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Abstract: Direct position determination (DPD) is a novel technique in passive localization field
recently, receiving superior localization performance compared with the conventional two-step
method. The DPD estimator using Doppler shifts is first proposed by Weiss, but it is not suitable for
antenna arrays. Additionally, the performance analysis of this method with system errors is absent.
This study discusses the single-step localization problem based on moving arrays and exhibits the
performance analysis via matrix eigen-perturbation theory with system errors. First, the DPD method
using angle of arrival and Doppler shifts is introduced. Then, by adding the eigenvalue perturbations
to the estimated Hermitian matrix, the asymptotic linear formulation of localization errors is derived.
Consequently, the mean square error of the DPD method is available. Finally, Cramér–Rao bound
without system errors is presented, providing a benchmark for the best localization precision and
revealing the influence of system errors on the localization precision. Simulation results demonstrate
the theoretical analysis in this study.

Keywords: direct position determination; array signal processing; Doppler shifts; matrix
eigen-perturbation theory; system errors; Cramér–Rao bound

1. Introduction

Transmitter localization has attracted significant attention in wireless communication systems.
Generally, the conventional localization approach employs a two-step processing. In the first step, the
measurement parameters (e.g., direction of arrival (DOA) [1], time of arrival (TOA) [2], time difference
of arrival (TDOA) [3], Doppler shifts [4–6], and frequency difference of arrival (FDOA) [7]) are extracted
from the received signal. In the second step, the transmitter position is determined by these estimated
parameters via maximum likelihood criterion [8] of subspace data fusion criterion [9]. Although
the conventional two-step localization method has been extensively investigated in social location
system, it cannot achieve high localization accuracy. Indeed, it is suboptimal, because the intermediate
parameters are extracted independently by each receiver station, with ignoring the constraint that all
observations must relate to the same geolocation of the emitter. Recently, direct position determination
(DPD), which exploits the intrinsic constraint and determines the source position from the received
signals in a single step, is regarded as an emerging technology in the field of localization. Compared
with the conventional two-step approach, the DPD technique [10–18] receives superior localization
performance especially under low signal-to-noise (SNR) conditions.

The DPD algorithms have been intensively investigated in recent years. Weiss first proposes
the DPD method for narrowband source based on Doppler shifts in Reference [10]. Then, Tirer
and Weiss investigate a high-resolution method based on minimum variance distortonless response
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(MVDR) without the knowledge of the number of emitters in Reference [11]. To locate the wideband
random emitter, the DPD approach based on time delay and Doppler shifts is developed by Weiss [12].
Additionally, a fast DPD method for known wideband signal waveforms is developed by [13]. It should
be emphasized that each receiver in above methods is equipped with only one antenna. As a result,
the DOA information is not fully utilized. In Reference [14], a DPD approach using antenna arrays is
first investigated, demonstrating the effectiveness of the DOA information on improving performance.
Based on the work of [14], the DPD methods applied in special conditions are developed. A DPD
estimator for a novel localization architecture, called "Multiple Transponders and Multiple Receivers
for Multiple Emitters Positioning System" is proposed [15]. DPD approaches are further designed
for sources with special properties such as constant modulus [16], orthogonal frequency division
multiplexing [17], and cyclostationary [18]. It is easily observed that the DOA information is conducive
to the improvement of positioning accuracy. Moreover, note that all results in Reference [10–18] reveal
that the direct positioning method has a superior localization performance than that of the conventional
two-step method, especially under low SNRs.

In wireless localization scenarios, system errors (i.e., the uncertainty of the receiver position and
velocity) often occur. Obviously, the localization performance is deteriorated by environment noise
and system errors in this condition. It is well known that the intermediate parameter estimation is
sensitive to system errors. When system errors exist, Cherchar [19] and Vincent [20] give statistical
performance analyses of the DOA estimation based on SDF and ML criterions, respectively; Hu [21]
deduces the localization performance analysis using TDOA and FDOA; and Hari [22] provides an
effect of spatial smoothing on the performance analysis of subspace methods. However, the above
analyses are only served for the conventional two-step location estimator. It can be predicted that
system errors also affect the localization precision of the DPD estimator. The performance of the
DPD approach is available in Reference [23–25], but it is only useful for known signal waveforms.
Following the work of [14], Wang presents the performance analysis for unknown signal waveforms
in presence of array model errors in Reference [26]. Furthermore, Tirer provides the performance
analysis of a high-resolution DPD method based on MVDR in Reference [27]. However, the results in
Reference [27,28] could not be applied in moving arrays application. Consequently, in the presence
of system errors, there is a strong demand for the performance analysis of single-step method for
unknown signal waveforms with moving arrays.

Because the single-step approach in Reference [10] plays a fundamental role in this field, we make
related improvement and analysis based on it. Following the requirements of current situations, this
paper extends the DPD estimator in Reference [10] to moving arrays application, and exhibits the
performance analysis via matrix eigen-perturbation theory with system errors. First of all, the signal
model is reconstructed by using Doppler and DOA information. Then, since the solution in DPD
method is expressed by finding the maximum eigenvalue of the Hermitian matrix in the cost function,
system errors can be shown as eigenvalue perturbations on this Hermitian matrix. Based on matrix
eigen-perturbation results, which express the perturbations as an additive noise on the Hertmitian
matrix, a theoretical analysis is presented. Moreover, the expression of the mean square error (MSE) of
direct localization with system errors is provided. Finally, the Cramér–Rao bound (CRB) formulation
for the single-step method is also derived, which gives a benchmark for the best localization accuracy
for any estimator. Note that the localization errors of the DPD estimator can asymptotically reach the
associated CRB in Reference [10]. It is worth mentioning that the CRB is in absence of system errors,
which plays a reference to measure the precision loss resulted from system errors.

The rest of this paper is organized as follows. Section 2 lists the notations used in this paper.
Section 3 constructs the signal model and formulates the problem. Section 4 discusses the extension
of Weiss’s method. Section 5 gives the statistically performance analysis of the DPD estimator with
system errors. Section 6 presents several numerical simulations to verify the theoretical analysis.
Finally, Section 7 draws the conclusions.
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2. Notations

In this section, some mathematical notation explanations that will be used through this paper are
listed in Table 1.

Table 1. Mathematics notation explanation

Notation Explanation

[·]T transpose

[·]H conjugate transpose

·(R) real part

·(I) imaginary part

diag{·} diagonal matrix with diagonal entries

blkdiag{·} diagonal matrix with diagonal matrices

⊗ Kronecker product

In n× n identity matrix

0n n× n matrix with zero

3. Signal Model

We consider L moving receivers and a stationary emitter in this scenario. These receivers intercept
the received signal at K short intervals along their trajectory. To introduce the DPD signal model,
two assumptions are made.

Assumption 1. Let ol,k and vl,k denote the coordinate and velocity vector of the lth receiver at the kth

interception interval. For easy expression, let pl,k = [oT
l,k, vT

l,k]
T denote the system parameter of the lth receiver.

The observation is quiye short, thereby these two vectors are unchanged at each interception interval. Furthermore,
let z denote the emitter position.

Assumption 2. The signal bandwidth is small compared to the inverse of the propagation time among receivers
(i.e., B < 1/τmax , where τmax denotes the maximal propagation time among the receivers). Consequently, the
observer’s spatial separation receives a limitation for a given signal bandwidth.

After being sampled at t = nTs, the complex signals ỹl,k(n) observed by the lth receiver at the kth
interception interval is expressed as

ỹl,k(n) = bl,ka(z, ol,k)sk(n)ej2π fl,k + nl,k(n)n = 1, . . . , N (1)

for l = 1, . . . , L and k = 1, . . . , K, where N denotes the number of sample points at each interval.
During the kth interception interval, bl,k and a(z, ol,k) are the channel attenuation and the steering
vector between the emitter and the lth receiver, sk(n) is the unknown complex signal envelope of the
emitter, nl,k(n) denotes the Gaussian noise vector, and fl,k is the Doppler frequency observed by the
lth receiver is expressed by [10]

fl,k = ∆ fk + fcµl,k

(
z, pl,k

)
(2)

where ∆ fk is the unknown transmitted frequency, fc is the nominal frequency, and µl,k

(
z, pl,k

)
is

shown as

µl,k

(
z, pl,k

)
=

1
c

vT
l,k(z− ol,k)

‖z− ol,k‖
. (3)

here c is the signal speed. Then, (1) can be expressed by a vector form as

ỹl,k = bl,kC
(

z, pl,k

)
Bksk + nl,k = yl,k + nl,k (4)
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where
ỹl,k =

[
ỹT

l,k(1), ỹT
l,k(2), . . . , ỹT

l,k(N)
]T

sk = [sk(1), sk(2), . . . , sk(N)]T

nl,k =
[
nT

l,k(1), nT
l,k(2), . . . , nT

l,k(N)
]T

C
(

z, pl,k

)
= a(z, ol,k)⊗A

(
z, pl,k

)
a(z, ol,k) =

[
1, ej2π d

λ sin θl,k , . . . , ej2π d
λ (M−1) sin θl,k

]T

A
(

z, pl,k

)
= diag

{
exp

(
j2π fcµ

(
z, pl,k

)
ÑTs

)}
Bk = diag

{
exp

(
j2π∆ fkÑTs

)}
(5)

with Ñ = [1, 2, . . . , N]T. Note that λ denotes signal wavelength.

