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Abstract: This proposal suggests a novel nonlinear position-stabilizing controller for magnetic
levitation (MAGLEV) applications. The proposed scheme is devised by combining the active
damping injection technique and disturbance observers (DOBs), considering the inherent nonlinear
dynamics, as well as parameter and load variations. The convergence and performance recovery
properties are obtained by analyzing the closed-loop dynamics, which is the main contribution.
The numerical verification confirms a considerable closed-loop robustness improvement, compared
with the cascade-type feedback-linearization controller.
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1. Introduction

Magnetic levitation (MAGLEV) systems utilize an electromagnetic force to control the system body
position. Due to the beneficial properties, noise reduction, and high durability and reliability, there are
number of industrial applications, such as bearing position control system, MAGLEV passenger train,
and so on [1–6]. However, the position control problem for MAGLEV systems is not trivial because of
the inherent open-loop instability, strong nonlinearity, and a wide-range of load variations [7–9].

The MAGLEV system dynamics are strongly nonlinear, but they can be separated into slow
mechanical dynamics and fast electrical dynamics [10,11]. Using this concept and linearization
technique, a simple proportional-integral (PI) regulator was used to stabilize the current-loop
(inner) and velocity/position-loop (outer) with a well-tuned feedback gain obtained by the time
and frequency domain analysis [12]. The widening feasible operating region issue was handled by
the additional gain-scheduling algorithm [13], particle swarm optimization [14], the state-feedback
technique with convex optimization [15], and the adaptation algorithm for updating feedback gains [5].
These techniques still required the use of a linearized model of MAGLEV systems. There have been
novel nonlinear control strategies without model linearization techniques, such as back-stepping [16],
adaptive [17], sliding mode [18], fuzzy [19], coordinate transformation [20], nonlinear damping [6],
and disturbance observer (DOB) techniques [21]. The stabilization region was considerably widened
by these nonlinear control algorithms since the controller effectively eliminates or dominates the
nonlinearities of MAGLEV system dynamics. An additional gain scheduling algorithm is still required
to ensure a consistent closed-loop performance in spite of load variations coming from passengers,
which corresponds to the motivation of this study.

The proposed nonlinear algorithm is designed to control the MAGLEV position robustly in the
presence of parameter and load uncertainties. The advantages of this proposal fall into three parts. First,
the damping injection technique in [22] is introduced so that the closed-loop transfer-function for inner-
and outer-loops becomes the desired first-order low-pass filter (LPF) by pole-zero cancellations. Second,
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the DOB is designed so that it estimates the time-varying disturbances coming from model-plant
mismatches and load variations, exponentially. Third, based on the Lyapunov stability theorem,
the closed-loop behavior is rigorously analyzed to provide the closed-loop stability and performance
recovery property, which can eliminate the use of an additional gain scheduling algorithm. The realistic
numerical simulation results verify the effectiveness of the proposed algorithm by showing the
closed-loop robustness improvement with MATLAB/Simulink.

2. MAGLEV Nonlinear Behaviors

The mechanical and electrical behaviors of the MAGLEV system depicted in Figure 1 can be
described by a set of nonlinear differential equations given by [5]:

ḋm(t) = vm(t), (1)

v̇m(t) = (
Mm + Mload

Mm
)g− Km

Mm

i2c (t)
d2

m(t)
+

fext(t)
Mm

, (2)

i̇c(t) = −Rc

Lc
ic(t) +

1
Lc

vc(t), ∀t ≥ 0, (3)

where the distance of dm(t), velocity of vm(t), and coil (inductor) current of ic(t) are treated as the
state-variables and the voltage of vc(t) applied to the inductor is used as the control input. The signal
of fext(t) models the external disturbance to the steel ball. The mechanical coefficients of Mm, Mload,
g, and Km represent the steel ball mass, load mass to the steel ball, and electromagnet force constant,
respectively. The electrical coefficients of Rc and Lc stand for the resistance and inductance values in
the inductor, respectively. Thus, the load mass of Mload and external disturbance of fext(t) act as the
unknown load to be systematically treated by the control action.
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Figure 1. MAGLEV system configuration.

