
electronics

Article

DSCBlocks: An Open-Source Platform for
Learning Embedded Systems Based on Algorithm
Visualizations and Digital Signal Controllers

Jonathan Álvarez Ariza

Department of Electronics Technology, Engineering Faculty, Corporación Universitaria Minuto de Dios
(UNIMINUTO), 111021 Bogotá, Colombia; jalvarez@uniminuto.edu; Tel.: +57-310-557-9255

Received: 17 January 2019; Accepted: 29 January 2019; Published: 18 February 2019
����������
�������

Abstract: DSCBlocks is an open-source platform in hardware and software developed in JavaFX, which
is focused on learning embedded systems through Digital Signal Controllers (DSCs). These devices
are employed in industrial and educational sectors due to their robustness, number of peripherals,
processing speed, scalability and versatility. The platform uses graphical blocks designed in Google’s
tool Blockly that can be used to build different Algorithm Visualizations (AVs). Afterwards, the
algorithms are converted in real-time to C language, according to the specifications of the compiler
for the DSCs (XC16) and they can be downloaded in one of the two models of development board
for the dsPIC 33FJ128GP804 and dsPIC 33FJ128MC802. The main aim of the platform is to provide
a flexible environment, drawing on the educational advantages of the AVs with different aspects
concerning the embedded systems, such as declaration of variables and functions, configuration of
ports and peripherals, handling of Real-Time Operating System (RTOS), interrupts, among others,
that are employed in several fields such as robotics, control, instrumentation, etc. In addition, some
experiments that were designed in the platform are presented in the manuscript. The educational
methodology and the assessment provided by the students (n = 30) suggest that the platform is
suitable and reliable to learn concepts relating to embedded systems.

Keywords: open-source platform; visual algorithms; digital signal controllers; embedded systems
education; dsPIC; Java

1. Introduction

Digital Signal Controllers (DSCs) are hybrid devices that cluster the computing features of a Digital
Signal Processor (DSP) with the configuration advantages of a microcontroller [1]. The architecture of
these devices is between 16-bit and 32-bit. According to the EE Times survey (2017) [2] that analyzed the
opinions of 1234 skilled engineers worldwide in the embedded market, 66% of the survey respondents
use both 32-bit and 16-bit processors in their projects. Concerning the 16-bit processors, the company
Microchip Technology Inc. provides the best ecosystem for programming and debugging these devices
and 45% of the survey respondents that use 16-bit processors plan to employ a Microchip device
(dsPIC) in their future designs.

In this context, this manuscript discusses the design and the implementation of DSCBlocks, a novel
open-source platform designed in JavaFX [3,4] for learning embedded systems based on Algorithm
Visualizations (AVs) and 16-bit DSCs. It has selected the hardware devices dsPIC 33FJ128GP804 and
dsPIC 33FJ128MC802 [5,6] that belong to the DSC family from Microchip Technology Inc. known as
dsPIC 33 [7]. These devices have interesting features, e.g., remappable peripherals, internal Fast RC
Oscillator (FRC) with PLL running at 7.37 MHz, processor speed of 40 Million of Instructions Per
Second (MIPS) and multiple peripherals and protocols such as Inter-Integrated Circuit (I2C), Universal

Electronics 2019, 8, 228; doi:10.3390/electronics8020228 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/https://orcid.org/0000-0002-4024-1349
http://www.mdpi.com/2079-9292/8/2/228?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8020228
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 228 2 of 30

Asynchronous Receiver-Transmitter (UART), Controlled Area Network (CAN), Serial Peripheral
Interface (SPI), etc.

At the educational level, the platform takes into account the AVs that have been employed widely
to learn and teach algorithmic structures in computer science. The objective of these algorithms is
to provide a way in which the students understand the procedures involved in an Algorithm [8].
Shaffer et al. [9] argued that these algorithms allow teaching and exploring the concept of a program
as well as promote self-study. Furthermore, the students can debug their algorithms following
the different steps involved in them. Some studies have shown that the AVs could improve the
understanding of algorithms and data structures, elements that are part of traditional computer
science curricula.

However, there exists a current lack of open-source educational tools to learn and explore the
different parameters of the Digital Signal Controllers (DSCs). In this sense, this work presents an
innovating platform that addresses this issue. DSCBlocks combines a Graphical User Interface (GUI)
created in JavaFX with Google’s tool Blockly [10,11]. The GUI includes some elements as a project
wizard, a real-time data plotter and a serial port visualizer. Blockly is used to build graphical blocks that
could be converted into several programming languages, for instance, Dart, JavaScript, Python, PHP or
Lua. Through Blockly, different types of blocks were created and tested to use ports, peripherals, RTOS,
interrupts, variables and functions for the dsPICs 33FJ128GP804 and 33FJ128MC802. Furthermore, the
blocks designed can work with other dsPICs with similar architecture to these devices.

The blocks are converted in real-time to C programming language according to the structure of
the XC16 compiler [12] and they implement a set of functions divided into the categories oscillator,
input–output, peripherals, communications, RTOS, interrupts, delay and functions. Since the main interest
in the platform is to contribute to the learning in the embedded systems area, the blocks shape basic
functions that students must know and employ to start-up the dsPIC. Afterwards, the programming
code produced is downloaded into the device. Then, students or users can debug their algorithms. For
this, two models of development board with six analog or digital inputs, four digital outputs and two
analog outputs in the voltage range 0–3.3 V with the dsPICs 33FJ128GP804 and 33FJ128MC802 have
been proposed.

As support for the educational materials of the platform, the Xerte Toolkit Online (XOT) [13,14]
was used, which is an open tool suite designed by the University of Nottingham to create interactive
learning materials. The different explanations and examples of the platform were produced in this
tool and they are accessible in the URL provided in the Supplementary Materials. Additionally, the
materials developed in XOT could be embedded in popular e-learning platforms such as Moodle or
Integriertes Lern-,Informations- und Arbeitskooperations-System (ILIAS).

The platform has been assessed with 30 students in the course entitled microcontrollers that belongs
to the embedded systems area of the program of Electronics Technology at UNIMINUTO university.
The participants were sophomores and they used the platform in different tasks provided in the
classes during 2017-II and 2018-I. Their opinions about the platform were summarized through a
survey whose results are shown in this paper. Furthermore, some conclusions derived from several
observations of the student interactions with the platform are discussed.

From the elements mentioned, this paper is organized as follows: Section 2 describes the
background of this research. Section 3 exposes a general and detailed architecture of the platform.
Section 4 explains some experiments with a proposed low-cost development board. Section 5 shows
the assessment provided by the students about the platform. Finally, discussion and conclusions are
outlined in Sections 6 and 7, respectively.

2. Background

This section discusses the concept of Algorithm Visualization (AV) and related works from an
educational perspective.

Electronics 2019, 8, 228 3 of 30

2.1. The concept of Algorithm Visualization (AV)

Algorithm visualization (AV) is the subclass of software visualization that illustrates the high
level mechanisms of computer algorithms in order to help pupils understand in a better way the
function and the procedures of an Algorithm [8]. In the same way, Shaffer et al. [9] argued that AVs
could be used for the instructor as part of a lecture, a laboratory or an assignment to teach one concept.
Additionally, AVs could help explore a concept without explicit direction as well as promote the
interactivity to test the comprehension of the students about the algorithmic structures. According to
Törley [8], AVs have been employed for the following purposes:

• To illustrate an algorithm by the instructor.
• To understand the mechanism of basic algorithms.
• To debug an algorithm by students.
• To help pupils understand the function and operation of abstract data type.

To find the advantages of AVs in the educational context, Hundhausen et al. [15] conducted
a meta-study based on 24 major visualization studies. The research shows how the visualizations
influence the learning outcomes and the student’s attention.

Rößling et al. [16] considered the impact of AVs on student engagement. In their paper, they
mentioned that the members of the group in Innovation and Technology In Computer Science
Education (ITICSE) from Association for Computing Machinery (ACM) explored four categories
of learning with the AVs, namely responding, changing, constructing and presenting, searching a
better impact of the AVs in learning. Regarding the first category, instructors are focused on different
questions posed by the students about the visualization of an algorithm. In addition, the algorithm
visualization is a source that allows suggesting different types of questions, helping the students with
their learning process. As for the second category, the students provide input information for the
algorithm, generating a certain visualization response. The students use the visualization to create
hypotheses about the behavior of the algorithm. In the constructing category, the students build their
own algorithms according to some rules or constraints provided by the instructor. In addition, the
students observe the response of their algorithms. In the last category, the students use the visualization
to explain an algorithm to the audience in order to interchange ideas in a constructive learning space.

