the VGG-16 network was pre-trained on the ImageNet
dataset from the Large-Scale Visual Recognition Challenge 2012 (ILSVRC-2012), which contains
1.2 million photographs depicting 1000 different categories of natural objects [29]. Hence, the domain
on which the model was trained completely differed from histopathological image classification,
both in terms of image content and characteristics, as well as in terms of the number of classes.

To investigate the possibility of transferring the model from ImageNet to our classification task
fully, we designed and compared three different approaches (see Figure 5):

1. CNN as a fixed feature generator. The histological images were fed into the pre-trained CNN only
for inference. The features extracted by the convolutional blocks were then fed into a separate
machine learning framework, consisting of a feature reduction stage and a supervised classifier.

2. Partial fine-tuning of the CNN. The CNN model learned on the ImageNet was re-trained on our
training set of histological images, keeping all the parameters of a few low-level blocks fixed to
their initial value. Hence, only the weights of a certain number of top-most layers were fine-tuned
for histological image classification.

3. Complete fine-tuning of the CNN. As for Approach (b), the CNN model was initialized with the
values learned on the ImageNet. Then, all the blocks of the CNN (including the low-level ones)
were re-trained on the histological images.

3.2.1. CNN as a Fixed Feature Generator

As the first transfer learning methodology, the CNN with parameters learned on the ImageNet
was used as-is to infer the image descriptors for the new classification problem. For this purpose,
we used the output of the POOL5 layer of the pre-trained CNN as features for histological image
classification (details will follow). The feature vector was fed into a separate machine learning
framework, as represented by Figure 5a. This framework consisted of the following steps:

1. Feature reduction. To reduce the dimensionality of the data and prevent overfitting, we applied
a Principal Component Analysis (PCA). PCA is a well-established method that orthogonally
transforms the original features into a new group of values, which are linear combinations of
the original characteristics, the so-called principal components. As the transformation works
towards minimizing the correlation between the features, the new data representation is expected
to best summarize those features that are most representative of the classes of interest.

2. Classification. The final classification into five categories (H, T, V, S, AC) was performed
by a Support Vector Machine (SVM) with a Gaussian radial basis function kernel.
The hyper-parameters of the kernel were set by means of a Bayesian Optimization (BO)
algorithm [30], implementing a 10-fold cross-validation procedure on the training images.
This procedure was found to provide much better and faster results compared to classic methods
based on grid search or heuristic techniques.

The parameters of the framework were empirically established on a subset of the training images,
as follows. First, we ran experiments varying the CNN block used as the feature generator (from POOL1
to FC2, respectively) and quantified the accuracy of the SVM at an increasing number of principal
components imposed on the PCA. The results of this experiment are in Figure 6a. In this graph,
the per-class accuracies are reported by means of bars that extend from the minimum to the maximum
value obtained by each of the five categories (H, T, V, S, and AC) at different numbers of principal
components (100, 500, and 900, respectively). As can be observed, extracting features from POOL5
and reducing the number of features to 100 principal components ensured the best accuracy among



Electronics 2019, 8, 256 10 of 21

all the classes (i.e., the lower-end of the bar was the highest). To further refine the optimization, the
experiment was repeated with only features from the POOL5 layer, but with a much finer resolution of
the number of principal components. By doing so, we obtained that the optimal number of principal
components was 200 (see Figure 6b).

Figure 5. Schematic representation of the three transfer learning techniques designed and compared
in this work: (a) Pre-trained CNN as a fixed feature generator. (b) Partial fine-tuning of pre-trained
CNN. (c) Complete fine tuning of pre-trained CNN. CRC, Colorectal Cancer; H, Hyper-plastic polyp;
T, Tubular adenoma; V, Villous adenoma, S, Serrated adenoma; AC, Adenocarcinoma.
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Figure 6. Optimization of the classification framework. (a) SVM accuracy versus the CNN block used as
the feature generator, at different values of principal components imposed on the PCA. The bars extend
from the minimum to the maximum accuracy value obtained by each of the five polyp categories
(best configuration circled in red). (b) SVM accuracy versus the number of principal components
imposed on the PCA, with the POOL5 block used as the feature generator.