The consideration of coefficient and load uncertainties results in a perturbed nonlinear dynamics
of (1)–(3) as:

ḋm(t) = vm(t), (4)

v̇m(t) = g− Km,0

Mm,0

i2c (t)
d2

m(t)
+ wv,0(t), (5)

i̇c(t) = −Rc,0

Lc,0
ic(t) +

1
Lc,0

vc(t) + wc,0(t), ∀t ≥ 0, (6)

with nominal coefficients of Km,0, Mm,0, Rc,0, and Lc,0 of their true values of Km, Mm, Rc, and Ls,
respectively. The two signals of wv,0(t) and wc,0(t) model the external disturbances from model-plant
mismatches and load variations. This study designs a position tracking controller using the perturbed
nonlinear dynamics of (4)–(6) in the following section.
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3. Position Stabilizing Controller Design

The control objective for this section is given by:

lim
t→∞

dm(t) = d∗m(t) (7)

for a given desired trajectory of d∗m(t) from the first-order low-pass filter (LPF):

ḋ∗m(t) = ωdc(dm,re f (t)− d∗m(t)), ∀t ≥ 0, (8)

with the desired cut-off frequency of ωdc > 0 and the reference distance of dm,re f (t), ∀t ≥ 0.
The dynamical equation of (8) is called the target dynamics in this article, which can be used as
the desired performance for tracking applications. Note that the position regulation problem can be
also handled by the control objective of (7) since the combination of (7) and (8) leads to:

lim
t→∞

dm(t) = dm(∞) = dm,re f (∞).

To achieve the control objective of (7), Sections 3.1 and 3.2 clearly present the outer- and inner-loop
controllers for an easy implementation in a sequential manner. Section 3.3 analyzes the closed-loop
behaviors in which the convergence and performance recovery properties are provided.

3.1. Outer-Loop Design

3.1.1. Position Controller

First, rewrite the position dynamics of (4) as:

ḋm(t) = vm(t) = vm,re f (t)− ṽm(t), ∀t ≥ 0, (9)

with ṽm(t) := vm,re f (t)− vm(t) and the velocity reference of vm,re f (t), ∀t ≥ 0, which can be stabilized
by the simple proportional-type position controller:

vm,re f (t) = ωdcd̃m(t), ωdc > 0, ∀t ≥ 0, (10)

with d̃m(t) := dm,re f (t)− dm(t), ∀t ≥ 0, and the design parameter of ωdc > 0 assigning the cut-off
frequency from the reference of dm,re f (t) to the output of dm(t).

The substitution of (10) with (9) leads to the closed-loop position dynamics as:

ḋm(t) = ωdcd̃m(t)− ṽm(t), ∀t ≥ 0, (11)

which is used in Section 3.3.

3.1.2. Velocity Controller

The dynamics of ṽm(t) can be obtained by using the velocity dynamics of (5) as:

˙̃vm(t) = −g +
Km,0

Mm,0

i2c (t)
d2

m(t)
+ wv(t)

= −g +
Km,0

Mm,0

i2c (t)
d2

m(t)
− ic(t)− ĩc(t) + ic,re f (t) + wv(t), ∀t ≥ 0, (12)
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with wv(t) := v̇m,re f (t)− wv,0(t) and ĩc(t) := ic,re f (t)− ic(t), ∀t ≥ 0. This manipulation is introduced
to reduce the controller nonlinearities. A stabilizing solution to (12) is suggested with ṽm,re f (t) := 0,
∀t ≥ 0, as:

ic,re f (t) = g− Km,0

Mm,0

i2c (t)
d2

m(t)
+ ic(t)− ŵv(t)

−kdṽm(t) + ωvc(ṽm,re f (t)− ṽm(t)) + kdωvc

∫ t

0
(ṽm,re f (τ)− ṽm(τ))dτ, ωvc > 0, (13)

∀t ≥ 0, with the DOB:

żv(t) = −lvzv(t)− l2
v ṽm(t) + lv(g− Km,0

Mm,0

i2c (t)
d2

m(t)
), (14)

ŵv(t) = zv(t) + lvṽm(t), lv > 0, ∀t ≥ 0, (15)

where the design parameter of ωvc > 0 assigns the cut-off frequency from the reference of ṽm,re f (t) = 0
to the output of ṽm(t) = 0. The active damping term of kdṽm(t) is injected in the control law of (13)
with kd > 0 to turn the closed-loop behaviors into a first-order dynamics from the input of ṽm,re f (t) to
the output of ṽm(t) via pole-zero cancellations. For details, see Section 3.3.