4. Improvement on Previous Work

This section discusses the DPD methods, which locate the emitter directly through the raw data.
Weiss [10] first proposed a ML-based DPD method using Doppler shifts. However, when array sensors
are adopted in receivers, angle information should be used to enhance localization performance. Hence,
we extend Weiss’s method through the combination of angle and Doppler. The likelihood function for
ỹ can be formulated by

L(ζ) =
1

(πσ2)
LKMN exp

(
− 1

σ2

K

∑
k=1

L

∑
l=1

∥∥∥ỹl,k − bl,kC
(

z, pl,k

)
Bksk

∥∥∥2

2

)
(6)

ζ denotes all unknown parameters, where

θ =
[
b(R)T, b(I)T, s(R)T, s(I)T, ∆fT, zT

]T
(7)

here, b =
[
bT

1 , bT
2 , . . . , bT

K

]T
with bk = [b1,k, b2,k, . . . , bL,k]

T, s =
[
sT

1 , sT
2 , . . . , sT

K
]T, ∆f =

[∆ f1, ∆ f2, . . . , ∆ fK]
T. The associated logarithmic likelihood function can be written as

LLn(ζ) = −LKMN ln πσ2 − 1
σ2

K

∑
k=1

L

∑
l=1

∥∥∥ỹl,k − bl,kC
(

z, pl,k

)
Bksk

∥∥∥2

2
(8)

Therefore, the estimation of noise power σ2 is

σ̂2 =
1

LKMN

K

∑
k=1

L

∑
l=1

∥∥∥ỹl,k − bl,kC
(

z, pl,k

)
Bksk

∥∥∥2

2
(9)

By substituting (9) into (8), the estimation of parameter ζ can be determined by

{
b̂l,k, ŝk, ∆ f̂k, ẑ

}
= argmin

K

∑
k=1

L

∑
l=1

∥∥∥ỹl,k − bl,kC
(

z, pl,k

)
Bksk

∥∥∥2

2
(10)

Next, the optimization solution of (10) is provided. First, by minimizing the above expression, b̂l,k
is estimated by [14]

b̂l,k =

(
C
(

z, pl,k

)
Bksk

)H
ỹl,k(

C
(

z, pl,k

)
Bksk

)H(
C
(

z, pl,k

)
Bksk

) =
1
M

(
C
(

z, pl,k

)
Bksk

)H
ỹl,k (11)
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Then, after applying (11) to (10) and eliminating the constant part, (10) can be written as

{
ŝk, ∆ f̂k, ẑ

}
= argmax

K

∑
k=1

ωH
k Dk(z, pk, nk)D

H
k (z, pk, nk)ωk (12)

where 
ωk = Bksk

Dk(z, pk, nk) =
[
CH
(

z, p1,k

)
ỹ1,k, CH

(
z, p2,k

)
ỹ2,k, . . . , CH

(
z, pL,k

)
ỹL,k

]
= C(z, pk)(Yk + Nk)

(13)

with 
C(z, pk) =

[
CH
(

z, p1,k

)
, CH

(
z, p2,k

)
, . . . , CH

(
z, pL,k

)]
Yk = blkdiag

{
y1,k, y2,k, . . . , yL,k

}
Nk = blkdiag

{
n1,k, n2,k, . . . , nL,k

} (14)

Note that ωk is unknown to receivers. The maximization of (12) is solved by choosing the vector ωk
as the eigenvector associated with the largest eigenvalue of matrix Dk(z, pk, nk)DH

k (z, pk, nk). Therefore,
the optimization problem in (12) respect to z is expressed by

ẑ = argmax
K

∑
k=1

λmax

{
Dk(z, pk, nk)D

H
k (z, pk, nk)

}
(15)

where λmax{·} denotes the largest eigenvalues of the matrix.
It must be emphasized that the matrices Dk(z, pk, nk)DH

k (z, pk, nk) and DH
k (z, pk, nk)Dk(z, pk, nk)

share the same nonzero eigenvalues. Generally, the dimension of matrix DH
k (z, pk, nk)Dk(z, pk, nk) ∈

CL×L is significantly smaller than that of Dk(z, pk, nk)DH
k (z, pk, nk) ∈ CN×N . Hence, to reach for lower

computational cost, the estimation of z can be replaced by

ẑ = argmax
K

∑
k=1

λmax

{
DH

k (z, pk, nk)Dk(z, pk, nk)
}

(16)

To fully describe the proposed method, we make a computational complexity analysis. Based
on the above derivation, the calculation of DH

k (z, pk, nk)Dk(z, pk, nk) and grid search in the position
set of interest make a major contribution to the computational load. The total number of calculation
equals O

(
LM2N3 + (1 + M)N2 + (1 + N)L3 + M

)
KNp, where Np is the number of grid search points

in terms of emitter position. Since Weiss’s method uses only an antenna at each receiver, the value of M
should be 1. Therefore, the computational load of Weiss’s method is O

(
LN3 + 2N2 + (1 + N)L3)KNp.

It is readily observed that the computational complexity of out method is heavier than that of Weiss’s
method. Even with more computing resources, on the other hand, our method can offer superior
performance (see Section 6.2).

5. Statistical Performance Analysis

It is well known that the above DPD method can reach asymptotic optimal with precise system
parameters. However, system errors (i.e., the position and velocity uncertainties of airplanes or UAVs)
often occur in real life, which deteriorate the localization precision of the above DPD method greatly.
For this reason, in this section, the perturbation analysis and the MSE of the DPD method in presence
of system errors will be discussed.

We assume that the real parameters are defined as pk (k= 1, . . . , K), the observed parameters
are written as pk (k= 1, . . . , K), and the system errors are expressed by p̃k (k= 1, . . . , K). The relation
between these parameters is

p̃k = pk − pk k = 1, . . . , K (17)



Electronics 2019, 8, 235 6 of 25

Therefore, the estimation of z in presence of system errors should be determined by

ẑ = argmax
K

∑
k=1

λmax

{
DH

k (z, pk, nk)Dk(z, pk, nk)
}

(18)

Obviously, the localization performance analysis related to noise nk (k= 1, . . . , K) and system
errors p̃k (k= 1, . . . , K) should be considered simultaneously. To complete this result analysis, matrix
eigen-perturbation theory needs to be applied on (16).

5.1. Basic Theoretical Analysis Tool

Note that the key part of Weiss’s method is finding the maximal eigenvalue of Hermitian matrix,
which is disturbed by other error matrix. Relevant theory can be expressed by:

Proposition 1. Assume that Q ∈ CN×N is a positive semidefinite respect to eigenvalues λn |1≤n≤N and unit
eigenvectors αn |1≤n≤N . Moreover, assume that Q is disturbed by a matrix Q̃ ∈ CN×N , hence the perturbed
matrix can be written as Q = Q + Q̃. Finally, the relation of the eigenvalues (λn |1≤n≤N ) of Q and λn |1≤n≤N
is shown as

λn = λn + αH
n Q̃αn + αH

n Q̃EnQ̃αn + o
(
‖Q̃‖2

2

)
n = 1, . . . , N (19)

where En =
N
∑

i = 1
i 6= n

(λn − λi)
−1αiα

H
i . The detailed proof of this proposition can be found in [25,26].