3.2.2. Partial Fine-Tuning of Pre-Trained CNN

As a second transfer learning methodology, we tried adapting the pre-trained VGG-16 to our
specific classification task. For this purpose, we first initialized all the weights of the network to
the ones determined on the ImageNet dataset, as represented in Figure 5b. Then, we continued the
backpropagation procedure on our histological dataset, keeping the weights of the first blocks of the
net (more specifically, POOL1 and POOL2) frozen. The rationale of such a strategy is trying to maintain
the low-level features describing the most generic and generalizable details (e.g., edges and simple
shapes) as they were learned from the ImageNet. Hence, all the computational power can be devoted
to the training of the top-most layers, which are expected to learn high-level task-specific features.
The training strategy was exactly the same as was described in Section 3.1 and lasted 4 h on the same
hardware. As for the previous transfer learning strategy, the starting block for the backpropagation
was decided by running experiments on a subset of the training images. As can be seen from Figure 7,
POOL2 was the block ensuring the best accuracy across the five categories.
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Figure 7. Optimization of the partial fine-tuning. Classification accuracy versus the starting block of
the backpropagation (the bars extend from the minimum to the maximum accuracy value obtained by
each of the five polyp categories).

3.2.3. Complete Fine-Tuning of Pre-Trained CNN

As a third transfer learning methodology, we extended the fine-tuning to all the blocks of the
pre-trained VGG-16, using the weights learned on the ImageNet just for initialization (see Figure 5c).
Again, the training was performed by backpropagation and lasted 5.5 h.

3.3. Traditional Machine Learning Approach

In order to provide a benchmark to our CNN-based classifiers, we designed and implemented
a traditional machine learning approach based on handcrafted feature extraction. More specifically,
we implemented a Bag Of Features (BOF) framework leveraging SURF, a scale- and rotation-invariant
keypoint detector and descriptor [6,31], and a support vector machine classifier. This is a consolidated
approach to histological image classification [4,5].

In our BOF framework, the local SURF descriptors were first extracted from the training images
and then grouped into clusters by means of a k-means clustering algorithm. The clusters’ centroids
were used to generate a codebook of so-called visual words, upon which image representation can be
built (see Figure 8). The histogram of occurrences of the visual words was then used as the feature
vector for the classification, which was performed by a classic SVM classifier optimized via the same
procedure described in Section 3.2.1.

Figure 8. Bag of features approach: image representation.

4. Results

Classification performance was established using the test dataset of colorectal samples described in
Section 2.1. As already mentioned, this set was completely independent of the one used for optimizing
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and training the classifiers (i.e., the patches were obtained from different patients). As for the training
set, the test set was balanced, in that it contained an equal number of patches of the five different polyp
categories.

The classification accuracy was quantified both in terms of patches and of patients correctly
classified, following the same notation of [32]. More specifically, we extracted two different accuracy
metrics, namely patch score (SP) and patient score (SPt).

The patch score (SP) is a measure of patch-wise classification accuracy, defined as the fraction of
patches of the test set that were correctly classified:

SP =
NC
N

, (1)

where NC is the number of test patches correctly classified and N the total number of patches in the
test set.

The patient score (SPt) is related to the patient-wise accuracy and is a derivation of the patch score.
It is obtained by computing the fraction of patches belonging to a single patient (i.e., to the same WSI)
that were correctly classified. This value, which can be defined as a per-patient patch score, is then
averaged over all the patients in the test set, as follows:

SPt =
∑i SP(i)

NP
, (2)

where SP(i) is the patch score of the ith patient and NP the total number of patients in the test set.
In Table 3, we report both the patch and patient scores (mean ± standard deviation) obtained

in our experiments. More specifically, the first and the second part of the table show, respectively,
the accuracy values of the CNNs fully trained on colorectal histological images (Section 3.1) and of the
CNNs trained with transfer learning methodologies (Section 3.2), with the latter reported as follows:

1. CNN + SVM refers to the SVM classifier, with the pre-trained CNN used as fixed feature generator.
2. fine-tune-CNN (partial) refers to the pre-trained CNN with only the weights of the top-most

layers fine-tuned.
3. fine-tune-CNN (complete) refers to the model fully retrained on the CRC training set, with weights

initialized based on ImageNet.

Finally, the last row of the table shows the values of the traditional Bag of Features (BOF + SVM)
framework, taken as a reference for the accuracy assessment on the same test set.

Table 3. Classification accuracy: patch and patient scores (mean ± std). BOF, Bag Of Features.