3.2. Inner-Loop Design

The dynamics of ĩc(t) can be obtained by using the current dynamics of (6) as:

˙̃ic(t) =
Rc,0

Lc,0
ic(t)−

1
Lc,0

vc(t) + wc(t), ∀t ≥ 0, (16)

with wc(t) := i̇c,re f (t)− wc,0(t), ∀t ≥ 0. A stabilizing solution to (16) is suggested with ĩc,re f (t) := 0,
∀t ≥ 0, as:

vc(t) = Lc,0

(
Rc,0

Lc,0
ic(t) + kdc ĩc(t)−ωcc(ĩc,re f (t)− ĩc(t))

−kdcωcc

∫ t

0
(ĩc,re f (τ)− ĩc(τ))dτ + ŵc(t)

)
, ωcc > 0, ∀t ≥ 0, (17)

with the DOB:

żc(t) = −lczc(t)− l2
c ĩc(t) + lc(−

Rc,0

Lc,0
ic(t) +

1
Lc,0

vc(t)), (18)

ŵc(t) = zc(t) + lc ĩc(t), lc > 0, ∀t ≥ 0, (19)

where the design parameter of ωcc > 0 assigns the cut-off frequency from the reference of ĩc,re f (t) = 0
to the output of ĩc(t) = 0. The active damping term of kdc ĩc(t) is injected in the control law of (17) with
kdc > 0 to turn the closed-loop behaviors into a first-order dynamics from the input of ĩc,re f (t) to the
output of ĩc(t) via pole-zero cancellations. For details, see Section 3.3. Figure 2 depicts the control
system structure.
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Figure 2. Control system structure.

3.3. Analysis

Before analyzing the closed-loop properties, it is necessary to derive the closed-loop velocity and
current error dynamics, which are provided in Lemmas 1 and 2.

Lemma 1. The proposed current reference of (13) renders the velocity error dynamics of (12) to be governed by:

˙̃vm(t) = ωvc(ṽm,re f (t)− ṽm(t))− ĩc(t) + w̃v(t), ∀t ≥ 0, (20)

with ṽm,re f (t) = 0, ∀t ≥ 0.

Proof. Consider the closed-loop dynamics obtained by substitution of (13) with (12) as:

¨̃vm(t) = −(kd + ωvc) ˙̃vm(t)− kdωvcṽm(t) + ωvc ˙̃vm,re f (t) + kdωvcṽm,re f (t)

− ˙̃ic(t) + ˙̃wv(t), ∀t ≥ 0,

whose Laplace transform, f (t) 7→ F(s) = L{ f (t)}, is given by:

(s2 + (kd + ωvc)s + kdωvc)Ṽm(s) = ωvc(s + kd)Ṽm,re f (s) + s(− Ĩc(s) + W̃v(s)), ∀s ∈ C. (21)

The factorization of (s2 + (kd + ωvc)s + kdωvc) = (s + kd)(s + ωvc) renders (21) to be:

(s + ωvc)Ṽm(s) = ωvcṼm,re f (s) +
s

s + kd
(− Ĩc(s) + W̃v(s))

= ωvcṼm,re f (s) + (1− kd
s + kd

)(− Ĩc(s) + W̃v(s)), ∀s ∈ C,

via pole-zero cancellations, which gives the closed-loop velocity dynamics by taking the inverse
Laplace transform as:

˙̃vm(t) = ωvc(ṽm,re f (t)− ṽm(t))− ĩc(t) + w̃v(t)− kde−kdt(−ĩc(t) + w̃v(t))

≈ ωvc(ṽm,re f (t)− ṽm(t))− ĩc(t) + w̃v(t), ∀t ≥ 0,

where the exponential convergence property of kde−kdt(−ĩc(t) + w̃v(t)) → 0 justifies the
approximation above.
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The Laplace transform of resulting equation of (20) can be obtained with the assumption of
ĩc(t) = ω̃v(t) = 0, ∀t ≥ 0, as:

Ṽm(s)
Ṽm,re f (s)

=
ωvc

s + ωvc
, ∀s ∈ C, (22)

where L{ṽm,re f (t)} = Ṽm,re f (s) and L{ṽm(t)} = Ṽm(s), which shows that the design parameter of ωvc

can be tuned for the first-order LPF of (22) with the desired cut-off frequency in rad/s.