5.2. Perturbation Analysis on The Cost Function

As mentioned earlier, our purpose is investigating the relationship between the MSE of the DPD
estimator and noise as well as system errors. Herein, we adopt a second-order perturbation analysis to
(18), which follows

Dk(ẑ, pk, nk) = C(ẑ, pk)(Yk + Nk) ≈ D(0)
k + D̃

(1)
k + D̃

(2)
k (20)

It is necessary to emphasize that D(0)
k is the non-perturbation terms, and D̃

(1)
k as well as D̃

(2)
k

denote the first and second-order perturbation terms, respectively. Their expression is specified by

D(0)
k = C(z, pk)Yk

D̃
(1)
k =

D
∑

d=1
〈z̃〉d

.
C
(a)

d (z, pk)Yk +
2DL
∑

d=1
〈p̃k〉d

.
C
(b)

d (z, pk)Yk+C(z, pk)Nk

D̃
(2)
k = 1

2

D
∑

d1=1

D
∑

d2=1
〈z̃〉d1

〈z̃〉d2

..
C
(aa)

d1d2
(z, pk)Yk +

1
2

2DL
∑

d1=1

2DL
∑

d2=1
〈p̃k〉d1

〈p̃k〉d2

..
C
(bb)

d1d2
(z, pk)Yk+

D
∑

d1=1

2DL
∑

d2=1
〈z̃〉d1

〈p̃k〉d2

..
C
(ab)

d1d2
(z, pk)Yk +

D
∑

d=1
〈z̃〉d

.
C
(a)

d (z, pk)Nk +
2DL
∑

d=1
〈p̃k〉d

.
C
(b)

d (z, pk)Nk

(21)

where 
.
C
(a)

d (z, pk) =
∂C(z,pk)

∂〈z〉d
,

.
C
(b)

d (z, pk) =
∂C(z,pk)
∂〈pk〉d

,
..
C
(aa)

d1d2
(z, pk) =

∂2C(z,pk)
∂〈z〉d1

∂〈z〉d2
..
C
(bb)

d1d2
(z, pk) =

∂2C(z,pk)
∂〈pk〉d1

∂〈pk〉d2
,

..
C
(ab)

d1d2
(z, pk) =

∂2C(z,pk)
∂〈z〉d1

∂〈pk〉d2

(22)

The derivation of (21) is exhibited in Appendix A, and the matrices in (22) are listed in Appendix B.
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For easy derivation, we define Qk(ẑ, pk, nk) = DH
k (ẑ, pk, nk)·Dk(ẑ, pk, nk). Following the result in

(20), the Hermitian matrix Qk(ẑ, pk, nk) is approximated by

Qk(ẑ, pk, nk) ≈ Q(0)
k + Q̃

(1)
k + Q̃

(2)
k (23)

where 
Q(0)

k = D(0)H
k D(0)

k

Q̃
(1)
k = D(0)H

k D̃
(1)
k + D̃

(1)H
k D(0)

k

Q̃
(2)
k = D(0)H

k D̃
(2)
k + D̃

(1)H
k D̃

(1)
k + D̃

(2)H
k D(0)

k

(24)

Note that error matrix is defined as

Q̃k = Qk(ẑ, pk, nk)−Q(0)
k ≈ Q̃

(1)
k + Q̃

(2)
k (25)

which is obtained by neglecting the high-order error issues.
Assume that Q(0)

k is related to eigenvalues λ
(0)
k,l |1≤l≤L as well as unit eigenvectors α

(0)
k,l |1≤l≤L ,

and Qk(ẑ, pk, nk) is associated with eigenvalues λk,l |1≤l≤L as well as unit eigenvectors αk,l |1≤l≤L .
By following the result in Proposition 1, we obtain

λk,L = λ
(0)
k,L + α

(0)H
k,L Q̃kα

(0)
k,L + α

(0)H
k,L Q̃kEk,LQ̃kα

(0)
k,L + o

(
‖Q̃k‖

2
2

)
k = 1, . . . , K (26)

where Ek,L =
L
∑

i=1

(
λ
(0)
k,L − λ

(0)
k,i

)−1
α
(0)
k,i α

(0)H
k,i .

Inserting (25) into (26) leads to

λk,L ≈ λ
(0)
k,L + λ̃

(1)
k,L + λ̃

(2)
k,L (27)

where λ̃
(1)
k,L and λ̃

(2)
k,L denote the first- and second-order distributed issues, respectively

λ̃
(1)
k,L = α

(0)H
k,L D(0)H

k D̃
(1)
k α

(0)
k,L + α

(0)H
k,L D̃

(1)H
k D(0)

k α
(0)
k,L

λ̃
(2)
k,L = α

(0)H
k,L D(0)H

k D̃
(2)
k α

(0)
k,L + α

(0)H
k,L D̃

(1)H
k D̃

(1)
k α

(0)
k,L + α

(0)H
k,L D̃

(2)H
k D(0)

k α
(0)
k,L+

α
(0)H
k,L D(0)H

k D̃
(1)
k Ek,LD(0)H

k D̃
(1)
k α

(0)
k,L + α

(0)H
k,L D̃

(1)H
k D(0)

k Ek,LD(0)H
k D̃

(1)
k α

(0)
k,L+

α
(0)H
k,L D(0)H

k D̃
(1)
k Ek,LD̃

(1)H
k D(0)

k α
(0)
k,L + α

(0)H
k,L D̃

(1)H
k D(0)

k Ek,LD̃
(1)H
k D(0)

k α
(0)
k,L

(28)

Define Jcost(ẑ, p, n) =
K
∑

k=1
λmax

{
DH

k (z, pk, nk)Dk(z, pk, nk)
}

and apply (27) in (18). Then,

Jcost(ẑ, p, n) can be approximated by

Jcost(ẑ, p, n) ≈ J(0)cost + J̃(1)cost + J̃(2)cost (29)

where

J(0)cos t =
K

∑
k=1

λ
(0)
k,L , J̃(1)cos t =

K

∑
k=1

λ̃
(1)
k,L , J̃(2)cos t =

K

∑
k=1

λ̃
(2)
k,L (30)

more specially, J̃(1)cost is written as

J̃(1)cost =
K
∑

k=1
α
(0)H
k,L D(0)H

k D̃(1)
k α

(0)
k,L +

K
∑

k=1
α
(0)H
k,L D̃(1)H

k D(0)
k α

(0)
k,L

=
K
∑

k=1
fH
1k z̃ +

K
∑

k=1
fH
2k p̃k +

K
∑

k=1
fH
3kñk

(31)
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where {
ñk =

[
nT

k nH
k
]T

fnk = F(a)H
nk

(
α
(0)
k,L

)
D(0)

k α
(0)
k,L + F(b)H

nk

(
D(0)

k α
(0)
k,L

)
α
(0)
k,Ln = 1, 2, 3

(32)

with  F(a)
1k (q) =

∂(C(z,pk)Ykq)
∂zT , F(a)

2k (q) =
∂(C(z,pk)Ykq)

∂pT
k

,

F(a)
3k (q) = C(z, pk)(diag{q} ⊗ IMN)Π1 F(b)

1k (q) =
∂
(

YH
k CH

(z,pk)q
)

∂zT , F(b)
2k (q) =

∂
(

YH
k CH

(z,pk)q
)

∂pT
k

,

F(b)
3k (q) =

(
IL ⊗ qT)C(z, pk)Π2

(33)

where 
Π1 = [IMNL 0MNL]

Π2 = [0MNL IMNL]
=
C(z, pk) = blkdiag

{
CT
(

z, p1,k

)
, CT

(
z, p2,k

)
, . . . , CT

(
z, pL,k

)} (34)

The detailed derivation of (31) to (34) can be seen in Appendix C.
Furthermore, J̃(2)cost can be formulated as

J̃(2)cost =
K
∑

k=1
α
(0)H
k,L D(0)H

k D̃(2)
k α

(0)
k,L +

K
∑

k=1
α
(0)H
k,L D̃(2)H

k D(0)
k α

(0)
k,L +

K
∑

k=1
α
(0)H
k,L D̃(1)H

k D̃(1)
k α

(0)
k,L+

K
∑

k=1
α
(0)H
k,L D(0)H

k D̃(1)
k Ek,LD(0)H

k D̃(1)
k α

(0)
k,L +

K
∑

k=1
α
(0)H
k,L D̃(1)H

k D(0)
k Ek,LD(0)H

k D̃(1)
k α

(0)
k,L+

K
∑

k=1
α
(0)H
k,L D(0)H

k D̃(1)
k Ek,LD̃(1)H

k D(0)
k α

(0)
k,L +

K
∑

k=1
α
(0)H
k,L D̃(1)H

k D(0)
k Ek,LD̃(1)H

k D(0)
k α

(0)
k,L

=
K
∑

k=1
z̃Tξ1k z̃ +

K
∑

k=1
p̃T

k ξ2k p̃k +
K
∑

k=1
z̃Tξ3k p̃k+

K
∑

k=1
z̃Tξ4kñk+

K
∑

k=1
p̃T

k ξ5kñk+
K
∑

k=1
ñH

k ξ6kñk

(35)

where
ξ ik = Σ

(a)
ik

(
α
(0)
k,L , IN , α

(0)
k,L

)
+ Σ

(a)
ik

(
α
(0)
k,L , D(0)

k Ek,LD(0)H
k , α

(0)
k,L

)
+

Σ
(b)
ik

(
D(0)

k α
(0)
k,L , Ek,L, D(0)

k α
(0)
k,L

)
+ Σ

(c)
ik

(
D(0)

k α
(0)
k,L , Ek,LD(0)H

k , α
(0)
k,L

)
+

Σ
(c)∗
ik

(
D(0)

k α
(0)
k,L , Ek,LD(0)H

k , α
(0)
k,L

)
+ Σ

(d)
ik

(
D(0)

k α
(0)
k,L , α

(0)
k,L

)
+

Σ
(d)∗
ik

(
D(0)

k α
(0)
k,L , α

(0)
k,L

)
(1 ≤ i ≤ 3)