SP SPt

CNN full training

SimpleNet 0.60 0.63 (± 0.14)
LeNet 0.74 0.79 (± 0.28)
AlexNet 0.74 0.74 (± 0.30)
VGG-16 0.69 0.76 (± 0.37)
Inception v3 0.67 0.70 (± 0.40)
ResNet50 0.67 0.71 (± 0.40)

CNN transfer learning
CNN + SVM 0.93 0.95 (± 0.07)
fine-tune-CNN (partial) 0.93 0.93 (± 0.01)
fine-tune-CNN (complete) 0.96 0.96 (± 0.08)

Traditional ML BOF + SVM 0.83 0.82 (± 0.14)

Quite interestingly, irrespective of the depth and architectural complexity, none of the CNNs
fully trained on the colorectal histological dataset were able to match the accuracy of the BOF + SVM
framework. The accuracy of the fully-trained CNNs was at least 10% lower than the traditional ML
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technique (which obtained a 83% patch score), with very high variability of accuracy from patient
to patient (standard deviation of patient score spanning from 14–40%). These values suggest that
the CNNs were not able to build a generalizable image representation on the given training set,
most probably due to the high variability of the image characteristics and the relatively low number of
patients used for training. As a matter of fact, even the BOF + SVM technique, which is generally less
susceptible to small training sets than CNNs, obtained remarkable variability of the outcome from
patient to patient (14% patient score standard deviation).

The outcome of the transfer learning techniques, on the other hand, was surprisingly good.
Both the patch and patient scores were consistently high (above 93%) for all the tested methodologies,
overcoming the BOF + SVM method by 10% at least. Furthermore, the accuracy computed over all
the patches of the test set was very similar to the one computed patient per patient, with a much
smaller standard deviation of the latter value. This suggests that all the transfer learning classification
frameworks, unlike CNNs trained from scratch, were reasonably robust and coped well with
inter-patient variability.

The same considerations hold when analyzing the outcome of the experiments on a class-per-class
basis. Figure 9 shows the patch-wise classification performance of all the classification models reported
in Table 3, in the form of 5 × 5 confusion matrices. Each row of a matrix represents the fraction of
patches in a predicted class (respectively, AC, H, S, T, or V), while each column represents the fraction
of instances in a true class. Hence, the main diagonal of the matrix collects the correct classifications
(i.e., the instances where the predicted class coincided with the actual class), while the rest of the
elements in the matrix are classification errors.

Again, the matrices show that the fully-trained CNNs (see (a) of the figure) obtained inconsistent
classification results on different classes of polyps. Serrated adenomas, which are generally reported in
the literature to be difficult to identify [33], were misclassified by all the CNNs irrespective of their
depth. Even more remarkably, the adenocarcinoma class (most probably the one with the highest
variability in terms of morphological and architectural characteristics of the tissue) also obtained low
classification accuracy compared to the other benign categories of polyps. Indeed, this nullifies the
practical diagnostic usability of the classification frameworks based on CNNs trained from scratch.
On the other hand, the BOF + SVM methodology ((c) of the figure) obtained much better and more
homogeneous results on the five different classes than the CNNs trained from scratch. Still, the
accuracy on adenocarcinoma was quite low (60%).

The high accuracy of the transfer learning methodologies is again confirmed by the class-per-class
analysis. As can be easily gathered from the matrices in Figure 9b, the accuracy values were consistently
high for all five polyp categories. Among the transfer learning methods, the SVM-based classifier with
CNN used as the feature extractor had slightly lower accuracy than the others on serrated adenomas,
but still close to 80%. Both the fine-tuning methodologies (partial and complete) obtained accuracy
higher than 80% (and most of the times higher than 90%) for all the polyp categories. Interestingly,
the worst and best performing class was not always the same: for example, the hyperplastic polyp
obtained the lowest accuracy value (83%) with the partial fine-tuning and the highest accuracy
(100%) with the complete fine-tuning. Fully retraining the CNN model using the weights learned
from ImageNet for initialization obtained the best results in terms of accuracy and consistency of
performance among the five classes of polyps. By comparing the confusion matrices of (b) with the
one of the BOF + SVM methodology, we can observe that the description capability of the features
obtained from transfer learning was better than the traditional multi-purpose image descriptors, even
though the transfer was from a completely different imaging domain.
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Figure 9. Patch-wise confusion matrices (%) of all the classification frameworks. (a) CNNs fully trained
on histopathological images. (b) Transfer learning methodologies. (c) Classification framework based
on bag of features and support vector machine.

Additional Experiments on Fine-Tuning

Based on our experiments on the colorectal dataset, in the case of the unavailability of large
training datasets, CNNs pre-trained on a completely different imaging context (i.e., the ImageNet) are
a good solution to the problem of histological image classification. More specifically, a pre-trained
VGG-16 network, after a complete or even partial fine-tuning on the histological dataset, is a good
alternative to a traditional feature design approach (e.g., the BOF + SVM model).

