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Abstract: The implementation of dynamic delay calculations (DDCs) is challenging for ultra-compact
ultrasound imaging due to the enormous computation and power consumption requirements. Here,
we present an efficient pseudo-DDC method based on optimal zone segmentation (PDC-Optimal),
which significantly decreases these requirements relative to an unconstrained DDC method:
reductions in flip-flops of 84.35% and in look-up tables of 94.19%, respectively. The reductions lead to
an up to 94.53% lower dynamic power consumption and provide image quality comparable to the
unconstrained DDC method. The proposed PDC-Optimal method also provides adaptive flexibility
between beamforming accuracy and battery life using the delay error allowance, a user-definable
parameter. A conventional pseudo-DDC method using uniform zone segmentation (PDC-Conv)
presented substantial image degradation in the near imaging field when the same number of zone
segments was used. Therefore, the PDC-Optimal method provides an efficient yet flexible DDC
solution to improve the experiences for ultra-compact ultrasound imaging system users.

Keywords: point-of-care diagnostics; diagnostic ultrasound; ultra-compact ultrasound system;
dynamic receive beamforming; adaptive performance control; power-efficient; hardware-efficient

1. Introduction

In point-of-care ultrasound (US), demands for advanced imaging algorithms have been
emphasized [1–4]. However, the implementation of such advanced features in an ultra-compact
US system remains challenging because complex computations must be performed with limited
hardware resources, circuit volume, and battery capacity, decreasing clinical efficacy.

Several efficient beamforming and/or compressive sensing algorithms have been proposed to
address such demands [5–10]. The dynamic receive beamformer is one of the most complex processing
components in a US imaging system; our previous research found that it contains 46.5% of the total
hardware resources and 25.4% of the total power consumption of a system-on-chip solution for
portable US imaging [11]. Here, we particularly focus in an efficient implementation of dynamic
delay calculations (DDC) during dynamic receive beamforming, which allocates complex square
roots and multipliers at each channel [12]. Although a time-sharing pseudo-DDC method (PDC-TS)
has been proposed to alleviate this burden, it does not provide any flexibility with the complex
multiplexing hardware structure [11,13]. A look-up-table (LUT)-based DDC method was proposed
to address this problem and provide both high flexibility and reduced hardware usage by adopting
a pseudo-dynamic delay interpolation concept, which is referred to as the “PDC-Conv” method in
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this paper. The PDC-Conv method interpolates between the representative delays of adjacent “zone
segments” divided with a uniform distance within an entire imaging depth. With this method, both the
use of computational units and the LUT size can be reduced [2,14]. However, its practical use in a US
system has been difficult, as there are no clear design guidelines to regulate beamforming quality and
hardware usage (e.g., the number and length of a zone segment, bit quantization in delay calculation,
etc.). The lack of guidelines leads to irregular imaging performance, especially at near imaging depth,
due to the fixed number and length of zone segments regardless of the dynamic changing in delay
increments over the imaging depth.

In this paper, we propose a pseudo-DDC method using an optimal zone segmentation with
non-uniform intervals (PDC-Optimal) for an efficient implementation of the ultra-compact US imaging
system with a clear design methodology. This would provide more precise beamforming over an
imaging field of view compared with the PDC-Conv method when using the same amount of hardware
resources. In addition, the proposed PDC-Optimal method will empower adaptive management of
dynamic power consumption as a function of user-definable delay error allowance, which enables an
optimized user experience on various diagnostic circumstances requiring different levels of image
quality and amounts of battery life.

2. Materials and Methods

2.1. Dynamic Delay Calculation for Diagnostic U2.3ltrasound

Figure 1 shows the conceptual diagram of the dynamic receive beamforming block for the
diagnostic US, which consists of the delay compensation for the digitized RF signals at each channel
and its summation at each imaging depth. Each DDC event for a dynamic delay can be equated by

tch(x, z) =

√
(xch − x)2 + (zch − z)2 + R

c
(1)

where (xch, zch) denotes the Cartesian geometry of the ch-th channel of the US array transducer ranging
from 1 to the total number of channels (e.g., 128–256 in general); R is the distance between the center
of the US transducer and a focusing point (x, z); t is the elapsed time since an acoustic transmission; c
is the mean speed of sound in soft biological tissue, i.e., 1540 m/s.
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Figure 1. Illustration for dynamic receive beamforming in a medical ultrasound system.