(36)

ξ jk = Σ
(a)
jk

(
α
(0)
k,L , IN , α

(0)
k,L

)
+ Σ

(a)
jk

(
α
(0)
k,L , D(0)

k Ek,LD(0)H
k , α

(0)
k,L

)
+

Σ
(b)
jk

(
D(0)

k α
(0)
k,L , Ek,L, D(0)

k α
(0)
k,L

)
+ Σ

(c)
jk

(
D(0)

k α
(0)
k,L , Ek,LD(0)H

k , α
(0)
k,L

)
+

Σ
(c)∗
jk

(
D(0)

k α
(0)
k,L , EH

k,LD(0)H
k , α

(0)
k,L

)
Π3 + Σ

(d)
jk

(
D(0)

k α
(0)
k,L , α

(0)
k,L

)
+

Σ
(d)∗
jk

(
D(0)

k α
(0)
k,L , α

(0)
k,L

)
Π3(j = 4, 5)

(37)

ξ6k = Σ
(a)
6k

(
α
(0)
k,L , IN , α

(0)
k,L

)
+ Σ

(a)
6k

(
α
(0)
k,L , D(0)

k Ek,LD(0)H
k , α

(0)
k,L

)
+

Σ
(b)
6k

(
D(0)

k α
(0)
k,L , Ek,L, D(0)

k α
(0)
k,L

)
+ Σ

(c)
6k

(
D(0)

k α
(0)
k,L , Ek,LD(0)H

k , α
(0)
k,L

)
+

Σ
(c)H
6k

(
D(0)

k α
(0)
k,L , EH

k,LD(0)H
k , α

(0)
k,L

) (38)

with 

Σ
(a)
1k (q1, Φ, q2) = F(a)H

1k (q1)ΦF(a)
1k (q2), Σ

(a)
2k (q1, Φ, q2) = F(a)H

2k (q1)ΦF(a)
2k (q2)

Σ
(a)
3k (q1, Φ, q2) = F(a)H

1k (q1)ΦF(a)
2k (q2) + F(a)T

1k (q2)Φ
TF(a)∗

2k (q1)

Σ
(a)
4k (q1, Φ, q2) = F(a)H

1k (q1)ΦF(a)
3k (q2) + F(a)T

1k (q2)Φ
TF(a)∗

3k (q1)Π3

Σ
(a)
5k (q1, Φ, q2) = F(a)H

2k (q1)ΦF(a)
3k (q2) + F(a)T

2k (q2)Φ
TF(a)∗

3k (q1)Π3

Σ
(a)
6k (q1, Φ, q2) = F(a)H

3k (q1)ΦF(a)
3k (q2)

(39)
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

Σ
(b)
1k (q1, Φ, q2) = F(b)H

1k (q1)ΦF(b)
1k (q2), Σ

(b)
2k (q1, Φ, q2) = F(b)H

2k (q1)ΦF(b)
2k (q2)

Σ
(b)
3k (q1, Φ, q2) = F(b)H

1k (q1)ΦF(b)
2k (q2) + F(b)T

1k (q2)Φ
TF(b)∗

2k (q1)

Σ
(b)
4k (q1, Φ, q2) = F(b)H

1k (q1)ΦF(b)
3k (q2) + F(b)T

1k (q2)Φ
TF(b)∗

3k (q1)Π3

Σ
(b)
5k (q1, Φ, q2) = F(b)H

2k (q1)ΦF(b)
3k (q2) + F(b)T

2k (q2)Φ
TF(b)∗

3k (q1)Π3

Σ
(b)
6k (q1, Φ, q2) = F(b)H

3k (q1)ΦF(b)
3k (q2)

(40)



Σ
(c)
1k (q1, Φ, q2) = F(b)H

1k (q1)ΦF(a)
1k (q2), Σ

(c)
2k (q1, Φ, q2) = F(b)H

2k (q1)ΦF(a)
2k (q2)

Σ
(c)
3k (q1, Φ, q2) = F(b)H

1k (q1)ΦF(a)
2k (q2) + F(a)T

1k (q2)Φ
TF(b)∗

2k (q1)

Σ
(c)
4k (q1, Φ, q2) = F(b)H

1k (q1)ΦF(a)
3k (q2) + F(a)T

1k (q2)Φ
TF(b)∗

3k (q1)Π3

Σ
(c)
5k (q1, Φ, q2) = F(b)H

2k (q1)ΦF(a)
3k (q2) + F(a)T

2k (q2)Φ
TF(b)∗

3k (q1)Π3

Σ
(c)
6k (q1, Φ, q2) = F(b)H

3k (q1)ΦF(a)
3k (q2)

(41)



Σ
(d)
1k (q1, q2) =

1
2

∂2(qH
1 C(z,pk)Ykq2)

∂z∂zT , Σ
(d)
2k (q1, q2) =

1
2

∂2(qH
1 C(z,pk)Ykq2)

∂pk∂pT
k

Σ
(d)
3k (q1, q2) =

∂2(qH
1 C(z,pk)Ykq2)

∂z∂pT
k

, Σ
(d)
4k (q1, q2) =

(
∂
(

CH
(z,pk)q1

)
∂zT

)H

·(diag{q2} ⊗ IMN)Π1

Σ
(d)
5k (q1, q2) =

(
∂
(

CH
(z,pk)q1

)
∂pT

k

)H

·(diag{q2} ⊗ IMN)Π1

(42)

The detailed derivation is exhibited in Appendix D.
In sight of the above analysis, as a result, the second-order approximation of Jcost(ẑ, p, n) can be

drawn as

Jcost(ẑ, p, n) ≈ J(0)cost +
K
∑

k=1
fH
1k z̃ +

K
∑

k=1
fH
2k p̃k +

K
∑

k=1
fH
3kñk

+
K
∑

k=1
z̃Tξ1k z̃ +

K
∑

k=1
p̃T

k ξ2k p̃k+
K
∑

k=1
z̃Tξ3k p̃k

+
K
∑

k=1
z̃Tξ4kñk +

K
∑

k=1
pT

k ξ5kñk +
K
∑

k=1
ñH

k ξ6kñk

(43)

Note that fnk |1≤n≤3 can act as the gradient vector, and ξ jk
∣∣1≤j≤6 can form the Hessian matrix,

respectively. It is easily found that the single-step localization errors is linearly associated with the
environment noise and system errors. Furthermore, the MSE of DPD estimator is presented in the
next subsection.

5.3. MSE of The Single-Step Method with System Errors

Following the analysis presented above, it can be easily obtained that ∂J(0)cost
∂z = 0

∂Jcost(ẑ,p,n)
∂ẑ = 0

(44)

Then, via combining the first expression in (44) with (43), we have

∂J(0)cost
∂z

=
K

∑
k=1

f∗1k = 0 (45)

Through the second equality in (44), we imply

z̃ = argmax
q

(
K

∑
k=1

fH
1kq +

K

∑
k=1

qTξ1kq +
K

∑
k=1

qTξ3k p̃k +
K

∑
k=1

qTξ4kñk

)
(46)
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moreover, (46) can be specified by

z̃ = − 1
2

(
K
∑

k=1
ξ1k

)−1( K
∑

k=1
ξ3k p̃k +

K
∑

k=1
ξ4kñk +

K
∑

k=1
f∗1k

)
= − 1

2

(
K
∑

k=1
ξ1k

)−1( K
∑

k=1
ξ4kñk

)
− 1

2

(
K
∑

k=1
ξ1k

)−1( K
∑

k=1
ξ3k p̃k

) (47)

It is readily observed that the localization error parameter z̃ is composed of two terms. The first
formulation in (47) is associated with the environment noise, which is shown as

z̃1 = −1
2

(
K

∑
k=1

ξ1k

)−1( K

∑
k=1

ξ4kñk

)
(48)

The second equality in (47) is corresponding to the system errors, which is exhibited as

z̃2 = −1
2

(
K

∑
k=1

ξ1k

)−1( K

∑
k=1

ξ3k p̃k

)
(49)

To perfect the analysis, we make a statistical assumption that the system error vectors p̃k|1≤k≤K
obey zero-mean with covariance matrix Ωk|1≤k≤K. As a result, we have the location error
covariance matrices

R = E
[
z̃z̃T
]
= σ2

4

(
K
∑

k=1
ξ1k

)−1( K
∑

k=1
ξ4kξH

4k

)(
K
∑

k=1
ξH

1k

)−1

+

1
4

(
K
∑

k=1
ξ1k

)−1( K
∑

k=1
ξ3kΩkξH

3k

)(
K
∑

k=1
ξH

1k

)−1 (50)

Note that the first part in (50) is related to environment noise and the second part in (50) is attached
by system errors. It should be emphasized that trace{R} can represent the MSE of the single-step
approach in presence of two kinds of disturbance issues.