In order to prove the generality of these findings, we experimented with the same fine-tuning
approach (i.e., VGG-16 architecture, pre-trained on the ImageNet) on two additional histological
datasets, respectively from cardiovascular and bone tissues (see Figure 3a,b). As already discussed
in Section 2.2, these two datasets are the ones that are most different from our main case study
(i.e., colorectal tissue), as well as from each other.

As the two datasets are available only in the form of patches and not of full WSIs, we evaluated
classification accuracy only in terms of patch scores (Equation (1)), reporting the obtained values
in Figure 10. More specifically, the graph shows the patch-score obtained by the pre-trained CNN
with different configurations of the fine-tuning (that is, with re-training of the complete network
or of progressively smaller portions of the network). As for the other graphs in Section 3, the X
axis shows the starting block of the backpropagation algorithm (that is, all the preceding blocks are
fixed to their initial values learned on the ImageNet throughout the learning process), and the Y axis
shows the corresponding patch score. The plotted lines have markers corresponding to the average
accuracy value and bars spanning from the minimum to the maximum of the accuracy values on each
individual class.
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Figure 10. Patch scores of a fine-tuned VGG-16 network on the cardiovascular and bone datasets,
at different extensions of the fine-tuning. The markers show the average accuracy values, while the
bars extend from the minimum to the maximum accuracy values on each individual class.

For both the cardiovascular and the bone tissue datasets, the trend of the accuracy values was not
very different from the one obtained on the colorectal images: the accuracy tended to decrease when the
backpropagation was applied to progressively smaller portions of the network. This is not surprising,
as the fine-tuning allows creating more problem-specific features than the ones learned on ImageNet.
On the other hand, the accuracy drop was fairly small when the first three blocks of the networks were
left unchanged. Hence, partial fine-tuning can be applied in the case of a lack of computational time and
training resources, without significant loss in terms of classification performance. As can be gathered
from the graph, transfer learning obtained very good classification results (the complete fine-tuning
obtained 97% and 94%, respectively, for the cardiovascular and the bone dataset). According to our
tests, the BOF + SVM approach had on average accuracy values 15% lower than the fine-tuned CNNs.

The same considerations can be drawn analyzing the per-class accuracies. Figure 11 shows
confusion matrices of the CNNs with complete fine-tuning (and, for comparison, of the BOF + SVM
methodology), respectively, for the cardiovascular and for the bone tissue dataset. Once again,
the fine-tuned CNNs obtained higher classification performance and higher consistency of the accuracy
on different histological classes.

Based on our results, complete fine-tuning is the transfer learning strategy leading to the
best classification accuracy. However, how does fine-tuning from a completely different domain
(e.g., ImageNet) compare with fine-tuning from a similar image domain, say histopathological images
from a different tissue? To answer such a question, we used as a case study the pleural tissue dataset
described in Section 2.2 (see Figure 3c), always using VGG-16 as the CNN architecture. As they both
contain epithelial tissue samples, the pleural and the colorectal tissue datasets are in theory the most
similar from a histological point of view. Hence, we investigated the possibility of transferring the
CNN across these two histological classification problems.
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Figure 11. Confusion matrices on the cardiovascular (a) and bone (b) tissue datasets, respectively of
a CNN with complete fine-tuning and of a BOF + SVM framework.

In the columns of Table 4, we report the obtained pleural tissue classification accuracy
values, respectively:

1. fully training the CNN on the pleural tissue images;
2. initializing the CNN with weights learned on the ImageNet (ImageNet fine-tuning) and then

fine-tuning such weights on the pleural images;
3. initializing the same CNN with the weights that obtained the best classification accuracy on the

CRC dataset, as reported in Section 4 (CRC fine-tuning).

Even in this case, we report the total accuracy value ± the span of the accuracy values on each
individual class of the pleural dataset.

Table 4. Pleural tissue classification accuracy (%). Comparing cross-domain and intra-domain transfer
learning strategies.

Full Training ImageNet Fine-Tuning CRC Fine-Tuning

75 ± 1% 80 ± 2% 77 ± 2%

As can be gathered from the table, both the transfer learning methods overcame full training,
which is consistent with our previous results. On top of that, fine-tuning a network pre-trained on
a completely different domain (ImageNet) obtained even better results than fine-tuning a network
pre-trained on a different histological dataset (80% against 77%). This further confirms that,
provided that the original training domain is sufficiently large, miscellaneous, and general in terms of
image characteristics, cross-domain transfer learning is a feasible solution to the problem of histological
image classification with CNNs.
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5. Discussion

Analyzing the outcome of our experiments, we can draw the following considerations.
The results obtained training the CNNs from scratch were rather disappointing, regardless of the

depth and of the architectural complexity of the model. Indeed, none of the tested architectures ensured
accurate classification of all the categories of interest. A reasonable explanation of this result is the
paucity of the training set, not in terms of the number of image patches (which is comparable to most
literature approaches), but in terms of the number of patients per class. Nonetheless, obtaining a much
larger training dataset is not always a viable solution in a clinical setting, as it may have prohibitive
costs both in terms of annotation efforts, as well as computational resources. On top of that, as already
discussed, biological tissues have tremendous variability even within the same histological class,
and usually, they do not have canonical orientations and shapes. Hence, synthetic data augmentation
techniques commonly applied in computer vision tasks (e.g., image rotations, shifting, flipping, etc.)
come with a serious risk of over-fitting.