In general, an electronic circuit for the DDC operates at an analog-to-digital conversion (ADC)
frequency, usually >20 MHz, and its real-time calculation should be repeated at each beamforming
point of multiple vertical scanlines (e.g., 128–512) comprising an image frame. For example, when
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assuming a DDC sequence for 128 scanlines and an 8 cm imaging depth at a 40 MHz ADC frequency in
a 32-channel US system, 510.20 million of DDC events per second would be needed for a 30 Hz frame
rate. Therefore, an efficient electronic DDC implementation would be crucial to secure the efficacy of an
ultra-compact US imaging system in terms of hardware resource utilization and power consumption.

2.2. Pseudo-Dynamic Delay Calculation (PDC) Using Optimal Zone Segmentation

The PDC-Optimal method consists of a delay accumulator and a dedicated LUT module at each
channel (Figure 2a). The LUT at each channel stores a preset for each zone segment, and it is fed to a
dedicated delay accumulator for interpolating a dynamic delay at each focusing point during receive
beamforming. Figure 2b shows how one can determine the delay increment and length of the N-th
zone segment, i.e., ∆dN(ch) and LN(ch), as a function of the user-definable delay error allowance, τ. τ

is defined by half of the target delay accuracy (e.g., 0.125, 0.25, 0.5, and 1 of τ for 0.25, 0.5, 1, and 2 of
the target time delay resolution in the sample domain, respectively). This definition yields f s/2τ of
receive beamforming accuracy, in which f s is the data sampling frequency.
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Figure 2. The proposed PDC-Optimal method. (a) Schematic diagram; (b) determination of the Nth

zone length, LN(ch), which provides flexibility between beamforming accuracy and the number of
calculations needed. Dotted line presents an ideal delay for each beamforming depth, z, at a channel,
ch. LUT: look-up table; RTC: real-time controller; D: delay latch; RF: radio-frequency signal.

In Figure 2b, the ideal receive delay calculated by the unconstrained DDC method (i.e.,
dideal(z, ch)) is represented as a dashed line. Other solid lines present the receive delay of the
PDC-Optimal method corresponding to τ. As one can see, as τ increases, the PDC-Optimal method
has a larger N-th zone length although its delay error from the ideal delay is worsening. Note that
modern US imaging systems are generally designed for 0.25 of target time delay resolution with a 4-f0
data sampling rate, in which f0 is the center frequency of an employed US transducer, leading to 16-f0
beamforming resolution [15,16]. The zone segment is defined by

LN(ch) =arg max
i

(
i |
∣∣∣∣∣ dideal(zN(ch) + i, ch) −

dN−1(ch) − i · ∆dtest(ch)

∣∣∣∣∣< τ

)
. (2)

∆dtest(ch) ranges from 0 to 1 in a bit quantization resolution, and index i ≥ 1 (integer number).
The initial bit quantization resolution of ∆dtest(ch) (i.e., Q) is in 18 bit, determined for the
highest-possible delay calculation accuracy from the default bit width of basic IPs in a modern
field programmable gated array (FPGA). The Q would be further optimized in the following design
procedures. dN−1(ch) is the final delay at the previous N-1th zone segment; zN(ch) is the starting depth
index of the N-th zone segment, given by

zN(ch) =
N−1

∑
i = 1

Li(ch). (3)
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The ∆dtest(ch) defining LN(ch) is the optimal delay increment in the N-th zone segment, denoted
by ∆dN(ch) in this paper. The pre-defined preset for each zone segment is stored in an LUT allocated at
each channel: ∆dN(ch) and LN(ch). Therefore, total LUT size is dependent to Q so that an optimization
would be needed. If the bit resolution for ∆dN(ch) is too low, the quantization error would deteriorate
the designed beamforming accuracy in the N-th zone. However, a redundant bit resolution is either
suboptimal, as the total data width of the preset would be increased. Therefore, we used a heuristic
optimization between the number of zone segments and the LUT size for an individual US transducer,
which is calculated by

∆dN [ch] = arg min
∆dN(ch)Q

LUTQ, (4)

which is subject to an unsigned fixed number Q, given u1.Q− 1 as a fractional bit resolution.
d·Qe and LUTQ are the corresponding quantization operator and LUT memory size, respectively.
The optimization of Q is conducted downward from an 18 bit resolution to lower resolutions (18, 17,
16, etc.) The LUT size LN(ch) is evaluated for each quantization resolution, and d∆dN(ch)Qe giving
the minimal LUTQ is set as ∆dN [ch]. Note that the bit resolution for LN(ch) is defined by the maximal
zone length in sample (e.g., 10 bits for 1,024 samples = a 2 cm imaging depth at 40 MHz of f s and 1540
m/s of mean sound propagation speed in a biological tissue).