To better exhibit the analysis process, we summarize it as Algorithm 1 as follows.

Algorithm 1. The main steps of the analysis process

Input:
The observed data: ỹl,k, the real parameter and the error parameter of the lth receiver: pl,k and p̃l,k,
l = 1, . . . , L k = 1, . . . , K;

1. Calculate a second-order perturbation expression of Dk(ẑ, pk, nk) via Equation (20);
2. Substitute Dk(ẑ, pk, nk) into (23) to obtain the expression of the estimated Hermitian matrix Qk(ẑ, pk, nk);
3. Based on the matrix-perturbation analysis, calculate λk,L through Equation (26);
4. Approximate Jcost(ẑ, p, n) by (29);
5. Obtain the location error covariance matrices R.

Output: The MSE of the estimated location error trace{R}.

5.4. CRB under Precise Known Receiver Conditions

For any unbiased estimator, the CRB provides a lower bound on emitter localization variance.
This section presents the derivation of the CRB under the precise known positions and velocities of the
receivers. It is not difficult to find that although the MSE in Section 5.3 is given with system errors,
the CRB is provided without system errors. Therefore, the comparison between this CRB and the MSE
can reveal the performance difference caused by system errors.
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The unknown parameter vector η can be defined by

η =
[
zT, ωT

]T
(51)

where ω denotes all real parameters except the target position. The expression of ω is written as

ω =
[
sT, bT, ∆fT

]T
(52)

here s =
[
s(R)T

1 , s(R)T
2 , . . . , s(R)T

K , s(I)T
1 , s(I)T

2 , . . . , s(I)T
K

]T
with sk = [sk(1), sk(2), . . . , sk(N)]T,

b =
[
b(R)T

1 , b(R)T
2 , . . . , b(R)T

L , b(I)T
1 , b(I)T

2 , . . . , b(I)T
L

]T
with bl = [bl,1, bl,2, . . . , bl,K]

T, and ∆f =

[∆ f1, ∆ f2, . . . , ∆ fK]
T.

Let dl,k(η) = bl,kC
(

z, pl,k

)
Bksk. According to [28], the fisher information matrix of unknown

parameter vector η is shown as

Jηη =
2
σ2

K

∑
k=1

L

∑
l=1

Re
(

∂dl,k(η)

∂ηT

)H(∂dl,k(η)

∂ηT

)
(53)

Define 

Yzz =
K
∑

k=1

L
∑

l=1
Re
{(

dl,k(η)

zT

)H dl,k(η)

zT

}
Yzω =

K
∑

k=1

L
∑

l=1
Re
{(

dl,k(η)

zT

)H dl,k(η)

wT

}
Yωω =

K
∑

k=1

L
∑

l=1
Re
{(

dl,k(η)

ωT

)H dl,k(η)

ωT

} (54)

The expression of Jηη can be rewritten as

Jηη =
2
σ2

n

[
Yzz Yzω

YT
zω Yωω

]
(55)

Following the matrix inversion formula in Reference [29], the block matrix form of Jηη is
formulated as

CRB =
σ2

n
2

(
Yzz − YzwY−1

wwYT
zw

)−1
(56)

Therefore, substituting the sub-blocks into (56), which are shown in Appendix E, will get the
CRB value.

6. Simulation Results

This section provides 200 Monte Carlo trials to corroborate the above theoretical analysis based on
MATLAB 2015b (MathWorks, Natick, MA, USA), and source data is generated as a Gaussian random
signal. Firstly, the localization performance of the proposed method and Weiss’s method [10] are
performed. Secondly, when system errors exist, the related theoretical values developed in Section 5 are
exhibited. Unless otherwise specified, we collect N = 32 sample points in each interval at a sampling
rate of fs = 15 kHz, use L = 3 receivers, perform a total of K = 8 observations, set the velocity of
receiver as v = 300 m/s and select the unknown transmitted frequency from [−100 100] Hz randomly.
Additionally, the propagation channel is an additive white Gaussian noise channel, and the channel
attenuation is drawn from a normal distribution with mean of 1 and standard deviation of 0.1, as well
as the channel phase is selected from a uniform distribution over [−π, π]. The target locates at [1.5 1.5]
km, and the receivers move along the trajectories (three scenarios are included) shown in Figure 1.
Note that the simulations in Sections 6.2 and 6.3 are based on the scenario (a) in Figure 1. Finally,
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root mean square error (RMSE) is adopted to evaluate localization accuracy in this paper, which is
defined by

RMSE =

√√√√ 1
200

200

∑
j=1

∥∥z− ẑ(j)
∥∥2

(57)
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6.1. Effect of Reveicer Trajectories

In order to test the test whether our algorithm is sensitive to motion trajectories, we exhibit the
localization performance in the different scenarios in Figure 1. Figure 2 indicts that CRB for scenario (a)
can generate best localization accuracy, and CRBs for scenario (b) as well as (c) have similar positioning
precision. It is easily found that our method has the same trend as with CRB curves. Consequently,
the performance of our method is satisfied with theoretical analysis and our method is robust to the
receiver trajectories.
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Figure 2. RMSEs versus SNR under different trajectories of receivers.

6.2. Effect of DOA Information

To verify the influence of investigating DOA information in signal model on localization
performance, we take the following simulations. Firstly, the pseudo spatial spectra of the DPD
estimator with different parameter information at SNR = −10 dB are presented in Figure 3. It is easily
observed in Figure 3a,b that by using additional DOA information, the true peak of the spectrum
is more prominent and the pseudo peaks are significantly reduced. Additionally, the 2D plots in
Figure 3c,d indicate that with the utilization of DOA information, the estimated target position is closer
to the true target position.
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Secondly, the performance comparison between the two methods is available in Figure 4. It is
straightforward to see that compared with Weiss’s method, our method performs superior at each
SNR level. More specifically, our method receives higher localization performance at low SNRs,
which shows strong robustness to harsh environments. Additionally, our method is closer to the
corresponding CRB. Consequently, DOA information gives a significant improvement on positioning
accuracy of this single-step approach.
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6.3. Effect of System Errors

This subsection mainly reveals the performance loss caused by system errors. The disturbances
from the receiver position and velocity are assumed to be a Gaussian distribution with zero-mean and
variances of σ2

p as well as σ2
v , respectively. Note that the disturbances from different receivers at different

observed interval have the same value in this paper. Additionally, the single-step method is exhibited
at two conditions: (1) both system errors and environment noise present; (2) only environment noise
attends. Furthermore, the MSE with system errors provided by (50) and the CRB without system errors
provided by (56) are also included in the simulations.

Firstly, the localization performance versus SNR are presented and both σ2
p and σ2

v are set at 15.
As shown in Figure 5, whether system errors exist or not, there is no difference of the DPD localization
performance at SNR ranging from −5 to 0 dB. This phenomenon indicates that positioning accuracy has
not received too much influence on system error and is mainly caused by environment noise at low SNRs.
However, as SNR increases, the localization performance in presence of system errors deteriorates. It tells
us that the localization errors are affected by environment noise and system errors together at high SNRs.
Additionally, when SNR reaches 20 dB, the RMSE of our algorithm is almost constant. The reason is that
when SNR is relatively large, the localization precision mainly comes from system errors and cannot be
reduced by the increase of SNR. Meanwhile, the localization errors of Weiss’s method continue to decline,
which implies our method can achieve the best performance faster in presence of system errors at the
same SNR condition. Furthermore, when two errors exist, the curve of our method approximates the
MSE curve, demonstrating the effectiveness of the theoretical analysis in Section 5.
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Then, the localization errors versus the perturbation variance of system errors at SNR = 10 dB are
plotted in Figure 6. Unsurprisingly, the localization errors of the CRB and our method in absence of
system errors have hardly changed. On the other hand, it is evidently seen that the curves of the MSE
and our method with two errors are on the rise. The reason is that the DPD estimator could not solve
the influence of system errors.
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Finally, in Figure 7, the localization RMSEs versus the number of snapshots is provided,
under the scenario that SNR is 10, and both σ2

p as well as σ2
v are set at 20. As snapshots increase,

the localization performance of the CRB and our method without system errors can improve
continuously. Unfortunately, the DPD method remains approximately changeless no matter how
much snapshots increase. As we mentioned above, this phenomenon can be explained as system
errors being the main contributor to positioning precision under this condition, whose affects cannot
be erased by the DPD approach.
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In this paper, an improved work to the DPD method proposed by Weiss [10] is studied, and
the performance analysis of this method with system errors is provided. We start to reconstruct the
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signal model by using Doppler and DOA information, which is more suitable for the moving arrays
application. Then, the theoretical analysis is presented based on matrix eigen-perturbation results,
which express the perturbations as an additive noise on the Hertmitian matrix. Besides, the MSE
formulation of direct localization with system errors is provided. Finally, the CRB formulation for
the single-step method is also derived, which indicates the localization performance loss caused by
system errors. Several simulations demonstrate the analysis that system errors can deteriorate the
localization performance of the DPD estimator especially in high SNRs. Consequently, an improved
DPD approach considering system errors should be developed in the future work.