Similarly, Rößling et al. [16] proposed a summary of key-points in different projects that consider
the AVs, among which the most important are:

• Providing an input to the algorithm in order to modify its features.
• Including a hypertext that explains the visualization of the algorithm.
• Preferring general-purpose systems over topic-specific systems in virtue of the reuse option.
• Integrating a database for course management.

Pasternak et al. [17] discussed creating visual languages with Blockly. Several features identify
Visual Programming Languages (VPL), e.g., drag blocks around the screen, flow diagrams or any
mechanism for wiring different blocks and using icons or non-text representations. In addition, every
VPL has grammar and vocabulary that define the behavior of the language that has been created. In any
case, the authors marked out some reflection points that could give a horizon for the design of VPLs
with Blockly:

• What is the audience for your language? Who are you building for?
• What is the scope of your language? An excessive amount of blocks in the language could

overwhelm or to generate distractions in the users.
• Employ a natural language in the VLP. With it, the users can build the AVs in an intuitive way.

These elements summarize the key-points for the VLPs and most of them have been taken into
account in the design of the XC16 compiler code generator for the platform.

Electronics 2019, 8, 228 4 of 30

2.2. Related Works

Concerning the related works, the usage of AVs in engineering fields as embedded systems,
automatic control or IoT is rather new. Nevertheless, some studies give a guide in this regard.

In [18], a programming language called Robot Blocky for ABB’s Roberta robot is presented.
The authors used a customized language built with Blockly to create a block-based interface for
programming a one-armed industrial robot. The authors also presented a small-scale study in which
the experiences of students with the developed language are exposed.

Angulo et al. [19] presented a remote laboratory to program robots with AVs called RoboBlock.
This laboratory is based on a Zumo 32u4 Pololu robot and a Raspberry Pi model 3, and is integrated
to WebLab-Deusto Remote Laboratory Management System (RLMS). The authors pointed out the
construction of ArduLab, an interface to program and test the mentioned remote robot.

In [20], a visual framework for Wireless Sensors Networks (WSNs) and smart-home applications
is exposed. The framework is composed of AVs in which the users can program a smart-home
management system. The system is composed of a lightweight tool with an intuitive user interface for
commissioning of IP-enabled WSNs. In the research, the authors exposed a prototype to test the visual
solution with the WSNs.

In [21], the author proposed an open-source platform called Controlly designed with Blockly
for control systems education. The application has several blocks in order to implement classic
controllers, such as Proportional (P), Proportional-Integral (PI), and Proportional-Integral-Derivative
(PID). An exposition of the designed controls with the interface for a control plant (DC-DC buck
converter) is analyzed in the manuscript.

In [22], a study of the advantages to integrate Blockly, Virtual and Remote Laboratories (VRLs)
and Easy Java Simulations (EJS) is shown. The research also indicates the design of an API for
communication between Blockly and a proposed laboratory. In the investigation, the authors worked
on a Moodle Plugin that aims to create new experiences in Learning Management Systems (LMS) to
foster higher engagement of the students.

The authors of [23] dealt with a language for IoT called Smart Block designed specifically
for SmartThings that generalizes the Event–Condition–Action (ECA) rules for home automation.
The authors also posed a second application to design mobile applications and a development
environment to test the language.

In [24], the authors presented an educational mobile robot platform based on MicroPython and
Blockly. The robot can be programmed easily by the students without wiring for its functioning and it
has a STM32F405RG 168 MHz Cortex M4 processor, embedded with MicroPython, an ultrasonic sensor
and a Bluetooth module for wireless communication between the interface and the robot. The project
was planned for students who are interested in learning programming at a basic level.

From a Computer Science perspective, the research in [25] provides an example of Behavioral
Programming (BP), where the individual requirements of certain application are programmed as
independent modules. The authors indicated that the BP allows the implementation of interactive
technologies such as client-side applications or smartphone customization through Blockly and
JavaScript. Further work consists of expanding the scope of the developed BP to other areas such as
complex robotics or large biological models.

In [26], a study to measure the impact of block-based languages in introductory programming
is tackled. The author proposed a method known as Bidirectional Translation System where the
students alternate between block-based and textual languages. The authors concluded that block-based
language worked to encourage students to focus on high-level algorithm creation.

Finally, the authors of [27] presented the initiative IOIOAI that simplifies the programming process
through an Android application that can communicate with the IOIO board and the App MIT Inventor
platform. The project was tested with adults and children during 2016–2017 in Tunisia. According to
the authors, the students enjoyed the laboratory that stimulated their curiosity, making them more
open to learn more.

Electronics 2019, 8, 228 5 of 30

Nonetheless, despite these important studies, there exists a lack of Open Educational Resources
(OERs) in the field of embedded systems with DSCs and AVs that the present work intends to tackle.
In addition, the platform is novel, as it provides a complete open-source environment to configure and
start-up a DSC in which the students can see the different processes to get a determined algorithm in
real-time using AVs as learning method.

3. Platform Design and Implementation

This section addresses the aspects entailed in the design and implementation of the platform
including software and hardware components.

3.1. Software Component

The software structure in the platform is divided into the layers (Presentation, Application, and
Abstraction) depicted in Figure 1. Each layer is explained in the next subsections.

Presentation Layer

Project Wizard Blockly

Working area Plotter

Serial
Visualizer

Help

Application Layer

LiveGraph
WebView, WebEngine

(JavaFX-8)

(XC16) Libraries
and functions (.h, .c)

Hardware Abstraction Layer (HAL)

ds30 Loader
(bootloader)

jssc.jar (Java Simple
Serial Connector)

Ace Code Editor

Figure 1. Main software components of the platform by layers.

3.1.1. Presentation Layer

The Presentation Layer is composed of the User Interface (UI) of the application. Firstly, the
UI is composed of a project wizard that helps the user with some parameters such as the paths
for the compiler and the project, the type of board for the models (dsPIC 33FJ128GP804 and dsPIC
33FJ128MC802) and the communication port to use, e.g., COM1 or COM2, to transfer the created visual
algorithm towards the development board. The communication between the development board and

Electronics 2019, 8, 228 6 of 30

the application is managed through a virtual serial port with the USB feature Communication Device
Class (CDC) [28].

Secondly, the UI includes a working area in which the students or users can build their algorithms
based on the different graphical blocks designed in Blockly and distributed by categories. Thus,
a specific C language generator for the XC16 compiler was developed in this platform. The generator
converts every block in the C language equivalent and the UI shows this transformation in a tab in
real-time. Thereby, students or users can observe the respective code with the configuration of the
registers in the DSCs’ architecture, helping to learn programming and the implementation related to
these devices.

Tables 1 and 2 show a summary that condenses the designed categories with some examples.

Table 1. Summary of the block categories with examples (Part I).

Category Description Block Example

Oscillator

Set-up for the (FRC) oscillator. Range (0 <
Fcy ≤ 40 MHz)
Parameters: Values of N1, N2, M (See
datasheets dsPIC 33FJ128GP804 and dsPIC
33FJ128MC802).

Input–Output (I/O)

High Pin: Write a logical 1 on selected pin.
Low Pin: Write a logical 0 on selected pin.
ReadPin: Read the state of a pin.
Parameters: Pin number (1–6).

Peripherals

ADC Single Channel: Read an ADC value.
Parameters: ADC channel number (0–5).
ADC multiple channels: Sample several ADC
channels simultaneously.
Parameters: Sample time in (ms).
PWM Output: Configure the selected PWM
Channel. Parameters: Duty Cycle; PWM
frequency(Hz); Pre-scale (1,8,64,256); PWM
Channel (0-4).
DAC Channel A,B: Configure the 12-bit
Digital to Analog Converter (DAC)
MCP4822 [29] through SPI protocol.
Parameters: Channel (A,B); Digital value to
convert in analog (scale 0 to 3.3 V).

Communications

UART Send Integer: Send an integer value to
UART peripheral.
Parameters: Integer number.
UART Write Text: Write a string to UART
peripheral.
Parameters: Text String.
UART Write Float: Write a float number to
UART peripheral.
Parameters: Float number.

Electronics 2019, 8, 228 7 of 30

Table 2. Summary of the block categories with examples (Part II).

Category Description Block Example

Communications

ReadUart: Read a byte from UART
peripheral.
Parameters: None.
DataRdyUART: Check if a byte is available
in the UART peripheral.
Parameters: None.

RTOS

OS Init: Start the RTOS.
Parameters: None.
OS Run: Start the created tasks in the RTOS.
Parameters: None.
OS Yield: Free the current task executed in
the RTOS.
Parameters: None.
OS Timer: Start the Timer for the RTOS.
Parameters: None.
OS Task Create: Create a task with priority.
Parameters: Priority (0–7); Task name.
OS Delay: Create a configurable delay for
a task.
Parameters: Ticks or cycles for the delay.