Lemma 2. The proposed control input of (17) renders the current error dynamics of (16) to be governed by:

˙̃ic(t) = ωcc(ĩc,re f (t)− ĩc(t)) + w̃c(t), ∀t ≥ 0, (23)

with ĩc,re f (t) = 0, ∀t ≥ 0.

Proof. Consider the closed-loop dynamics obtained by substitution of (17) with (16) as:

¨̃ic(t) = −(kdc + ωcc)
˙̃ic(t)− kdcωcc ĩc(t) + ωcc

˙̃ic,re f (t) + kdcωcc ĩc,re f (t) + ˙̃wc(t), ∀t ≥ 0,

whose Laplace transform is given by:

(s2 + (kdc + ωcc)s + kdcωcc) Ĩc(s) = ωcc(s + kdc) Ĩs,re f (s) + sW̃c(s), ∀s ∈ C. (24)

The factorization of (s2 + (kdc + ωcc)s + kdcωcc) = (s + kdc)(s + ωcc) renders (24) to be:

(s + ωcc) Ĩc(s) = ωcc Ĩs,re f (s) +
s

s + kdc
W̃c(s)

= ωcc Ĩs,re f (s) + (1− kdc
s + kdc

)W̃c(s), ∀s ∈ C,

via pole-zero cancellations, which gives the closed-loop velocity dynamics by taking the inverse
Laplace transform as:

˙̃ic(t) = ωcc(ĩc,re f (t)− ĩc(t)) + w̃c(t)− kdce−kdctw̃c(t)

≈ ωcc(ĩc,re f (t)− ĩc(t)) + w̃c(t), ∀t ≥ 0,

where the exponential convergence property of kdce−kdctw̃c(t)→ 0 justifies the approximation above.

The Laplace transform of resulting equation of (23) can be obtained with the assumption of
w̃c(t) = 0, ∀t ≥ 0, as:

Ĩc(s)
Ĩc,re f (s)

=
ωcc

s + ωcc
, ∀s ∈ C, (25)

where L{ĩc,re f (t)} = Ĩc,re f (s) and L{ĩc(t)} = Ĩc(s), which shows that the design parameter of ωcc can
be tuned for the first-order LPF of (25) with the desired cut-off frequency in rad/s.

Theorem 1 asserts the closed-loop convergence property using the results of Lemmas 1 and 2
through the Lyapunov stability criterion.

Theorem 1. The closed-loop system including the proposed control law of (10), (13), (17) with DOBs of (14),
(15), (18), and (19) ensures the exponential convergence:

lim
t→∞

dm(t) = dm,re f (t) (26)
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as ḋm,re f (t)→ 0 and ẇx(t)→ 0, x = v, c, exponentially.

Proof. The combinations of the DOB output equations of (15) and (19) and the DOB dynamics of (14)
and (18) lead to:

˙̂wv − lv ˙̃vm = −lv(ŵv − lvṽm)− l2
v ṽm + lv(g− Km,0

Mm,0

i2c
d2

m
),

˙̂wc − lc ˙̃ic = −lc(ŵc − lc ĩc)− l2
c ĩc + lc(−

Rc,0

Lc,0
ic +

1
Lc,0

vc), ∀t ≥ 0,

which indicates that:

˙̂wv = lv( ˙̃vm + g− Km,0

Mm,0

i2c
d2

m
− ŵv) = lv(wv − ŵv) = lvw̃v, (27)

˙̂wc = lc( ˙̃ic −
Rc,0

Lc,0
ic +

1
Lc,0

vc − ŵc) = lc(wc − ŵc) = lcw̃c, ∀t ≥ 0, (28)

where the two relationships of (12) and (16) are used and w̃x := wx − ŵx, x = v, c. Consider the
positive-definite function defined as:

V :=
1
2

d̃2
m +

κv

2
ṽ2

m +
κc

2
ĩ2c + ∑

x=v,c

γx

2
w̃2

x, κx > 0, γx > 0, x = v, c, (29)

whose time derivative can be obtained using the closed-loop trajectories of (11), (20), (23), (27),
and (28) as:

V̇ = d̃m(−ωdcd̃m + ṽm + ḋm,re f ) + κvṽm(−ωvcṽm − ĩc + w̃v) + κc ĩc(−ωcc ĩc + w̃c)