The pseudo-dynamic delay is calculated in our PDC-Optimal method as follows. In the first
zone segment, the system writes ddideal(1, ch)eQ = ∆d1[ch] on a delay latch (“D” in Figure 2a) to be
used as dN−1[ch]. When operating, a delay accumulator generates a pseudo-dynamic delay using the
calculated preset for each zone segment, which is given by

d[zN(ch) + i, ch] = dN−1[ch] + i · ∆dN [ch] (5)

in which i indicates each depth sample point within a zone segment, i.e., 1, 2, . . . , LN(ch). The preset
is updated when translating to the next zone segment.

2.3. Simulation Setup

The delay calculation errors of the PDC-Conv and PDC-Optimal methods were evaluated
compared to the unconstrained DDC method. The evaluation was performed with specific transducer
specifications: 128-channel linear US array transducer at 15 MHz f0 with 100 µm of element pitch.
The –6 dB fractional bandwidth was 48% from 11.4 MHz to 18.6 MHz. A 32-channel US system was
assumed. The preset for the LUT (i.e., LN(ch), and ∆dN(ch)) was pre-calculated for 20 mm of imaging
depth, which is typical in US diagnostics with the given f0. The f s was 60 MHz, i.e., 4 f0. Moreover,
we conducted a comparative study for the ultrasound brightness mode (B-mode) images reconstructed
by PDC-Conv and PDC-Optimal methods. The imaging quality expected from the aforementioned
system configuration and imaging specifications was compared in a Field-II simulation [17]. The target
geometry was comprised of the wire targets aligned in an axial direction at a center field of view from
2 mm to 17 mm in 1 mm intervals. The hardware resource utilization and dynamic power consumption
were also estimated respectively in 32-channel unconstrained DDC, PDC-TS, and PDC-Optimal
methods synthesized and implemented by a Vivado 14.4 on an Artix-7 FPGA (xc7A200T, Xilinx Inc.,
San Jose, CA, USA). Note that the estimated dynamic power consumption will project computational
complexity in each method from the heterogeneous resources available in the FPGA (e.g., multipliers,
adders, multiplexers, memories, etc.). The input voltages and operating frequency were equally
applied for each method: f s, 40 MHz; 2.5 V for low-voltage differential signaling (LVDS) input; 3.3 V
and 1.8 V for low-voltage complementary metal oxide semiconductor (LVCMOS) input.

3. Results

Figure 3a shows the mean number of zone segments across all channels as a function of Q for
0.125, 0.25, 0.5, and 1 of τ. As shown in Figure 3b, the total LUT size decreases with decreasing Q,
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although the mean number of zone segments remains fixed. However, once Q becomes lower than the
optimal, the number of zone segments increases because a delay error would more easily exceed τ