Interrupts

Timer interrupt: Configure a Timer interrupt
with priority and pre-scale.
Parameters: Timer number (0–5); Pre-scale
(1,8,64,256); Elapsed time in milliseconds
(ms); Priority (0–7).

Delay

Delay (ms): Delay in ms.
Parameters: Time in ms.
Delay (µs): Delay in microseconds (µs).
Parameters: Time in (µs).
NOP: NOP instruction.
Parameters: None.
Delay in cycle: Delay in instruction cycles.
Parameters: Number of instruction cycles
for the delay.

Functions

Function without parameter to return: Create
a function without a return parameter.
Parameters: Invoking variables.
Function with parameter to return: Create a
function with a return parameter.
Parameters: Return variable and
invoking parameters.

The elements in Tables 1 and 2 are explained below.

• Oscillator: In this category, the user can configure the oscillator of the DSC. For the dsPICs
33FJ128GP804 and 33FJ128MC802, the equation that defines their operation frequency in Hz is
the following:

Fcy =
Fosc

2
= Fin(

M
N1 · N2

) (1)

where Fin is the frequency of the internal FRC oscillator (7.37 MHz), Fosc is the output frequency
of the Phase-Locked Loop (PLL), M is the PLL multiplier and N1 and N2 compound the PLL
postscale. The values of N1, N2, and M are established by the user. For instance, when N1 = 2,

Electronics 2019, 8, 228 8 of 30

N2 = 2, M = 40, these values yield a frequency of 36.85 MHz (36.85 MIPS). The graphical block
converts the previous values in the respective code for the registers involved in the configuration
of the oscillator, in this case CLKDIV and PLLFBD.

• Input–Output: In this category are located the blocks for reading and writing the logical state
of the DSC pins. Every block sets up the specific configuration register (TRISx) and assigns the
logical state specified by the user (1 or 0). The pins that a user can employ are mapped in a C
header file called <HardwareProfile.h>. This file contains the names of every pin provided by the
manufacturer with a macro, e.g., the Pin1 in the application is RB12 in the DSC.

• Peripherals: In this category, the user can configure the Analog to Digital Converter (ADC), Pulse
Width Modulation (PWM) or Digital Analog Converter (DAC) peripherals. With respect to ADC,
it was configured in 12-bit mode with an input voltage in the scale 0–3.3 V. The resolution for the
ADC is given by Equation (2).

3.3 V
212 bits

≈ 0.81 mV
bit

(2)

The block ADC Single reads the ADC channel selected by the user and returns an integer variable
with the respective value in 12-bit. The block ADC Multiple Channels reads simultaneously up to
four channels and returns the values in a set of preloaded variables (L0, L1, L2, and L3). The user
must declare them, employing the category variables available in Blockly. In addition, this block
uses the Timer 3 of the DSC to sample the indicated channels. PWM was configured in 10-bit
mode with the XC16 library <pwm.h>. Four channels could be selected with the designed block.
Moreover, the user can adjust the frequency in Hz and the pre-scale when a value for the register
OCxR (Duty cycle register) is outside the maximum value in a 16-bit architecture. The pre-scale
decreases this value.

Regarding DAC, the block configures the device MCP4822 [29], which is a 12-bit DAC in a range
from 0 to 3.3 V. This device operates with SPI protocol and it contains a single register to write the
digital value to convert. The user must indicate an integer variable and one channel (A or B) to
write a voltage value in the mentioned scale. For instance, when the user writes the value 2048,
it will correspond to the analog value of 1.65 V.

• Communications: This category contains several blocks to handle the UART peripheral with a
default baud rate of 57,600. The blocks were designed utilizing the XC16 library <UART.h>.
The library starts up the UART peripheral with the parameters specified by the user (interrupts
in transmission or reception, addressing mode in eight or nine bits, interruption priority, etc.).
Additionally, several functions were developed to transform either an integer or float variable in a
string ready to transmit. The category has several blocks to writing and reading data: UART write
text, UART write integer, UART write float and UART read data.

• RTOS: For the platform, OSA was selected, which is a small RTOS compatible with dsPIC. OSA [30]
is a cooperative multitasking RTOS that uses, in this case, Timer 1 to generate the Tslice for the
different assigned tasks. In a cooperative RTOS, each tasks is executed periodically with a time
provided by the system scheduler [31]. In the category, some blocks were designed to create and
run tasks with priority in the range 0–7, where 0 is the highest level of priority and so on. A Java
class copies the contents (folders and subfolders) of this RTOS into the user’s folder to compile
with XC16. An example of code with the blocks is shown in Algorithm 1.

• Interrupt: In this category, a timer interrupt was designed with the associated Interruption Service
Routine (ISR). The graphical block contains several inputs such as pre-scale, clock tick between
interrupts in ms and priority in the range 0–7. These elements serve to open and configure the
timer selected by the user. The block operates with the frequency provided by the oscillator
block that the student must configure previously. An “Interrupt” is a key concept because it
allows understanding the architecture of any embedded system, in this case, concerning the DSCs.
As concept, Di Jasio [32] defined an interrupt as an external or internal event that requires a quick

Electronics 2019, 8, 228 9 of 30

CPU intervention. A code example with this block is shown in Algorithm 2 with a time between
interrupts of 1 ms, a DSC frequency of 36.86 MHz and 1:1 pre-scale.

• Delay: In this category, several blocks for delays in ms and µs, and instruction cycles were designed.
The XC16 library <libpic30.h> was employed to create the delays based on instruction cycles
according to the frequency specified by the user. For example, for a frequency of 36.86 MHz and a
delay of 10 ms, the block delay(ms) will return the statement _delay32(368500).

• Functions: In this category, the user can create C functions either with or without return variable.
In addition, the names and invoke parameters of each function must be defined by the user as
global variables. The functions make the code more readable and organized for the students.

Algorithm 1 Example of generated code for the RTOS (OSA).

//Task (Pin oscillator)
void Task2(void){

while(1){//Task in infinite loop. Feature of cooperative RTOS.
PIN1=1;//Write logical 1 on PIN1.
OS_Delay(10000);//Task Delay (10000 clock ticks).
PIN1=0;//Write logical 0 on PIN1.
OS_Delay(10000);//Task Delay (10000 clock ticks).
OS_Yield();//Return to scheduler.

}
}

Algorithm 2 Example of generated code for the block (Timer interrupt).

#include <timer.h>//XC16 Timer Library
//Interruption Service Routine (ISR) for Timer1
void __attribute__((interrupt,no_auto_psv)) _T1Interrupt(void)
{

IFS0bits.T1IF=0;//Clear Timer flag
WriteTimer1(0);//Restart Timer

}
//Routine to configure the selected timer
void ConfigTimer1(void){

T2CONbits.T32=0;//Timer register in 16-bit mode
T4CONbits.T32=0;
ConfigIntTimer1(T1_INT_PRIOR_0 & T1_INT_ON); //Set-up of Timer1.
WriteTimer1(0);//Write 0 to the Timer
OpenTimer1(T1_ON & T1_GATE_OFF & T1_PS_1_1
& T1_SYNC_EXT_OFF &T1_SOURCE_INT,36850);//Clock tick of 1ms.

}

Thirdly, a plotter and a serial port visualizer were added to the application. For the plotter,
the Java library known as LiveGraph was utilized [33,34]. LiveGraph allows plotting up to 1000 data
series simultaneously, with an update between 0.1 s and 1 h. Data are saved in the application in CSV
format and the user should build a AV to plot the different data from the development board. A Java
class embedded in the application captures the data incoming from the serial port and sends them
to the framework of LiveGraph. With the CSV file, the users can export the data towards different
mathematical environments such as MATLAB, Octave, etc. for further processing. When a user wants
to plot data, the application will request the number of variables to plot, the update frequency and one
option to buffer data. Data sampling can be stopped, closing the serial port from the application.

The serial port visualizer shows the user’s data, using the same COM port indicated in the project
wizard. The serial port visualizer could allow the users to check whether their algorithm is correct.

Electronics 2019, 8, 228 10 of 30

As mentioned above, the e-learning tool Xerte was employed as support for the construction of
the educational materials of the platform that begin with the concepts of the DSCs and the embedded
systems to end in the features of the application. Xerte provides a complete environment to develop
materials with resources such as videos, quizzes, games or interactive web pages that accompany the
learning process of the student.

Finally, an overall perspective of the UI with its main components and the educational materials
are depicted in Figures 2 and 3, respectively.

3

1

5

2

4

Figure 2. Overall components of the UI: (1) blocks palette; (2) console output; (3) working area;
(4) real-time code tab; and (5) toolbar.

1

2

3

Figure 3. Educational materials in Xerte (Spanish version). (1) example of educational material;
(2) glossary option of Xerte; and (3) embedded resource (interactive web page) with AVs.