Author Contributions: T.Q. derived the proposed method. T.Q. conceived and designed the experiments. B.B.
performed the simulations. D.W. analyzed the results. T.Q. wrote the paper. B.B. reviewed the paper.

Funding: This research was funded by the National Natural Science Foundation of China, grant number 61401513
and The APC was funded by 61401513.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Derivation of The Expressions in (21)

A second-order Taylor series expansion of C(ẑ, pk) around (z, pk) is shown as

C(ẑ, pk) = C(z, pk) +
D
∑

d=1
〈z̃〉d

.
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d (z, pk) +
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where
.
C
(a)

d (z, pk),
.
C
(b)

d (z, pk),
..
C
(aa)

d1d2
(z, pk),

..
C
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d1d2
(z, pk) and

..
C
(ab)

d1d2
(z, pk) are exhibited in (22).

Substituting (A1) into (13) leads to

Dk(ẑ, pk, nk) = C(ẑ, pk)(Yk + Nk) ≈ C(z, pk)Yk+
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This ends the derivation.

Appendix B. Derivation of The Expressions in (22)

Firstly, we start with developing the required derivatives of
.
δ
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(z, ol,k) and
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Following the expression of C(z, pk) in (14), it gives
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Appendix B.1. Expression of
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Appendix B.2. Expression of
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=

.
ψ
(b)
1,d (z, ol,k)·a(z, ol,k) (A21)

.
ψ
(b)
1,d (z, ol,k) =

〈
.
δ
(b)

(z, ol,k)

〉
d
·diag

{
j2π

d
λ

M̃
}

(A22)

and
∂A
(

z, pl,k

)
∂〈pk〉d

= A
(

z, pl,k

)
·

.
ψ
(b)
2,d

(
z, pl,k

)
(A23)

.
ψ
(b)
2,d

(
z, pl,k

)
=
〈 .

µ
(b)
(

z, pl,k

)〉
d
·diag

{
j2π fcÑTs

}
(A24)
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therefore
.
C
(b)

d (z, pk) can be written as

.
C
(b)

d (z, pk) =



[
∂CH(z,p1,k)

∂〈pk〉d
, 0N×MN , . . . , 0N×MN

]
1 ≤ d ≤ 2D[

0N×MN ,
∂CH(z,p2,k)

∂〈pk〉d
, . . . , 0N×MN

]
2D + 1 ≤ d ≤ 4D

...
...[

0N×MN , . . . , 0N×MN ,
∂CH(z,pL,k)

∂〈pk〉d

]
2D(L− 1) + 1 ≤ d ≤ 2DL

(A25)

Appendix B.3. Expression of
¨
C
(aa)

d1d2
(z, pk)

¨
C
(aa)

d1d2
(z, pk) =

∂2C(z, pk)

∂〈z〉d1
∂〈z〉d2

=

∂2CH
(

z, p1,k

)
∂〈z〉d1

∂〈z〉d2

,
∂2CH

(
z, p2,k

)
∂〈z〉d1

∂〈z〉d2

, . . . ,
∂2CH

(
z, pL,k

)
∂〈z〉d1

∂〈z〉d2

 (A26)

where

∂2CH
(

z, pl,k

)
∂〈z〉d1

∂〈z〉d2

=

 ∂2a(z,ol,k)
∂〈z〉d1

∂〈z〉d2
⊗A

(
z, pl,k

)
+

∂a(z,ol,k)
∂〈z〉d1

⊗ ∂A(z,pl,k)
∂〈z〉d2

+
∂a(z,ol,k)

∂〈z〉d2
⊗ ∂A(z,pl,k)

∂〈z〉d1
+ a(z, ol,k)⊗

∂2A(z,pl,k)
∂〈z〉d1

∂〈z〉d2


H

(A27)

with
∂2a(z,ol,k)

∂〈z〉d1
∂〈z〉d2

=
.

ψ
(a)
1,d1

(z, ol,k)·
∂a(z,ol,k)

∂〈z〉d2
+ a(z, ol,k)·

∂
.

ψ
(a)
1,d1

(z,ol,k)
∂〈z〉d2

=
.

ψ
(a)
1,d1

(z, ol,k)
.

ψ
(a)
1,d2

(z, ol,k)a(z, ol,k) + a(z, ol,k)
¨

ψ
(aa)

1,d1d2
(z, ol,k)

(A28)

¨
ψ
(aa)

1,d1d2
(z, ol,k) =

〈
¨
δ
(aa)

(z, ol,k)

〉
d1d2

·diag
{

j2π
d
λ

M̃
}

(A29)

and

∂2A(z,pl,k)
∂〈z〉d1

∂〈z〉d2
= A

(
z, pl,k

)
·

∂
.

ψ
(a)
2,d1

(z,pl,k)
∂〈z〉d2

+
.

ψ
(a)
2,d1

(
z, pl,k

)
· ∂A(z,pl,k)

∂〈z〉d2

= A
(

z, pl,k

) ¨
ψ
(aa)

2,d1d2

(
z, pl,k

)
+

.
ψ
(a)
2,d1

(
z, pl,k

)
A
(

z, pl,k

) .
ψ
(a)
2,d2

(
z, pl,k

) (A30)

¨
ψ
(aa)

2,d1d2

(
z, pl,k

)
=

〈
¨
µ
(aa)(

z, pl,k

)〉
d1d2

·diag
{

j2π fcÑTs

}
(A31)

Appendix B.4. Expression of
¨
C
(ab)

d1d2
(z, pk)

¨
C
(ab)

d1d2
(z, pk) =

∂2C(z,pk)
∂〈z〉d1

∂〈pk〉d2

=

[
∂2CH(z,p1,k)
∂〈z〉d1

∂〈pk〉d2
,

∂2CH(z,p2,k)
∂〈z〉d1

∂〈pk〉d2
, . . . ,

∂2CH(z,pL,k)
∂〈z〉d1

∂〈pk〉d2

] (A32)

where

∂2CH
(

z, pl,k

)
∂〈z〉d1

∂〈pk〉d2

=

 ∂2a(z,ol,k)
∂〈z〉d1

∂〈pk〉d2
⊗A

(
z, pl,k

)
+

∂a(z,ol,k)
∂〈z〉d1

⊗ ∂A(z,pl,k)
∂〈pk〉d2

+
∂a(z,ol,k)

∂〈pk〉d2
⊗ ∂A(z,pl,k)

∂〈z〉d1
+ a(z, ol,k)⊗

∂2A(z,pl,k)
∂〈z〉d1

∂〈pk〉d2


H

(A33)
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with
∂2a(z,ol,k)

∂〈z〉d1
∂〈pk〉d2

=
.

ψ
(a)
1,d1

(z, ol,k)·
∂a(z,ol,k)

∂〈pk〉d2
+ a(z, ol,k)·

∂
.

ψ
(a)
1,d1

(z,ol,k)
∂〈pk〉d2

=
.

ψ
(a)
1,d1

(z, ol,k)
.

ψ
(b)
1,d2

(z, ol,k)a(z, ol,k) + a(z, ol,k)
¨

ψ
(ab)

1,d1d2
(z, ol,k)

(A34)

¨
ψ
(ab)

1,d1d2
(z, ol,k) =

〈
¨
δ
(ab)

(z, ol,k)

〉
d1d2

·diag
{

j2π
d
λ

M̃
}

(A35)

and

∂2A
(

z, pl,k

)
∂〈z〉d1

∂〈pk〉d2

= A
(

z, pl,k

)
·

¨
ψ
(ab)

2,d1d2

(
z, pl,k

)
+

.
ψ
(a)
2,d1

(
z, pl,k

)
·A
(

z, pl,k

)
·

.
ψ
(b)
2,d2

(
z, pl,k

)
(A36)

¨
ψ
(ab)

2,d1d2
(z, ol,k) =

〈
¨
µ
(ab)(

z, pl,k

)〉
d1d2

·diag
{

j2π fcÑTs

}
(A37)

Therefore,
¨
C
(ab)

d1d2
(z, pk) can be written as

¨
C
(ab)

d1d2
(z, pk) =



[
∂2CH(z,p1,k)
∂〈z〉d1

∂〈pk〉d2
, 0N×MN , . . . , 0N×MN

]
1 ≤ d1 ≤ 2D

1 ≤ d2 ≤ 2D[
0N×MN ,

∂2CH(z,p2,k)
∂〈z〉d1

∂〈pk〉d2
, . . . , 0N×MN

]
2D + 1 ≤ d1 ≤ 4D

2D + 1 ≤ d2 ≤ 4D
...