+ ∑
x=v,c

γxw̃x(−lxw̃x + ẇx)

≤ −ωdc
2

d̃2
m − (κvωvc −

1
2ωdc

− 1)ṽ2
m − (κcωcc −

κ2
v

2
− 1

2
)ĩ2c

− ∑
x=v,c

(γxlx −
κ2

x
2
)w̃2

x + ∑
x=v,c

γxẇxw̃x + ḋm,re f d̃m, ∀t ≥ 0,

where Young’s inequality, xy ≤ ε
2 x2 + 1

2ε y2, ∀ε > 0, is applied. Now, defining κv := 1
ωvc

( 1
2ωdc

+ 3
2 ),

κc := 1
ωcc

( κ2
v

2 + 1), and γx := 1
lx
( κ2

x
2 + 1

2 ), x = v, c, it holds that:

V̇ ≤ −ωdc
2

d̃2
m −

1
2

ṽ2
m −

1
2

ĩ2c − ∑
x=v,c

1
2

w̃2
x + ∑

x=v,c
γxẇxw̃x + ḋm,re f d̃m,

≤ −αV + ∑
x=v,c

γxẇxw̃x + ḋm,re f d̃m, ∀t ≥ 0, (30)

with α := min{ωdc, 1
κv

, 1
κc

, 1
γv

, 1
γc
}. Therefore, dm → dm,re f as ḋm,re f → 0 and ẇx → 0,

x = v, c, exponentially, since the mapping of
[

γvẇv γcẇc ḋm,re f

]T
7→

[
w̃v w̃c d̃m

]T
is

strictly passive.

Finally, Theorem 2 provides the performance recovery property using the results of Lemma 1,
Lemma 2, and Theorem 1 through the Lyapunov stability criterion.
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Theorem 2. The proposed control law of (10), (13), (17) with DOBs of (14), (15), (18), and (19) forces the
closed-loop system to recover exponentially the target dynamics of (8), i.e.,

lim
t→∞

dm(t) = d∗m(t) (31)

as ẇx(t)→ 0, x = v, c, exponentially.

Proof. The error defined as d̃∗m := d∗m − dm satisfies that:

˙̃d∗m = −ωdcd̃∗m + ṽm, ∀t ≥ 0, (32)

due to (8) and (11). Define the positive-definite function as:

V∗ := V
∣∣∣∣
d̃m=d̃∗m

, ∀t ≥ 0, (33)

with the function of V defined in (29). Then, it follows from the closed-loop dynamics of (20), (23), (27),
(28), and (32) that:

V̇∗ = d̃∗m(−ωdcd̃∗m + ṽm) + κvṽm(−ωvcṽm − ĩc + w̃v) + κc ĩc(−ωcc ĩc + w̃c)

+ ∑
x=v,c

γxw̃x(−lxw̃x + ẇx)

≤ −ωdc
2

(d̃∗m)
2 − (κvωvc −

1
2ωdc

− 1)ṽ2
m − (κcωcc −

κ2
v

2
− 1

2
)ĩ2c

− ∑
x=v,c

(γxlx −
κ2

x
2
)w̃2

x + ∑
x=v,c

γxẇxw̃x, ∀t ≥ 0,

with the application of Young’s inequality. The constants of κv, κc, and γx, x = v, c defined in the proof
of Theorem 1 yield:

V̇∗ ≤ −ωdc
2

(d̃∗m)
2 − 1

2
ṽ2

m −
1
2

ĩ2c − ∑
x=v,c

1
2

w̃2
x + ∑

x=v,c
γxẇxw̃x,

≤ −αV∗ + ∑
x=v,c

γxẇxw̃x, ∀t ≥ 0, (34)

Therefore, dm → d∗m as ẇx → 0, x = v, c, exponentially, since the mapping of
[

γvẇv γcẇc

]T
→[

w̃v w̃c

]T
is strictly passive.