Electronics 2019, 8, 228 11 of 30

3.1.2. Application Layer

The core of the software component of the platform is composed of the objects WebView [35]
and WebEngine [36] available in JavaFX, which interact with Blockly to get the respective code for the
DSCs. A WebEngine is a non-visual component to manage a specific webpage, which allows invoking
the different functions made in JavaScript into Blockly. Because Blockly is web-oriented, a WebEngine
is a useful component to exchange data with this application. The WebView displays adequately
the content of a webpage into a scene in JavaFx. The scenes posed in this section were created with
the software JavaFX Scene Builder 2.0 [37] and their respective controllers with NetBeans IDE 8.2.
The Application Layer is composed of the elements: WebView, WebEngine, LiveGraph, Ace code
editor [38] and some XC16 libraries. An actor can select seven options in the UI: Project Wizard, Program,
Plot, Serial Port Visualizer, Help, Open and Save. The Unified Modeling Language (UML) sequence
diagram for the option Project Wizard is depicted in Figure 4.

SavePaths(String Paths)

1

GetPaths()

User’s folder path

Copy(String path)

1

LoadBlockly(String URL)

1

CopyFiles()

1

gui:GUI

A:Blockly B:Libraries and Files C:User’s paths

opt

[Project Wizard]

Figure 4. UML sequence diagram for the option Project Wizard.

When a user clicks on the button Project Wizard, this event opens a scene that asks for some
parameters such as the user’s folder path, the compiler’s path and the serial port for the communication
with the development board. These elements are saved as constructors in a Java Class to be used with
other methods. Posteriorly, another class copies all files and folders needed into the user’s folder.
Table 3 shows a description of these files.

Table 3. List and description of copied files and folders into the user’s folder.

Name Type (File or Folder) Description

OSA Folder It contains the files (.c, .h) for the RTOS (OSA).

User.h File Header file to configure, read and write the UART
peripheral.

User.c File
It contains the implementation of the functions to
configure, read and write the UART peripheral.

Data.csv File File with the user’s plotter data.

Hardwareprofile.h File
Header file with the pin-out definitions for the
development board.

Last in the sequence, Blockly is loaded into the WebView, employing the JavaFX constructor
WebEngine() with the method load(String URL). The URL contains the local path for Blockly, which is

Electronics 2019, 8, 228 12 of 30

found in the resources’ folder of the application. A tab in the workspace deploys in real-time the code
for the elaborated AV, as illustrated in Figure 2. Moreover, the generated code is highlighted with the
Ace code editor [38], which is a syntax highlighter for diverse statements in over 110 programming
languages, including C.

Each block inside Blockly has two associated files: (1) a shape file with the definition of the
graphical attributes; and (2) a file that describes the behavior’s block, that is, the returned C language
code by the block. For instance, the block delay(ms) depicted in Table 2 is associated with the
JavaScript function shown in Algorithm 3 for its behavior. In this algorithm, the value with the time
in milliseconds (ms) is assigned to the variable OSCVal. Then, the code for the block is returned and
injected by Blockly to be represented in the code tab for the user. As mentioned, this operation is made
in real-time with the component WebView in JavaFX that allows to invoke the JavaScript functions
nested in Blockly.

Algorithm 3 JavaScript Behavior function for the Block Delay (ms).

Blockly.Dart.delay=function() {//Delay function
var OSCVal=Blockly.Dart.valueToCode(this,’Time’,
Blockly.Dart.ORDER_ATOMIC);
var code=__delay32(’+OSCVal+’);//Returned code for the block.
return code;

};

The second option available in the UI is to program. The respective sequence diagram for this
function is depicted in Figure 5.

The method GetUserCode() calls the JavaScript function (content()) that returns through a
JavaScript alert the programming code for the blocks. A callback registered with the constructor
(WebEngine) detects this alert and it proceeds to get the code as a string. Subsequently, the content of
this string is saved in a C file to be compiled with the compiler XC16, employing its command line.
The previous operation is executed by the class Runtime in JavaFX. The command line option provides
the different instructions to compile and generate the Hex file to program the DSC and a report with
errors, memory distribution (RAM, Flash), etc.

With the Hex file, the method CallBootloader() invokes the Bootloader ds30 Loader (free
edition) [39]. By definition, a bootloader is a small piece of code inside the DSC that manages
its programming mode through some peripheral such as UART, CAN or USB. For the bootloader, an
assembler file provided by the developer was loaded into the program memory of the DSC with a
default baud rate of 57,600. Some modifications were made to this file according to the remappable
pins of the UART peripheral of the DSC. The bootloader is executed by the application in the command
line mode, in which a string command with the path for the Hex file, the name of the COM port, the
reset command and the device to program is provided.

When a reset occurs by the mentioned command, the DSC starts with the bootloader during
5 s, waiting for a new programming request from the application. When no programming request is
made, the bootloader gives the control to the code loaded previously in the flash memory of the DSC.
Independently, the bootloader opens and closes the serial port and it sends the Hex file towards the
DSC, managing all the process.

Concerning the option plot, the UML sequence diagram for this option is represented in Figure 6.

Electronics 2019, 8, 228 13 of 30

content()

GetUserCode()

String Code

SaveMainFile(String code)

main.c

CallCompiler(File main.c)

Hex File

OpenSerialPort()

1

SendHexFile(Hex File)

1

CloseSerialPort()

1

CallBootloader(Hex File)

1

gui:GUI

A:Blockly B:Compiler C:Bootloader

opt

[Program]

Figure 5. UML sequence diagram for the option Program.

OpenPlotter()

LiveGraph Object (plot)

plot.exec()

OpenSerialPort()

GetDataSerialPort()

WriteCSVFile(Byte Data [])
1

SerialPort()

CloseSerialPort()
1

OpenConsole(int number of variables)

gui:GUI

A:LiveGraph B:Plot Console C:Serial Port

opt

[plot]

Figure 6. UML sequence diagram for the option Plot.

Electronics 2019, 8, 228 14 of 30

To create an instance for the plotter, the method OpenPlotter() is invoked and an object is returned
by it. This object opens the different elements of the class LiveGraph. A new scene is deployed to the
user that asks the number of variables to plot. Hence, the result of this transaction is a new window in
which the user can see and update the data, as shown in Figure 7.

Figure 7. LiveGraph components composed of windows (plotter and update data).

Afterwards, the serial port (COM) is opened and it gets the data incoming from the development
board in a buffer. Meanwhile, a method in the application saves the data in a CSV file.

The user also can save or open the designed AV and to request help from the application.
The programming structure of these functions is summarized in the sequence diagrams in Figure 8.

Whether a user wants to open or save the AV created, Blockly contains the JavaScript function
Blockly.Xml.domToPrettyText that converts the AVs into an XML file, which is saved in the user’s folder.
The Java class WebEngine calls the mentioned JavaScript function and it returns a text with the XML
code in a JavaScript alert. The code is retrieved by means of a callback event in the application that
detects this alert. In the same way, the XML file in the user’s folder can be upload to the application,
recovering the AV made through the functions Blockly.Xml.textToDom and Blockly.Xml.domToWorkspace.

With the help of the application, it releases a new browser window with the URL to the Xerte
materials, as depicted in Figure 3. To open this window, the application uses the Java class Desktop
with the method browse.

Finally, a serial port visualizer was created through library, Java Simple Serial Connector (jSSC) [40],
which implements the necessary methods to write and read data from the serial port. The library
provides an asynchronous event to get data in a byte buffer that are converted to string and displayed
in a JavaFx TextArea. Regarding the asynchronous event, it allows the user to execute other functions in
the application with the serial port receiving data of the development board at the same time. Figure 9
shows the sequence diagram for this function. Below, it is shown how the hardware component of the
platform interacts with the software application.

Electronics 2019, 8, 228 15 of 30

Blockly.Xml.workspaceToDom(Blockly.mainWorkspace)

var xml

Blockly.Xml.domToPrettyText(xml)

XML code

GetXML()

XML code

writeXML(String Project Path, String XML Code)

1

Save(String XML Code)

1

Blockly.Xml.textToDom(XML code)

var xml

Blockly.Xml.domToWorkspace(xml, Blockly.mainWorkspace)

Upload(String XML code)

1

Desktop.getDesktop().browse(new URI(String URL Xerte resources))

OpenHelp()

1

gui:GUI

1:Blockly 2:SaveXML

opt

[Save]

A:Blockly

opt

[Open]

1:Help

opt

[Help]

Figure 8. UML sequence diagrams for the functions Open, Save and Help.

Electronics 2019, 8, 228 16 of 30

SerialPort.open()

serialPort.addEventListener(new SerialPortReader())

serialEvent()

byte Data []

SerialTextArea.append(String data)

OpenVisualizer()

gui:GUI 1:SerialPortVisualizer

opt

[Serial]

Figure 9. UML sequence diagram for the function Serial Port Visualizer.