...[
0N×MN , . . . , 0N×MN ,

∂2CH(z,pL,k)
∂〈z〉d1

∂〈pk〉d2

]
2D(L− 1) + 1 ≤ d1 ≤ 2DL

2D(L− 1) + 1 ≤ d2 ≤ 2DL

(A38)

Appendix B.5. Expression of
¨
C
(bb)

d1d2
(z, pk)

¨
C
(bb)

d1d2
(z, pk) =

∂2C(z,pk)
∂〈pk〉d1

∂〈pk〉d2

=

[
∂2CH(z,p1,k)

∂〈pk〉d1
∂〈pk〉d2

,
∂2CH(z,p2,k)

∂〈pk〉d1
∂〈pk〉d2

, . . . ,
∂2CH(z,pL,k)

∂〈pk〉d1
∂〈pk〉d2

] (A39)

where

∂2CH
(

z, pl,k

)
∂〈pk〉d1

∂〈pk〉d2

=

 ∂2a(z,ol,k)
∂〈pk〉d1

∂〈pk〉d2
⊗A

(
z, pl,k

)
+

∂a(z,ol,k)
∂〈pk〉d1

⊗ ∂A(z,pl,k)
∂〈pk〉d2

+
∂a(z,ol,k)

∂〈pk〉d2
⊗ ∂A(z,pl,k)

∂〈pk〉d1
+ a(z, ol,k)⊗

∂2A(z,pl,k)
∂〈pk〉d1

∂〈pk〉d2


H

(A40)

with
∂2a(z, ol,k)

∂〈pk〉d1
∂〈pk〉d2

=
.

ψ
(b)
1,d1

(z, ol,k)
.

ψ
(b)
1,d2

(z, ol,k)a(z, ol,k) + a(z, ol,k)
¨

ψ
(bb)

1,d1d2
(z, ol,k) (A41)

¨
ψ
(bb)

1,d1d2
(z, ol,k) =

〈
¨
δ
(bb)

(z, ol,k)

〉
d1d2

·diag
{

j2π
d
λ

M̃
}

(A42)

and

∂2A
(

z, pl,k

)
∂〈pk〉d1

∂〈pk〉d2

= A
(

z, pl,k

) .
ψ
(bb)
2,d1d2

(
z, pl,k

)
+

.
ψ
(b)
2,d1

(
z, pl,k

)
A
(

z, pl,k

) .
ψ
(b)
2,d2

(
z, pl,k

)
(A43)
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¨
ψ
(bb)

2,d1d2

(
z, pl,k

)
=

〈
¨
µ
(bb)(

z, pl,k

)〉
d1d2

·diag
{

j2π fcÑTs

}
(A44)

Therefore,
¨
C
(bb)

d1d2
(z, pk) can be written as

¨
C
(bb)

d1d2
(z, pk) =



[
∂2CH(z,p1,k)

∂〈pk〉d1
∂〈pk〉d2

, 0N×MN , . . . , 0N×MN

]
1 ≤ d1 ≤ 2D

1 ≤ d2 ≤ 2D[
0N×MN ,

∂2CH(z,p2,k)
∂〈pk〉d1

∂〈pk〉d2
, . . . , 0N×MN

]
2D + 1 ≤ d1 ≤ 4D

2D + 1 ≤ d2 ≤ 4D
...

...[
0N×MN , . . . , 0N×MN ,

∂2CH(z,pL,k)
∂〈pk〉d1

∂〈pk〉d2

]
2D(L− 1) + 1 ≤ d1 ≤ 2DL

2D(L− 1) + 1 ≤ d2 ≤ 2DL

(A45)

This completes the derivation.

Appendix C. Derivation of (31) to (34)

Associated with the second formulation in (21), it follows for any vector q1 ∈ CL×1 and
q2 ∈ CN×1 that

D̃
(1)
k q1 =

D
∑

d=1
〈z̃〉d

.
C
(a)

d (z, pk)Ykq1 +
2DL
∑

d=1
〈p̃k〉d

.
C
(b)

d (z, pk)Ykq1 + C(z, pk)Nkq1

=
∂(C(z,pk)Ykq1)

∂zT z̃ +
∂(C(z,pk)Ykq1)

∂pT
k

p̃k + C(z, pk)(diag{q1} ⊗ IN)Π1ñk

= F(a)
1k (q1)z̃ + F(a)

2k (q1)p̃k + F(a)
3k (q1)ñk

(A46)

D̃
(1)H
k q2 =

D
∑

d=1
〈z̃〉dYH

k

•
C
(a)H

d (z, pk)q2 +
2DL
∑

d=1
〈p̃k〉dYH

k

•
C
(b)H

d (z, pk)q2 + NH
k C(z, pk)q2

=
∂
(

YH
k CH

(z,pk)q2

)
∂zT z̃ +

∂
(

YH
k CH

(z,pk)q2

)
∂pT

k
p̃k +

(
IL ⊗ qT

2
)
C(z, pk)Π2ñk

= F(b)
1k (q2)z̃ + F(b)

2k (q2)p̃k + F(b)
3k (q2)ñk

(A47)

Consequently, the formulation of J̃(1)cost can be shown as

J̃(1)cost =
K
∑

k=1
α
(0)H
k,L D(0)H

k

(
F(a)

1k

(
α
(0)
k,L

)
z̃ + F(a)

2k

(
α
(0)
k,L

)
p̃k + F(a)

3k

(
α
(0)
k,L

)
ñk

)
+

K
∑

k=1
α
(0)H
k,L

(
F(b)

1k

(
D(0)

k α
(0)
k,L

)
z̃ + F(b)

2k

(
D(0)

k α
(0)
k,L

)
p̃k + F(b)

3k

(
D(0)

k α
(0)
k,L

)
ñk

) (A48)

This completes the derivation.
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Appendix D. Derivation of (35)

Associated with (A46), it follows for any vector q1 and q2 that

qH
1 D̃

(1)H
k ΦD̃

(1)
k q2 = z̃TF(a)H

1k (q1)ΦF(a)
1k (q2)z̃ + p̃T

k F(a)H
2k (q1)ΦF(a)

2k (q2)p̃k+

z̃T
(

F(a)H
1k (q1)ΦF(a)

2k (q2) + F(a)T
1k (q2)Φ

TF(a)∗
2k (q1)

)
p̃k+

z̃T
(

F(a)H
1k (q1)ΦF(a)

3k (q2) + F(a)T
1k (q2)Φ

TF(a)∗
3k (q1)Π3

)
ñk+

p̃T
k

(
F(a)H

2k (q1)ΦF(a)
3k (q2) + F(a)T

2k (q2)Φ
TF(a)∗

3k (q1)Π3

)
ñk+

ñT
k F(a)H

3k (q1)ΦF(a)
3k (q2)ñk

= z̃TΣ
(a)
1k (q1, Φ, q2)z̃ + p̃T

k Σ
(a)
2k (q1, Φ, q2)p̃k+

z̃TΣ
(a)
3k (q1, Φ, q2)p̃k + z̃TΣ

(a)
4k (q1, Φ, q2)ñk+

p̃T
k Σ

(a)
5k (q1, Φ, q2)ñk + ñT

k Σ
(a)
6k (q1, Φ, q2)ñk

(A49)

Meanwhile, the similar result respect to (A47) is drawn as

qH
1 D̃

(1)
k ΦD̃

(1)H
k q2 = z̃TF(b)H

1k (q1)ΦF(b)
1k (q2)z̃ + p̃T

k F(b)H
2k (q1)ΦF(b)

2k (q2)p̃k+

z̃T
(

F(b)H
1k (q1)ΦF(b)

2k (q2) + F(b)T
1k (q2)Φ

TF(b)∗
2k (q1)

)
p̃k+

z̃T
(

F(b)H
1k (q1)ΦF(b)

3k (q2) + F(b)T
1k (q2)Φ

TF(b)∗
3k (q1)Π3

)
ñk+

p̃T
k

(
F(b)H

2k (q1)ΦF(b)
3k (q2) + F(b)T

2k (q2)Φ
TF(b)∗

3k (q1)Π3

)
ñk+

ñT
k F(b)H

3k (q1)ΦF(b)
3k (q2)ñk

= z̃TΣ
(b)
1k (q1, Φ, q2)z̃ + p̃T

k Σ
(b)
2k (q1, Φ, q2)p̃k+

z̃TΣ
(b)
3k (q1, Φ, q2)p̃k + z̃TΣ

(b)
4k (q1, Φ, q2)ñk+

p̃T
k Σ

(b)
5k (q1, Φ, q2)ñk + ñT

k Σ
(b)
6k (q1, Φ, q2)ñk

(A50)