with quantization error in Equation (2). Conversely, each τ yielded a different optimal bit quantization
resolution: 11, 9, 9, and 8 for 0.125, 0.25, 0.5, and 1 of τ, respectively (Figure 3b), which leads to differing
mean numbers of zone segments: 12, 10, 7, and 6, respectively (Figure 3a). As a result, the total LUT
sizes per channel were 982, 700, 502, and 380 bytes for 0.125, 0.25, 0.5, and 1 of τ, respectively.
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Figure 4 presents the mean delay error across all delay approximation channels. An identical
number of zone segments was used for the PDC-Conv and PDC-Optimal methods. For both
methods, the errors were proportional to the number of zone segments, defined by τ in the proposed
PDC-Optimal method. The delay error was well delimited in the proposed PDC-Optimal method at
0.125, 0.25, 0.5, and 1 over the entire imaging depth (Figure 4b). However, the PDC-Conv method
exhibited unregulated performance especially in the near imaging depth, as shown in Figure 4a.
In quantitative evaluation, the means and standard deviations of the dynamic delay errors throughout
the imaging depths (0–20 mm) were 6.25 ± 1.82, 7.50 ± 2.39, 10.16 ± 3.94, and 11.66 ± 4.73 for the
PDC-Conv method and 0.12 ± 0.02, 0.24 ± 0.04, 0.48 ± 0.09, and 0.99 ± 0.01 for the PDC-Optimal
method, respectively at 0.125, 0.25, 0.5, and 1 of τ (p < 0.0001).
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PDC-Optimal methods for varying τ: 0.125, 0.25, 0.5, and 1. An identical number of zone segments
was used for both methods (i.e., 12, 10, 7, and 6 for 0.125, 0.25, 0.5, and 1 of τ, respectively).
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Figure 5a shows the point spread functions (PSFs) at different imaging depth for PDC-Conv
and PDC-Optimal methods. In this figure, PSFs in the left and right subcolumns are reconstructed
by PDC-Conv and PDC-Optimal methods corresponding to τ, respectively. Figure 5b,c shows a
quantitative evaluation of the correlation coefficients (CCs) of the PSFs and those by the unconstrained
DDC images at each depth. According to the average CCs in the superficial imaging depth (i.e.,
0–5 mm), the PDC-Optimal method consistently yielded improved image quality compared to the
PDC-Conv method: 1.00 ± 0.00, 0.99 ± 0.00, 0.97 ± 0.01, and 0.84 ± 0.05 for the PDC-Optimal method
and 0.99 ± 0.01, 0.98 ± 0.01, 0.82 ± 0.27, and 0.60 ± 0.28 for the PDC-Conv method for 0.125, 0.25,
0.5, and 1 of τ, respectively. Otherwise, there was no significant difference in the deeper imaging
depth (6–20 mm) between the methods. Both methods yielded > (0.98 ± 0.03), even when τ is set to 1.
These results confirm the efficacy of the PDC-Optimal method: a well-defined design methodology
with user-definable parameter τ, which is not available with the PDC-Conv method, and increasing
uniformity in image quality compared to the PDC-Conv method.
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Correlation coefficients of PSFs in the (b) PDC-Conv and (c) PDC-Optimal methods and those by the
unconstrained DDC for varying τ (i.e., 0.125, 0.25, 0.5, and 1).

Table 1 shows the hardware utilization and power consumption in the unconstrained DDC,
PDC-TS, and PDC-Optimal methods. Active hardware resources for the PDC-Optimal method
were significantly lower than those required by the unconstrained DDC method: the use of FF
by 84.35–87.23% and the use of LUT by 94.19–95.78% for τ ranging from 0.125 to 1. Compared to the
PDC-TS method, the hardware complexity of the PDC-Optimal method was comparable when τ is
0.125, although 13.83% and 49.54% of FF and LUT requirements could be further reduced when τ

is 1. These savings in hardware resources reduces power consumption. The PDC-Optimal method
decreased the dynamic power usage by 92.04–94.53% compared to the unconstrained DDC method
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and saved 20.00–45.00% of the dynamic power compared to the PDC-TS method for τ values ranging
from 0.125 to 1.

Table 1. Hardware resource utilization and on-chip power consumption of the DDC, PDC-TS, and
PDC-Optimal methods in a target FPGA. FF: flip-flop; LUT: look-up table.

Method DDC PDC-TS
PDC-Optimal (τ)