3.1.3. Hardware Abstraction Layer

The communication between the software and the hardware components in the application
is managed by the Hardware Abstraction Layer (HAL), which is composed of the bootloader (ds30
Loader) and the Java library (jSSC). These elements form the HAL because they interchange information
between the software and hardware elements in the application. As mentioned, the bootloader allows
programming the DSC with the Hex file provided by the compiler and it is composed of two overall
files, namely, the firmware and a console that is invoked through a command line, sending the Hex file
towards the DSC. Table 4 shows a summary of the files provided in the firmware with their description.

Table 4. List and description of files for the bootloader (ds30Loader).

File Name Description

ds30loader.s It contains the assembler implementation for the bootloader.

devices.inc It defines the memory size for the bootloader in words and pages
according to the selected device.

settings.inc It indicates the DSC’s reference, the configuration bits (fuses) and the
UART’s baud rate.

uart.inc It describes the configuration for the UART’s registers.

user code.inc It configures the remappable pins for the UART and the oscillator
settings so as to start-up the DSC.

Electronics 2019, 8, 228 17 of 30

The firmware should be modified according to the specifications of the DSC in assembler (asm30).
For instance, in the hardware, pins RB9 and RC6 of the dsPIC 33FJ128GP804 serve for reception and
transmission of data, respectively. Thus, the RPINR19 and RPOR11 registers were configured for these
functions and the FRC oscillator was enabled with the default frequency of 7.37 MHz. With these
parameters, the bootloader is programmed in the DSC, utilizing a programmer such as PICkit 3 [41] or
ICD3 [42].

3.1.4. Application Summary

Finally, a summary with the software features of the platform is described in Table 5.
The application was tested in a PC with the following parameters:

• Processor: Intel(R) Core (TM) i5-4460T @ 1.9 GHz.
• Installed memory RAM: 8 GB
• System type: 64-bit operating system. (Windows 8).
• Local disc capability: 1.5 TB
• Java version: 1.8.0.121

Table 5. Summary of main features of the software component in the platform.

Feature Description

Application size in disc 161 (MB)
Average Heap size (Java) 22 (MB) of 100 (MB) assigned.
Peak CPU usage 31%
Programming language Java (JavaFX 8)

The application was also tested in a PC based on Windows 7 with similar features. To complement
the previous information, VisualVM 1.4.2 [43] was used, which is a software that monitors and
troubleshoots applications running on Java. The analysis information provided by this software is
shown in Figure 10.

Figure 10. Benchmark information for the application provided by VisualVM 1.4.2.

The information in Figure 10 was retrieved when the AV represented in the Example 1 in Section 4
was built. In this case, the peak CPU usage in percentage was 31% with an average heap size for Java
of 22 MB.

Electronics 2019, 8, 228 18 of 30

3.2. Hardware Component

Two models of low-cost development boards were built as hardware components in the
platform. They are composed of the DSCs (dsPIC 33FJ128GP804 or dsPIC 33FJ128MC802) with the
respective conditioning for their inputs, a 3.3 V power supply and a UART to USB bridge (FT232RL).
Each development board contains six analog or digital inputs (depending on the function assigned
by the user), four digital outputs and two DAC outputs (channels A and B). A scheme with the main
components of the developments boards is depicted in Figure 11.

The analog inputs are conditioned by voltage followers built with Operational Amplifiers
(Op-Amps) (MCP6004) [44] that limit the voltage of the input signals to a range of 0–3.3 V and
reduce their noise. In addition, the selected Op-Amps are rail-to-rail, that is, the output voltage
(Vout) of each when the Op-Amp is in saturation mode is approximately Vout = Vsat − 150 mV with
Vsat ≈ 3.3 V. This feature allows the user to have a full span of the applied analog signals.

For the inputs, an example of schematic with the voltage followers is presented in Figure 12.

Digital Signal Controller (DSC)
dsPIC 33FJ128GP804 or
dsPIC 33FJ128MC802

Voltage
Followers

Input signals
(0-3.3V)

Reset ICSP
Connector

FRC
Oscillator
(7.37MHz)

6 Analog or
digital inputs

4 Digital
Outputs

DAC
(MCP4822)

Channel A
0-3.3V

Channel B
(0-3.3V)

FT232RL
UART to USB

Bridge

UART

SPI

To USB

To application

LM(2576)
Voltage regulator

Power supply
(Max +18V)

+3.3V

Built-in LEDA

Built-in LEDB

Inputs

Power supply

Outputs

Figure 11. Overall scheme of the development board by blocks inputs, outputs and power supply.

Figure 12. Schematic of the inputs’ conditioning through voltage followers for the development boards.

The user connects their signal to the terminal blocks (IN-1 to IN-6) that are wired to the Op-Amps
(MCP6004). This hardware device has four Op-Amps with a 1 MHz Gain Bandwidth Product (GBWP),

Electronics 2019, 8, 228 19 of 30

90◦ phase margin, a power supply voltage in the range of 1.8–6 V and a quiescent current of 100 µA.
The device is suitable for the hardware requirements of the platform. The development boards also
have a reset push button and one In-Circuit Serial Programming (ICSP) header for a programmer
such as PICkit 3 or ICD3. For the design of the application, the low-cost programmer (PICkit 3) from
Microchip Inc. was used.

As regards to the power supply of 3.3 V, it was designed through a step-down voltage regulator
(LM2576) [45] with a maximum load current of 3 A for the model (dsPIC 33FJ128GP804). The current
consumption for a frequency of 40 MIPS in the DSC is roughly 0.17 A. The regulator provides thermal
shutdown and current limit protection with a efficiency (η) around 88% for the parameters Vin = 18 V
and ILoad = 3 A. Figure 13 illustrates the schematic for the power supply.

Figure 13. Schematic of the Power Supply with a step-down voltage regulator (LM2576). The
connectors JP3 and JP4 provide voltage test points for the user designs.

For the model dsPIC 33FJ128MC802, a voltage regulator (LM1117-3.3) with a maximum load
current of 800 mA was used. Concerning the UART to USB bridge, it was built with the chip
FT232RL [46] from FTDI that has a CDC emulation and it transfers the USB data to the UART
peripheral for the DSC. Figure 14 shows the followed schematic for this device in the two models of
development board.

Figure 14. Schematic of the USB to UART bridge (FT323RL). The points RXD (Data reception) and TXD
(Data transmission) are connected to dsPIC pins RB9 and RC6, respectively, for the dsPIC 33FJ128GP804.

Electronics 2019, 8, 228 20 of 30

The previous elements compose the development boards depicted in Figures 15–17 for the dsPIC
33FJ128GP804 and dsPIC 33FJ128MC802. The design of each development board can be modified
effortlessly to use other type of dsPICs, e.g., the dsPIC 33FJ128GP802. Each development board has an
average cost of US$30.

Figure 15. Development board’s solder screen.

Figure 16. Overall appearance of the development board with dsPIC 33FJ128GP804: (1) power supply
unit; (2) voltage followers; (3) inputs; (4) outputs; (5) DAC (MCP4822); (6) dsPIC 33FJ128GP804;
(7) FT232RL (UART to USB bridge); and (8) ICSP header connector.

Electronics 2019, 8, 228 21 of 30

3

4

5

2

2

1

Figure 17. Overall appearance of the development board with dsPIC 33FJ128MC802: (1) power supply
unit; (2) input–output connectors; (3) dsPIC 33FJ128MC802; (4) FT232RL (UART to USB bridge); and
(5) ICSP header connector.

4. Experiments

This section exposes several examples with the platform, employing the mentioned elements of
software and hardware. The main purpose of these examples is to provide a description of some usage
cases that can be built with the platform.

4.1. Example 1: ADC plotting

In this example, the analog data on input (1) of the development board is plotted. The steps
involved are as follows:

1. Plug-in the development board to a PC. Configure the project in the application using the
project wizard.

2. Create the AV according to the specifications of a design. Use the palette to get the different
graphical blocks that are needed in the AV. Program the development board with this.

3. Debug the AV. For this example, connect a potentiometer on input 1.
4. Open the plotter, specifying the number of variables to plot, in this case, 1.
5. Click on the run button to start the plotter.

Taking into account the previous steps, Figures 18 and 19 show the procedure starting with the
flow diagram, Figure 20 illustrates the plot with the data from ADC peripheral and Figure 21 depicts
the testing environment for this example:

Electronics 2019, 8, 228 22 of 30

Start

int i=0;

Configuration();

i=readADC(0);

UARTSendInteger(i);

delay ms(100);

End

Figure 18. Flow diagram for Example 1.

Figure 19. Example of the created AV for the function ADC plotting.

Electronics 2019, 8, 228 23 of 30

Figure 20. Data plot of the ADC channel (1) for Example 1.