Additionally, we can obtain the following formulations

qH
1 D̃

(1)
k ΦD̃

(1)
k q2 = z̃TF(b)H

1k (q1)ΦF(a)
1k (q2)z̃ + p̃T

k F(b)H
2k (q1)ΦF(a)

2k (q2)p̃k+

z̃T
(

F(b)H
1k (q1)ΦF(a)

2k (q2) + F(a)T
1k (q2)Φ

TF(b)∗
2k (q1)

)
p̃k+

z̃T
(

F(b)H
1k (q1)ΦF(a)

3k (q2) + F(a)T
1k (q2)Φ

TF(b)∗
3k (q1)Π3

)
ñk+

p̃T
k

(
F(b)H

2k (q1)ΦF(b)
3k (q2) + F(a)T

2k (q2)Φ
TF(b)∗

3k (q1)Π3

)
ñk+

ñT
k F(b)H

3k (q1)ΦF(a)
3k (q2)ñk

= z̃TΣ
(c)
1k (q1, Φ, q2)z̃ + p̃T

k Σ
(c)
2k (q1, Φ, q2)p̃k+

z̃TΣ
(c)
3k (q1, Φ, q2)p̃k + z̃TΣ

(c)
4k (q1, Φ, q2)ñk+

p̃T
k Σ

(c)
5k (q1, Φ, q2)ñk + ñT

k Σ
(c)
6k (q1, Φ, q2)ñk

(A51)

qH
1 D̃

(1)H
k ΦD̃

(1)H
k q2 =

(
qH

2 D̃
(1)
k ΦHD̃

(1)
k q1

)H

= z̃TΣ
(c)∗
1k
(
q2, ΦH, q1

)
z̃ + p̃T

k Σ
(c)∗
2k
(
q2, ΦH, q1

)
p̃k+

z̃TΣ
(c)∗
3k
(
q2, ΦH, q1

)
p̃k + z̃TΣ

(c)∗
4k
(
q2, ΦH, q1

)
Π3ñk+

p̃T
k Σ

(c)∗
5k
(
q2, ΦH, q1

)
Π3ñk + ñT

k Σ
(c)H
6k

(
q2, ΦH, q1

)
ñk

(A52)
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Finally, associated with the third formulation in (21), we have

qH
1 D̃

(2)
k q2 = 1

2

D
∑

d1=1

D
∑

d2=1
〈z̃〉d1

〈z̃〉d2
qH

1

..
C
(aa)

d1d2
(z, pk)Ykq2+

1
2

2DL
∑

d1=1

2DL
∑

d2=1
〈p̃k〉d1

〈p̃k〉d2
qH

1

..
C
(bb)

d1d2
(z, pk)Ykq2+

D
∑

d1=1

2DL
∑

d2=1
〈z̃〉d1

〈p̃k〉d2
qH

1

..
C
(ab)

d1d2
(z, pk)Ykq2+

D
∑

d=1
〈z̃〉dqH

1

.
C
(a)

d (z, pk)Nkq2 +
2DL
∑

d=1
〈p̃k〉dqH

1

.
C
(b)

d (z, pk)Nkq2

= z̃TΣ
(d)
1k (q1, q2)z̃ + p̃T

k Σ
(d)
2k (q1, q2)p̃k + z̃TΣ

(d)
3k (q1, q2)p̃k+

z̃TΣ
(d)
4k (q1, q2)ñk + p̃T

k Σ
(d)
5k (q1, q2)ñk

(A53)

qH
1 D̃

(2)H
k q2 =

(
qH

2 D̃
(2)
k q1

)H

= z̃TΣ
(d)∗
1k (q2, q1)z̃ + p̃T

k Σ
(d)∗
2k (q2, q1)p̃k + z̃TΣ

(d)∗
3k (q2, q1)p̃k+

z̃TΣ
(d)∗
4k (q2, q1)Π3ñk + p̃T

k Σ
(d)∗
5k (q2, q1)Π3ñk

(A54)

By using the above results, the expression of J̃(2)cos t is written as

J̃(2)cost =
K
∑

k=1
z̃Tξ1k z̃ +

K
∑

k=1
p̃T

k ξ2k p̃k +
K
∑

k=1
z̃Tξ3k p̃k+

K
∑

k=1
z̃Tξ4kñk+

K
∑

k=1
p̃T

k ξ5kñk+
K
∑

k=1
ñH

k ξ6kñk

(A55)

This ends the derivation in this part.

Appendix E. Derivation of CRB

Appendix E.1. The Partial of dl,k(η) Respect to z

Define Gl,k = bl,k
.
C
(

z, pl,k

)
(I2 ⊗ Bksk) with

.
C
(

z, pl,k

)
=

∂C(z,pl,k)
∂zT =

∂a(z,pl,k)
∂zT ⊗

A
(

z, pl,k

)
+a(z, ol,k)⊗

∂A(z,pl,k)
∂zT . The derivation with respect to z can be expressed by

∂dl,k(η)

∂zT = Gl,k (A56)

where
∂a
(

z, pl,k

)
∂zT = diag

{
a(z, ol,k)

}
·
[

0, j2π
d
λ

, . . . , j2π
d
λ
(M− 1)

]T
·

.
δ
(a)T

(z, ol,k) (A57)

∂A(z,pl,k)
∂zT = A

(
z, pl,k

)
·

diag
{

0, j2π fcTs
.
µ
(a)T
(

z, pl,k

)
, . . . , j2π fc(N − 1)Ts

.
µ
(a)T
(

z, pl,k

)} (A58)

Appendix E.2. The Partial of dl,k(η) Respect to b

Define Hl,k = C
(

z, pl,k

)
Bkskδl,mδk,n. Note that b is a complex vector, so we obtain

∂dl,k(η)

∂b(R)T
m,n

= Hl,k

∂dl,k(η)

∂b(I)T
m,n

= jHl,k
(A59)
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Appendix E.3. The Partial of dl,k(η) Respect to s

Define Kl,k = bl,kC
(

z, pl,k

)
Bkδk,n. Note that s is also a complex vector, so we obtain

∂dl,k(η)

∂s(R)T
n

= Kl,k

∂dl,k(η)

∂s(I)T
n

= jKl,k
(A60)

Appendix E.4. The Partial of dl,k(η) Respect to ∆f

Define Ml,k = bl,kC
(

z, pl,k

) .
Bk(IK ⊗ sk) with

.
Bk = Bk·diag{j2πÑTs}δk,n. The derivation with

respect to ∆f can be expressed by
∂dl,k(η)

∂∆fT = Ml,k (A61)

By substituting (A56), (A59), (A60), (A61) into (53), the sub-blocks of Jηη is formulated as




Yzz =

K
∑

k=1

L
∑

l=1
Re
{

GH
l,kGl,k

}
Yzb(R) =

K
∑

k=1

L
∑

l=1
Re
{

GH
l,k Hl,k

}
Yzb(I) = −

K
∑

k=1

L
∑

l=1
Im
{

GH
l,k Hl,k

}
Yzs(R) =

K
∑

k=1

L
∑

l=1
Re
{

GH
l,kKl,k

}
Yzs(I) = −

K
∑

k=1

L
∑

l=1
Im
{

GH
l,kKl,k

}
Yz∆f =

K
∑

k=1

L
∑

l=1
Re
{

GH
l,k Ml,k

}


Yb(R)b(R) =
K
∑

k=1

L
∑

l=1
Re
{

HH
l,k Hl,k

}
Yb(R)b(I) = −

K
∑

k=1

L
∑

l=1
Im
{

HH
l,k Hl,k

}
Yb(R)s(R) =

K
∑

k=1

L
∑

l=1
Re
{

HH
l,kKl,k

}
Yb(R)s(I) = −

K
∑

k=1

L
∑

l=1
Im
{

HH
l,kKl,k

}
Yb(R)∆f =

K
∑

k=1

L
∑

l=1
Re
{

HH
l,k Ml,k

}


Yb(I)b(I) =
K
∑

k=1

L
∑

l=1
Re
{

HH
l,k Hl,k

}
Yb(I)s(R) =

K
∑

k=1

L
∑

l=1
Im
{

HH
l,kKl,k

}
Yb(I)s(I) =

K
∑

k=1

L
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l=1
Re
{

HH
l,kKl,k

}
Yb(I)∆f =

K
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k=1

L
∑

l=1
Im
{

HH
l,k Ml,k

}
Ys(R)s(R) =

K
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k=1

L
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l=1
Re
{
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l,kKl,k

}
Ys(R)s(I) = −

K
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L
∑

l=1
Im
{

KH
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}
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K
∑

k=1

L
∑

l=1
Re
{

KH
l,k Ml,k

}
Ys(I)s(I) =

K
∑

k=1

L
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l=1
Re
{

KH
l,kKl,k

}
Ys(I)∆f =
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(A62)
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