0.125 0.25 0.5 1

Hardware
resource

FF 20,972 3108 3283 2956 2886 2678
LUT 45,059 3769 2616 2330 2173 1902

Dynamic power (mW) 402 40 32 27 24 22

4. Discussion and Conclusion

In the last few decades, there have been extensive accomplishments in point-of-care US imaging
with several electronic systems in dedicated units [2,11], tablet PCs [18], and smartphone-based form
factors [19]. This technological evolution inevitably necessitates more efficient receive beamforming for
better clinical efficacy in terms of beamforming precision, system volume, and battery life. In this paper,
we present the PDC-Optimal method for efficient implementation of ultra-compact US imaging systems
as well as flexible user experience in various clinical settings. Using the LN(ch) and ∆dN(ch) optimized
for each imaging zone (Figures 2 and 3), the PDC-Optimal method presented the flexible yet regulated
beamforming accuracy by a user-definable delay error allowance, τ. The beamforming accuracy of the
PDC-Optimal method could be comparable to the unconstrained DDC method, whereas the PDC-Conv
method suffered from substantial image degradation in the near imaging field when the same number
of zone segments was used (Figure 4). Moreover, the PDC-Optimal method could significantly reduce
hardware complexity and dynamic power consumption compared to the unconstrained DDC and
PDC-TS methods (Table 1), which will enable a more compact system volume and a lighter weight
with a longer battery life. We already embodied the proposed PDC-Optimal method in 16-channel
tablet PC-based and smartphone-based prototypes using a low-cost FPGA (Spartan-6 LX150, Xilinx
Inc., USA) [18–20]. The prototype was 180 × 55 × 35 mm3 and ~180 g, supporting B-mode and color
Doppler mode at 1 of τ. The optimization of the PDC-Optimal method in these prototypes is currently
being conducted and will be presented in a future publication.

These advantages of the PDC-Optimal method may lead to the improvement in its clinical efficacy
in point-of-care diagnostics. For example, in prehospital settings in disaster and battlefield medicine,
requiring as many diagnostic tasks as possible with a single charging, the PDC-Optimal method may
be configured for the longest-possible operation time while moderating beamforming accuracy (e.g.,
τ ≥ 1). Moreover, if there is any need for high-precision imaging during the imaging sessions, an
update of the LUT (e.g., τ < 1) would shortly take effect and provide a higher image quality (up to
the unconstrained DDC accuracy) over the entire imaging depth. Note that the transition of τ may
necessitate a short FPGA reconfiguration time, but it could be minimized by the partial reconfiguration
method [21]. On the other hand, in a daily diagnostic setting at patients’ bedside with accessible power
supplies nearby, the maximal performance setting may be continuously used (i.e., τ = 0.125 for 16-f0
temporal resolution in delay compensation). In summary, the proposed PDC-Optimal method with a
clear design methodology will support dynamic performance calibration for the best user experiences
in the widest possible clinical settings with a single US imaging platform.

Our further work will be first focused on a translational investigation to establish the standards
in beamforming accuracy and battery life in various clinical settings with considerations on different
US transducer specifications (e.g., FAST examination for internal bleeding or pneumothorax using
low-f0 linear/convex arrays with wide aperture, bedside triage of skin or musculoskeletal diseases
using high-f0 linear arrays with narrow aperture, and extreme settings for disaster, battlefield, and/or
outdoor diagnostics). This study will help us to find the detailed parameters for each application
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to secure an effective range of beamforming accuracy (e.g., relative mainlobe width to DDC), the
minimal battery life, and an ergonomically applicable system volume. From the quantitative design
specifications established, a prototype will be further optimized to support the clinical diagnosis in
the most effective form factor. Afterward, the prototype system will be validated by a comprehensive
performance evaluation and human clinical trials in practical circumstances. In addition, we also
envision the extended use of the proposed PDC-Optimal method beyond the conventional US
diagnostics. The photoacoustic (PA) imaging is an emerging biomedical imaging modality, in which a
rich optical absorptive contrast at acoustic imaging depth (several centimeters) can be obtained [22–24].
Recently there have also been arising demands for, and investigations on, compact PA imaging
systems [25–27], where an efficient beamforming solution is essential [28–30]. This may be needed for
space-limiting clinical applications such as surgical and interventional guidance [24,31–33]. Moreover,
a compact system volume in PA imaging may extend its scientific efficacy. For example, it may enable
an implantable and/or wearable PA neurosensing system for continuous monitoring, leading to
successful translations of current neuroscientific findings and neuro-engineering innovations into
practice [24–36].
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Abbreviations

DDC dynamic delay calculations
PDC pseudo-dynamic delay calculations
FF flip-flop
LUT look-up-table
LVDS low-voltage differential signaling
LVCMOS low-voltage complementary metal oxide semiconductor
PDC-TS time-sharing pseudo-dynamic delay calculations
PDC-Conv conventional pseudo-dynamic delay calculations using uniform zone segmentation

PDC-Optimal
pseudo-dynamic delay calculations using an optimal zone segmentation with non-uniform
intervals

US ultrasound
ADC analog-to-digital conversion
RTC real-time controller
RF radio-frequency signal
FPGA field programmable gated array
PSF point-spread function
CC correlation coefficient
PA photoacoustic
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