Figure 21. Testing environment for Example 1.

The user declares the variable i that reads the value of the ADC. This value is sent to the UART
peripheral, employing the block UART send (integer). The program runs continuously in an infinite loop.

Electronics 2019, 8, 228 24 of 30

4.2. Example 2: RTOS

This example uses the RTOS (OSA) to start and stop an AC Induction Machine (ACIM). The RTOS
reads two switches (start and stop) and also sends the texts Motor On, Motor Off to the serial port,
relying on the state of the ACIM. For this example, the steps are as follows:

1. Plug-in the development board to a PC. Configure the project in the application using the
project wizard.

2. Create the AV according to the specifications of a design. Indicate the name of the tasks for the
RTOS (TurnOn, Turnoff). To use the RTOS, a Timer (1) interrupt must be configured.

3. Program the development board with the AV built in Step 2.
4. Debug the AV. Connect two switches with their respective pull-up resistors to inputs 2 and 3 of

the development board. In addition, connect a relay and an AC contactor for the ACIM with
their protections.

5. Start and stop the ACIM. Test the message transmission on the serial port visor in the GUI of
the platform.

Figures 22–24 show the flow diagrams, the AV and the testing environment for the example.

Start

Configuration();

OS Init();

OS Task Create(0,TurnOn)
OS Task Create(0,TurnOff);
OS Task Create(0,LED);

ConfigTimer1();

OS run();

End

(a)
Start

PININ2 == 0
PIN0=0;

charsend(”Motor Off”);
OS Yield();

End

YesNo

(b)
Figure 22. Flowcharts for Example 2: (a) flow diagram to configure the tasks of the RTOS: and (b) flow
diagram for the task Turn off.

Electronics 2019, 8, 228 25 of 30

Figure 23. Designed AV for Example 2.

Figure 24. Testing environment for Example 2.

5. Assessment

To assess the platform, a survey was applied to 30 sophomores (n = 30) in the periods 2017-II and
2018-I. The students belonged to the program of Electronic Technology at UNIMINUTO university
and they were informed and invited to the study conducted with the platform. All students decided to
participate in this study giving their approval. This assessment provides the standpoint of the students
that used the platform in aspects such technical as educational, which could give a perspective on its
use. Table 6 sums-up the questions and answers of the survey.

Electronics 2019, 8, 228 26 of 30

Table 6. Survey’s questions and answers (n = 30).

Question Answers

1. In a scale of 1 to 10, assess the technical
functioning of the platform. x = 8.5

2. With the graphical blocks, did you understand
in a better way the concepts involved in the DSCs? Yes (100%), No (0%)

3. What element do you consider most relevant in
the platform?

• Designed Blocks to configure the peripherals
and ports of the DSC. (12)

• Algorithm Visualizations (AVs). (9)
• Development board to implement the

designed algorithms. (6)
• Interface (Robust and User-friendly). (3)

4. Did the platform help you in the way that you
understand an algorithm? Yes (100%), No (0%)

5. Were learning materials pertinent to your needs
in the embedded systems area? Yes (100%), No (0%)

6. Would you employ the platform in your own
designs into academic and work contexts? Yes (100%), No (0%)

Questions 1 and 3 evaluated the platform at the technical level. Due to some presented bugs that
were fixed, the average grade provided by the students was 8.5. In the same way, Question 3 indicated
what elements the students considered relevant about the platform. The answer to Question 2 showed
the learning that the students had with the platform in comparison with the traditional educational
method of embedded systems. The traditional method to teach embedded systems at Uniminuto
University typically consists of employing a text-based structured programming, flow diagrams and
microcontrollers (PIC) in projects, instead of the AVs and DSCs. The difference between this traditional
method and the learning with the DSCBlocks platform lies, as mentioned above, in the possibility to
design and implement in real-time an algorithm through AVs, in which the students can see different
algorithmic procedures and the registers involved in the DSC’s architecture. Nevertheless, a dedicated
questionnaire to assess the learning with the platform is a research question still needs to be addressed.

In addition to the previous questions, the students were inquired in the same survey about the
elements that they would improve in the platform. The students agreed with the need to have more
graphical blocks to deploy protocols as I2C, CAN or SPI. Moreover, the students indicated that the
methodology with the platform needs to be longer to fulfill the proposed learning outcomes.

The concept of the platform in the educational context arises on the one hand due to the lack
of open-source resources pertaining to embedded systems area and on the other hand the problems
detected in the algorithmic thinking that limit somehow the learning of programming in the students.
In this way, the platform is an educational alternative that could address the described issues.

During 2017-II and 2018-I, the students employed the platform in different types of tasks into
the curriculum of the microcontrollers with an average class time of 2 h per week during 15 weeks.
The class sessions varied between the usage of the developed block-based language with the platform
and text-based programming with MPLABX IDE [47] in a similar process mentioned by the authors
of [15,26].

This method is suitable because the students must understand the DSC architecture with the
different configuration registers involved in it and they must familiarize with the development
environment (compiler and IDE) in order to program the DSCs. Thus, the students used the text-based
programming in the first classes of the subject. Then, the students employed the platform in different
laboratories with the visual language, considering the different designed AVs. In addition, the students
debugged their algorithms in real practices, which represents an advantage over the simulation.

Electronics 2019, 8, 228 27 of 30

The educational process raised with the platform took into account four moments: abstraction,
design, practice and arguing. These moments are described as follows:

• Abstraction: In this stage, the class session was focused on theoretical aspects regarding the DSC’s
architecture (registers, ports, peripherals, data bus, etc.) and the parameters such of the compiler
XC16 as of MPLABX IDE.

• Design: The students developed an algorithm for a proposed problem, alternating between the
text coding and the AVs. The algorithms required the usage of peripherals, ports, variables and
loops, which are elements commonly used in the embedded systems area.

• Practice: The students implemented the designed algorithm in several proposed laboratories,
typically, clustering industrial devices such as AC motors, AC contactors, relays and sensors.

• Arguing: The students explained the developed algorithms in their structure. For example, when
the students configured a port or peripheral for certain design, they explained the configuration
of the registers, loops, variables or functions involved in this operation.

According to the observations made in the class sessions and the indicated poll, it is possible to
say that the platform is suitable and reliable to learn the concepts of the embedded systems with the
DSCs, although it needs to be alternated with the text-based programming. In addition, the arguing
concerning the developed AVs is a key process because the students explain the different mechanisms
that structure an algorithm from their learning perspective.

6. Discussion

In agreement to the described technical and educational aspects and the assessment provided by
the students, it can be concluded that the platform is suitable to learn the different concepts relating
to the DSCs through AVs as educational way in the construction and understanding of an algorithm
that requires the usage of these devices. In addition, the platform allows the user to design and test
applications in the embedded systems area due to the number of graphical blocks to handle diverse
peripherals, ports, RTOS and its user-friendly interface. With the platform, the students can observe
the configuration for the registers, loops, functions and variables involved in the functioning of the
DSCs, following an algorithmic structure.

DSCBlocks was tested with industrial devices (ACIMs, AC contactors, relays, etc.) to evaluate its
robustness, as depicted in Example 2. Furthermore, the graphical blocks that compound the application
were divided into 28 functions, distributed in different categories and 120 codes were tested.

Conceptually, open-source hardware [48] is composed of physical technological artifacts, e.g., PCB
layouts, schematics, HDL source codes, mechanical drawings, etc., that could be used in other projects
or designs in some cases with the respective General Public License (GPL). This work is entirely
open-source in hardware and software, that is to say, a user can modify the structure of hardware
and software according to the requirements of a design only with an attribution requirement. Finally,
the importance of this work lies in that the platform addresses the lack of open-source educational
resources for the embedded systems regarding the DSCs. Although the hardware devices employed in
the application are dsPICs, the followed schema could adapt to other DSC’s architectures, e.g., ARM,
Texas Instruments or Atmel.

One important difficulty that deserves to be mentioned in the design of the interface is the
modification of Blockly, because the documentation concerned was not totally accessible at the time
to create the XC16 language generator and the graphical blocks. Blockly combines many JavaScript
functions that could confuse to a developer. The recommendation to overcome this issue is to adapt a
preloaded language converter in Blockly. For example, to build the platform, a Dart language converter
was adapted to its design requirements.

It is important to create open-source resources in software and hardware that contribute to the
learning of the students or users in engineering areas such as control, embedded systems, power
electronics or robotics. This type of resources could become a source of knowledge that deserves to

Electronics 2019, 8, 228 28 of 30

be shared and can be used as reference guides in the construction of different types of applications
and designs in the academic and industrial sectors. Besides, the users can modify the structure
of these resources, generating new developments that could help to solve diverse problems in the
engineering context.