4. Simulations

This section numerically demonstrates the advantages of the proposed controller by conducting
the simulations using MATLAB/Simulink. The feedback-linearization (FL) controller, recently
introduced in [23–25], was used for comparison. MAGLEV was emulated using the nonlinear
differential equations of (1)–(3) with the ode45 solver in the continuous-time variable-step setting.
The control algorithms were implemented using the C language-based S-function with the discrete
time setting and control period of 0.1 ms. The MAGLEV system parameters were selected as:

Mm = 725 kg, Mload = 200 kg, g = 9.8 m/sec2,

Rc = 4.4 Ω, Lc = 908 mH, Km = 5.45× 10−3 N ·m2/A2,

which was given in the experimental study [5]. The nominal parameter values for controllers were set
to Mm,0 = 0.7Mm, Rc,0 = 0.8Rc, Lc,0 = 1.3Lc, and Km,0 = 1.2Km.
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For the proposed controller, the design parameters for cut-off frequencies were adjusted as
fdc = 0.5, fvc = 10, and fcc = 30 Hz, so that ωdc = 2π fdc = 1.885, ωvc = 62.83, ωcc = 2π fcc =

188.5 rad/s. The remaining design parameters were tuned as kd = kdc = 20, and lv = lc = 628. The
feedback linearization controller, used for comparison, is given by:

vc(t) = Lc,0ωcc ĩc(t) + Rc,0ωcc

∫ t

0
ĩc(τ)dτ, ∀t ≥ 0, (35)

with the current reference of:

ic,re f (t) =

√
Mm,0d2

m(t)
Km,0

(g− 2ωvcṽm(t)−ω2
vc

∫ t

0
ṽm(τ)dτ), ∀t ≥ 0, (36)

where the velocity reference of vm,re f (t) was set to be the same as the proposed one of (10). It is easy to
see that the FL controller assigns the same cut-off frequency for inner- and outer-loops, which gives a
rationale for the FL controller to be chosen for comparison.

The first stage evaluates the position tracking performance under three types of external disturbances
of fext,1(t) = 2 × 103 sin(2π2t), fext,2(t) = 4 × 103 sin(2π2t), and fext,3(t) = 8 × 103 sin(2π2t).
The position reference of dm,re f (t) was applied in a pulse-wave form whose minimum and maximum
values are 1 cm and 2 cm, respectively, with the frequency of 0.1 Hz and the duty ratio of 50%.
The closed-loop position responses are presented in Figure 3, which clearly indicates that the proposed
controller considerably enhances the closed-loop robustness for several types of external disturbances
while maintaining tracking performance at the same level. Figures 4 and 5 show the corresponding
current and DOB responses. As can be seen from Figure 4, the current over-/under-shoots are
effectively reduced by the proposed controller thanks to the DOBs.

In the second stage, the position regulation performance was verified for the desired position of
1 cm under the external disturbance of fext,1 = 2× 103 sin(2π2t). The load mass was increased from its
initial value of Mload = 200 kg to 400/600/900 kg, and it was restored to Mload = 200 kg in a step-wise
manner. The position regulation performance comparison results are provided in Figure 6, which
demonstrates that the position under-/over-shoot reduction and closed-loop robustness improvement
are both accomplished by the proposed controller. Figure 7 shows the corresponding current behaviors.

Proposed Controller< >

( ),1: @
m ext

d f

( ),2: @
m ext

d f

( ),3
: @

m ext
d f

FL Controller< >

Figure 3. Position tracking performance comparison results under three types of external disturbances
of fext,1(t), fext,2(t), and fext,3(t).
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( ),1
: @

c ext
i f

( ),2: @
c ext
i f

( ),3
: @

c ext
i f

Proposed Controller< > FL Controller< >

Figure 4. Current behavior comparison results under three types of external disturbances of fext,1(t),
fext,2(t), and fext,3(t).

� ( ),1
: @

v ext
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� ( ),2
: @

v ext
w f
� ( ),3

: @
v ext

w f

� ( ),1
: @
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w f
� ( ),2

: @
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� ( ),3
: @

c ext
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Figure 5. DOB behaviors.

Proposed Controller< >

( ): @ 200 400 100
m load

d M = → →

( ): @ 200 600 200
m load

d M = → →

( ): @ 200 900 200
m load

d M = → →

FL Controller< >

Figure 6. Position regulation performance comparison results for three load mass variation scenarios
under external disturbances of fext,1(t).
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Proposed Controller< >

( ): @ 200 400 200
c load

i M = → →

( ): @ 200 600 200
c load

i M = → →

( ): @ 200 900 200
c load
i M = → →

FL Controller< >

Figure 7. Current response comparison results for three load mass variation scenarios under external
disturbances of fext,1(t).