Extracting knowledge from a CNN that has been trained using a large labeled dataset from
a different application (i.e., the ImageNet, which contains photographs of every-day objects and
natural scenes, and not histological samples) seems a viable alternative to the classic training from
scratch or to artificial data augmentation. This contradicts the assumptions of the initial works on
transfer learning, according to which the transfer had to involve two similar imaging domains to
be successful. The observed results show that the low-level features learned by the first stages of
a CNN can be successfully generalized to the context of histological image classification and provide
comparable or even better classification performance than traditional handcrafted descriptors. Indeed,
using the CNN learned on the ImageNet as a fixed features’ generator provided acceptable classification
even with a rather simple classifier based on support vector machines. Hence, this may be the preferred
solution when the computational burden of the learning procedure and the availability of training
data are a serious constraint.

In terms of sheer accuracy, fine-tuning the pre-trained CNN is the transfer learning approach that
obtained the best performance, when compared with the traditional BOF + SVM approach, and the
complete fine-tuning slightly outperformed the partial one. Indeed, fine-tuning allows extracting
more context-specific features than the CNN + SVM approach. On the other hand, it is more time
consuming, as it still requires running the backpropagation algorithm on the training set. Nonetheless,
the computational time is more than halved compared to training the CNN from scratch and ensures
good classification with relatively smaller training sets.

In general, fine-tuning works best when it is applied to the entire deep network. Nevertheless,
our experiments on multiple histological datasets showed that the backpropagation can be limited to
a reduced number of high-level blocks, without impacting the classification performance too much.
The extension of the fine-tuning can be set with a cost-benefit analysis, based on the extent of the
training set and the computational resources available.

6. Conclusions

The purpose of the current study was to investigate the practical use of deep learning, and more
specifically of convolutional neural networks, for the automatic classification of histopathological
images, which is a task characterized by very high intra-class variability. To this aim, we tested the
performance of several CNN models on the task of colorectal polyp assessment, which is a very
challenging and important multi-class classification problem in histopathology. CNNs are, in theory,
ideal for this classification task, as they avoid the extraction of a fixed set of handcrafted features.
Nonetheless, our experiments revealed a non-satisfactory performance of the CNNs trained from
scratch, regardless of the depth and architectural complexity of the model. The limited number of
training examples, coupled with the high complexity and variability of the image characteristics,
was held responsible for the bad performance of the deep neural network approach.
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As an alternative to training the CNN from scratch on the histological samples, we investigated the
possibility of using transfer learning techniques, based on a CNN model pre-trained on a completely
different classification problem (i.e., the ImageNet). More specifically, we designed and experimentally
compared three different techniques involving transfer learning, namely (i) using the pre-trained CNN
to extract features for a separate machine learning framework, consisting of a PCA for dimensionality
reduction and a SVM as classifier, (ii) fine-tuning on histopathological images a selected number
of blocks of the pre-trained CNN, and (iii) fine-tuning the whole pre-trained CNN, using a priori
knowledge from ImageNet just for weights’ initialization.

In our experiments, all the transfer learning methodologies outperformed the CNN trained from
scratch, as well as a traditional BOF + SVM framework, showing that using CNN models learned on
a completely different dataset and classification context is a viable solution and solves the issues of
having very large annotated datasets for the training. Among the transfer learning methodologies,
the complete fine-tuning was the one obtaining the best results in terms of mean and per-class accuracy.
On the other hand, even the other transfer learning techniques obtained reasonably good classification
performance, with even lesser computational time. The same conclusions were confirmed by additional
experiments on different histological problems.

In conclusion, our findings validate the potentials of transfer learning methodologies for the
automated classification of histopathological images, leveraging models learned on a completely
different classification problem. This solves the problem of the unavailability of large annotated
training sets, as well as of computational resources for the training and finally opens the way toward
the practical and efficient exploitation of convolutional neural networks in computer-aided diagnosis
systems for digital pathology.
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