7. Conclusions and Further Work

In this paper, an open-source platform for embedded systems called DSCBlocks is presented.
The main interest of the platform was to provide an open, flexible, suitable and efficient environment
to program DSCs through Algorithm Visualizations (AVs). Furthermore, the platform aims to cope
with the lack of open-source resources in the area of the embedded systems, specifically associated
with the DSCs.

As described above, the AVs have important advantages for the students or users that want to
design any type of algorithms in order to learn embedded systems. With the AVs, the students can
observe the different configurations of the registers of the DSCs for different peripherals and ports;
create variables, loops, and functions; and can see the algorithmic procedures in real-time, helping to
understand the architecture of these devices.

The assessment provided by the students suggests that the platform is reliable for the design and
the implementation of different types of algorithms needed in embedded systems, and it allows the
learning of the concepts concerning this area.

Although the platform has been conceived for academic work, the software and hardware
components can be adapted effortlessly for any kind of project that employs DSCs. Further research of
the platform will consist, on the one hand, in the design of new blocks for communication peripherals
such as as I2C or CAN. In addition, the development board will be expanded to give a better
functionality to the users for applications that utilize, e.g., Liquid Crystal Displays (LCDs), sensors
and actuators that require a greater number of inputs and outputs. On the other hand, it will make an
educational study of the platform to know the implications of it in the learning of the students.

Supplementary Materials: Complete version of DSCBlocks for PC or laptop is available online at http://www.
seconlearning.com/DSCBlockV2/DSCBlocksFull.zip. GitHub repository of the application is available online at
https://github.com/Uniminutoarduino/DSCBlocksV2. Xerte materials are available online at http://seconlearning.
com/xerte/play.php?template_id=5. DSCBlocks web application is available online at http://seconlearning.com/
DSCBlockV2/BlocklyOPt/demos/code/index.html.

Author Contributions: The author carried out the conceptualization, design, implementation of the platform and
writing of the paper.

Acknowledgments: This work was supported by the Control Research Incubator (SeCon) funded by the
Corporación Universitaria Minuto de Dios (UNIMINUTO).

Conflicts of Interest: The author declares no conflict of interest.

References

1. Microchip Technology Inc. dsPIC R© Digital Signal Controllers The Best of Both Worlds. Available online:
http://www.farnell.com/datasheets/133476.pdf (accessed on 24 July 2018).

2. Aspencore. 2017 Embedded Markets Study. Available online: https://m.eet.com/media/1246048/2017-
embedded-market-study.pdf (accessed on 28 July 2018).

3. Clarke, J.; Connors, J.; Bruno, E.J. JavaFX: Developing Rich Internet Applications; Pearson Education: London,
UK, 2009.

4. Heckler, M.; Grunwald, G.; Pereda, J.; Phillips, S.; Dea, C. Javafx 8: Introduction by Example; Apress: New York,
NY, USA, 2014.

5. Microchip Technology Inc. dsPIC 33FJ128GP804 Datasheet. Available online: https://www.microchip.com/
wwwproducts/en/dsPIC33FJ128GP804 (accessed on 31 July 2018).

6. Microchip Technology Inc. dsPIC 33FJ128MC802 Datasheet. Available online: https://www.microchip.
com/wwwproducts/en/dsPIC33FJ128MC802 (accessed on 31 July 2018).

http://www.seconlearning.com/DSCBlockV2/DSCBlocksFull.zip
http://www.seconlearning.com/DSCBlockV2/DSCBlocksFull.zip
https://github.com/Uniminutoarduino/DSCBlocksV2
http://seconlearning.com/xerte/play.php?template_id=5
http://seconlearning.com/xerte/play.php?template_id=5
http://seconlearning.com/DSCBlockV2/BlocklyOPt/demos/code/index.html
http://seconlearning.com/DSCBlockV2/BlocklyOPt/demos/code/index.html
http://www.farnell.com/datasheets/133476.pdf
https://m.eet.com/media/1246048/2017-embedded-market-study.pdf
https://m.eet.com/media/1246048/2017-embedded-market-study.pdf
https://www.microchip.com/wwwproducts/en/dsPIC33FJ128GP804
https://www.microchip.com/wwwproducts/en/dsPIC33FJ128GP804
https://www.microchip.com/wwwproducts/en/dsPIC33FJ128MC802
https://www.microchip.com/wwwproducts/en/dsPIC33FJ128MC802

Electronics 2019, 8, 228 29 of 30

7. Microchip Technology Inc. dsPIC 33F Product Overview. Available online: https://cdn.sos.sk/productdata/
fb/55/a9c85743/dspic33fj256gp710-i-pf.pdf (accessed on 31 July 2018).

8. Törley, G. Algorithm visualization in teaching practice. Acta Didact. Napoc. 2014, 7, 1–17.
9. Shaffer, C.A.; Cooper, M.L.; Alon, A.J.D.; Akbar, M.; Stewart, M.; Ponce, S.; Edwards, S.H. Algorithm

visualization: The state of the field. ACM Trans. Comput. Educ. (TOCE) 2010, 10, 9.
10. Google LLC. Blockly Demo: Code. Available online: https://developers.google.com/blockly/ (accessed on

31 July 2018).
11. Fraser, N. Ten things we’ve learned from Blockly. In Blocks and Beyond Workshop (Blocks and Beyond); IEEE

Computer Society: Washington, DC, USA, 2015; pp. 49–50. [CrossRef].
12. Microchip Technology Inc. MPLAB R© XC16 C Compiler User’s Guide. Available online: http:

//ww1.microchip.com/downloads/en/DeviceDoc/MPLAB%20XC16%20C%20Compiler%20Users%
20Guide%20DS50002071.pdf (accessed on 28 July 2018).

13. Ball, S.; Tenney, J. Xerte—A User-Friendly Tool for Creating Accessible Learning Objects. In International
Conference on Computers for Handicapped Persons; Springer: Berlin/Heidelberg, Germany, 2008; pp. 291–294.
[CrossRef].

14. González, G.G. Xerte Online Toolklts Y El DiseÑo De Actividades Interactivas Para Fomentar La
AutonomÍa De Aprendizaje en Ele. La Red Y Sus Aplicaciones en La EnseÑanza-Aprendizaje Del EspaÑol
Como Lengua Extranjera. Asociación Para La EnseÑanza Del EspaÑol Como Lengua Extranjera, 2011;
pp. 653–662. Available online: https://cvc.cervantes.es/ensenanza/biblioteca_ele/asele/pdf/22/22_0063.
pdf (accessed on 17 August 2018).

15. Hundhausen, C.D.; Douglas, S.A.; Stasko, J.T. A meta-study of algorithm visualization effectiveness. J. Vis.
Lang. Comput. 2002, 13, 259–290.

16. Rößling, G.; Naps, T.L. Towards Improved Individual Support in Algorithm Visualization. In Proceedings
of the Second International Program Visualization Workshop, Århus, Denmark, 22–24 November 2002;
pp. 125–130.

17. Pasternak, E.; Fenichel, R.; Marshall, A.N. Tips for creating a block language with blockly. In Proceedings of
the Blocks and Beyond Workshop (B&B), Raleigh, NC, USA, 9–10 October 2017; pp. 21–24. [CrossRef].

18. Weintrop, D.; Shepherd, D.C.; Francis, P.; Franklin, D. Blockly goes to work: Block-based programming
for industrial robots. In Proceedings of the Blocks and Beyond Workshop (B&B), Raleigh, NC, USA,
9–10 October 2017; pp. 21–24. [CrossRef].

19. Angulo, I.; García-Zubía, J.; Hernández-Jayo, U.; Uriarte, I.; Rodríguez-Gil, L.; Orduña, P.; Pieper, G.M.
RoboBlock: A remote lab for robotics and visual programming. In Proceedings of the Experiment@
International Conference (exp. at’17), Faro, Portugal, 6–8 June 2017; pp. 109–110. [CrossRef].

20. Serna, M.; Sreenan, C.J.; Fedor, S. A visual programming framework for wireless sensor networks in smart
home applications. In Proceedings of the International Conference on Intelligent Sensors, Sensor Networks
and Information Processing, Singapore, 7–9 April 2015. [CrossRef].

21. Ariza, J.A. Controlly: Open source platform for learning and teaching control systems. In Proceedings
of the 2015 IEEE 2nd Colombian Conference on Automatic Control (CCAC), Manizales, Colombia,
14–16 October 2015; pp. 1–6. [CrossRef].

22. Galán, D.; de la Torre, L.; Dormido, S.; Heradio, R.; Esquembre, F. Blockly experiments for EjsS laboratories.
In Proceedings of the Experiment@ International Conference (exp. at’17), Faro, Portugal, 6–8 June 2017;
pp. 139–140. [CrossRef].

23. Bak, N.; Chang, B.; Choi, K. Smart Block: A Visual Programming Environment for SmartThings. In
Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC),
Tokyo, Japan, 23–27 July 2018; Volume 2, pp. 32–37. [CrossRef],

24. Khamphroo, M.; Kwankeo, N.; Kaemarungsi, K.; Fukawa, K. MicroPython-based educational mobile robot
for computer coding learning. In Proceedings of the 2017 8th International Conference of Information and
Communication Technology for Embedded Systems (IC-ICTES), Chonburi, Thailand, 7–9 May 2017; pp. 1–6.
[CrossRef],

25. Marron, A.; Weiss, G.; Wiener, G. A decentralized approach for programming interactive applications
with javascript and blockly. In Proceedings of the 2nd Edition on Programming Systems, Languages and
Applications Based on Actors, Agents, and Decentralized Control Abstractions, Tucson, Arizona, USA,
21–22 October 2012; pp. 59–70.

https://cdn.sos.sk/productdata/fb/55/a9c85743/dspic33fj256gp710-i-pf.pdf
https://cdn.sos.sk/productdata/fb/55/a9c85743/dspic33fj256gp710-i-pf.pdf
https://developers.google.com/blockly/
https://dx.doi.org/10.1109/blocks.2015.7369000
http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB%20XC16%20C%20Compiler%20Users%20Guide%20DS50002071.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB%20XC16%20C%20Compiler%20Users%20Guide%20DS50002071.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/MPLAB%20XC16%20C%20Compiler%20Users%20Guide%20DS50002071.pdf
https://doi.org/10.1007/978-3-540-70540-6_43
https://cvc.cervantes.es/ensenanza/biblioteca_ele/asele/pdf/22/22_0063.pdf
https://cvc.cervantes.es/ensenanza/biblioteca_ele/asele/pdf/22/22_0063.pdf
https://dx.doi.org/10.1109/BLOCKS.2017.8120404
https://dx.doi.org/10.1109/BLOCKS.2017.8120406
https://dx.doi.org/10.1109/expat.2017.7984373
https://dx.doi.org/10.1109/issnip.2015.7106946
https://dx.doi.org/10.1109/ccac.2015.7345194
https://dx.doi.org/10.1109/EXPAT.2017.7984359
https://dx.doi.org/10.1109/COMPSAC.2018.10199
https://dx.doi.org/10.1109/ICTEmSys.2017.7958781

Electronics 2019, 8, 228 30 of 30

26. Matsuzawa, Y.; Tanaka, Y.; Sakai, S. Measuring an impact of block-based language in introductory
programming. In International Conference on Stakeholders and Information Technology in Education; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 16–25. [CrossRef].

27. Chtourou, S.; Kharrat, M.; Ben Amor, N.; Jallouli, M.; Abid, M. Using IOIOAI in introductory courses to
embedded systems for engineering students: A case study. Int. J. Electr. Eng. Educ. 2018, 55, 62–78. [CrossRef].

28. Microchip Technology Inc. USB CDC Class on an Embedded Device. Available online: http://www.t-es-t.
hu/download/microchip/an1164a.pdf (accessed on 2 August 2018).

29. Microchip Technology Inc. MCP4822 datasheet. Available online: https://people.ece.cornell.edu/land/
courses/ece4760/labs/f2015/lab2_mcp4822.pdf (accessed on 3 August 2018).

30. RTOS, O. What Is OSA? Available online: http://wiki.pic24.ru/doku.php/en/osa/ref/introduction/intro
(accessed on 7 August 2018).

31. Heath, S. Embedded Systems Design; Elsevier: Amsterdam, The Netherlands, 2002.
32. Di Jasio, L. Programming 16-Bit PIC Microcontrollers in C: Learning to Fly the PIC 24; Elsevier: Amsterdam,

The Netherlands, 2007.
33. Sain, M.; Lee, H.; Chung, W. MUHIS: A Middleware approach Using LiveGraph. In Proceedings of

the 2009 International Multimedia, Signal Processing and Communication Technologies, Aligarh, India,
14–16 March 2009; pp. 197–200. [CrossRef],

34. Paperin, G. LiveGraph Summary. Available online: https://sourceforge.net/projects/live-graph/ (accessed
on 9 August 2018).

35. Oracle Corporation. WebView JavaDoc. Class WebView. Available online: https://docs.oracle.com/javase/
8/javafx/api/javafx/scene/web/WebView.html (accessed on 9 September 2018).

36. Oracle Corporation. WebEngine JavaDoc. Class WebEngine. Available online: https://docs.oracle.com/
javase/8/javafx/api/javafx/scene/web/WebEngine.html (accessed on 9 September 2018).

37. Oracle Corporation. JavaFX scene builder 2.0. Available online: https://www.oracle.com/technetwork/
java/javase/downloads/sb2download-2177776.html (accessed on 28 July 2018).

38. Mozilla Foundation. Ace Code Editor. Available online: https://ace.c9.io/ (accessed on 9 September 2018).
39. Gustavsson, M. ds30 Loader. Available online: https://www.ds30loader.com/ (accessed on 28 July 2018).
40. jSSC (Java Simple Serial Connector). Available online: https://code.google.com/archive/p/java-simple-

serial-connector/ (accessed on 28 August 2018).
41. Microchip Technology Inc. Pickit3 Datasheet. Available online: https://ww1.microchip.com/downloads/

en/DeviceDoc/51795B.pdf (accessed on 12 October 2018).
42. Microchip Technology Inc. ICD3 Datasheet. Available online: http://ww1.microchip.com/downloads/en/

DeviceDoc/50002081B.pdf (accessed on 12 October 2018).
43. Jiri Sedlacek, T.H. VisualVM: All-in-One Java Troubleshooting Tool. Available online: https://visualvm.

github.io/index.html (accessed on 10 October 2018).
44. Microchip Technology Inc. MCP6004 Datasheet. Available online: http://ww1.microchip.com/downloads/

en/DeviceDoc/21733j.pdf (accessed on 28 August 2018).
45. Instruments, T. LM2576 Voltage Regulator Datasheet. Available online: http://www.ti.com/lit/ds/symlink/

lm2576.pdf (accessed on 28 August 2018).
46. FTDI Chip. FT232RL Datasheet. Available online: https://www.ftdichip.com/Support/Documents/

DataSheets/ICs/DS_FT232R.pdf (accessed on 28 July 2018).
47. Microchip Technology Inc. MPLABX IDE. Available online: https://www.microchip.com/mplab/mplab-x-

ide (accessed on 10 October 2018).
48. Ray, P.P.; Rai, R. Open Source Hardware: An Introductory Approach; Lap Lambert: Saarbrücken, Germany, 2013.

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1007/978-3-319-54687-2_2
https://doi.org/10.1177/0020720917750959
http://www.t-es-t.hu/download/microchip/an1164a.pdf
http://www.t-es-t.hu/download/microchip/an1164a.pdf
https://people.ece.cornell.edu/land/courses/ece4760/labs/f2015/lab2_mcp4822.pdf
https://people.ece.cornell.edu/land/courses/ece4760/labs/f2015/lab2_mcp4822.pdf
http://wiki.pic24.ru/doku.php/en/osa/ref/introduction/intro
https://dx.doi.org/10.1109/MSPCT.2009.5164209
https://sourceforge.net/projects/live-graph/
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/web/WebView.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/web/WebView.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/web/WebEngine.html
https://docs.oracle.com/javase/8/javafx/api/javafx/scene/web/WebEngine.html
https://www.oracle.com/technetwork/java/javase/downloads/sb2download-2177776.html
https://www.oracle.com/technetwork/java/javase/downloads/sb2download-2177776.html
https://ace.c9.io/
https://www.ds30loader.com/
https://code.google.com/archive/p/java-simple-serial-connector/
https://code.google.com/archive/p/java-simple-serial-connector/
https://ww1.microchip.com/downloads/en/DeviceDoc/51795B.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/51795B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/50002081B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/50002081B.pdf
https://visualvm.github.io/index.html
https://visualvm.github.io/index.html
http://ww1.microchip.com/downloads/en/DeviceDoc/21733j.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/21733j.pdf
http://www.ti.com/lit/ds/symlink/lm2576.pdf
http://www.ti.com/lit/ds/symlink/lm2576.pdf
https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf
https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT232R.pdf
https://www.microchip.com/mplab/mplab-x-ide
https://www.microchip.com/mplab/mplab-x-ide
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	The concept of Algorithm Visualization (AV)
	Related Works

	Platform Design and Implementation
	Software Component
	Presentation Layer
	Application Layer
	Hardware Abstraction Layer
	Application Summary

	Hardware Component

	Experiments
	Example 1: ADC plotting
	Example 2: RTOS

	Assessment
	Discussion
	Conclusions and Further Work
	References