The last stage investigates the closed-loop position tracking performance changes while increasing
the cut-off frequency, fdc = 0.1, 0.2, 0.5 Hz. The external disturbance was set to fext(t) = fext,1(t).
Figure 8 provides the resulting position tracking behavior change tendency. As intended, the proposed
controller successfully renders the closed-loop position behaviors to be governed by the desired
first-order LPF dynamics, which corresponds to the numerical evidence of the performance recovery
property asserted in Theorem 2.

,1

Increasing   as 0.1, 0.2, 0.5 Hz

(@ )

dc

ext

f

f

( ): @ 0.1Hz
m dc

d f =

( ): @ 0.2Hz
m dc

d f =

( ): @ 0.5Hz
m dc

d f =

Figure 8. Position tracking performance change tendency with increasing cut-off frequency,
fdc = 0.1, 0.2, 0.5 Hz.

5. Conclusions

A novel nonlinear position tracking controller was presented in this study, based on the
active damping injection and DOB techniques. The parameter and load variation problems were
systematically handled. The beneficial closed-loop properties were derived by rigorously analyzing
the closed-loop dynamics, which was also numerically confirmed by the realistic simulations under
various convincing scenarios. The simulation results also partially verified the closed-loop robustness
under the model-plant mismatches from parameter and load uncertainties. A future study will
investigate an optimal design parameter selection method with experimental evidence. In particular,
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the proposed method will be expanded to the general six degree-of-freedom MAGLEV systems with
robustness analysis from an experimental study.

Acknowledgments: This research was supported by the research fund of Hanbat National University in 2018.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Wang, Z.; Li, X.; Xie, Y.; Long, Z. MAGLEV Train Signal Processing Architecture Based on Nonlinear Discrete
Tracking Differentiator. Sensors 2018, 18, 1697. [CrossRef] [PubMed]

2. Ogawa, K.; Tada, M.; Narita, T.; Kato, H. Electromagnetic Levitation Control for Bending Flexible Steel Plate:
Experimental Consideration on Disturbance Cancellation Control. Actuators 2018, 7, 43. [CrossRef]

3. Wang, L.; Li, J.; Zhou, D.; Li, J. An Experimental Validated Control Strategy of MAGLEV Vehicle-Bridge
Self-Excited Vibration. Actuators 2017, 7, 38. [CrossRef]

4. Wang, L.; Li, J.; Zhou, D.; Li, J. Development of Propulsion Inverter Control System for High-Speed MAGLEV
based on Long Stator Linear Synchronous Motor. Energies 2017, 10, 170.

5. Zhang, Z.; Li, X. Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load
Disturbance. Sensors 2018, 18, 1512. [CrossRef] [PubMed]

6. Yang, Z.J.; Minashima, M. Robust Nonlinear Control of a Feedback Linearizable Voltage-Controlled Magnetic
Levitation System. IEEJ Trans. Electron. Inf. Syst. 2001, 121, 1203–1211. [CrossRef]

7. Zhang, L.; Campbell, S.; Huang, L. Nonlinear analysis of a MAGLEV system with time-delayed feedback
control. Phys. D Nonlinear Phenom. 2012, 240, 1761–1770. [CrossRef]

8. Santos, M.; Ferreira, J.; Simoes, J.; Pascoal, R.; Torrao, J.; Xue, X.; Furlani, E. Magnetic levitation-based
electromagnetic energy harvesting: A semi-analytical non-linear model for energy transduction. Sci. Rep.
2016, 6, 18579. [CrossRef] [PubMed]

9. Zhang, Z.; Zhang, L. Hopf bifurcation of time-delayed feedback control for MAGLEV system with flexible
guideway. Appl. Math. Comput. 2013, 219, 6106–6112. [CrossRef]

10. Cho, H.W.; Yu, J.S.; Jang, S.M.; Kim, C.H.; Lee, J.M.; Han, H.S. Equivalent Magnetic Circuit Based
Levitation Force Computation of Controlled Permanent Magnet Levitation System. IEEE Trans. Magn. 2012,
48, 4038–4041. [CrossRef]

11. Jeong, J.H.; Ha, C.W.; Lim, J.; Choi, J.Y. Analysis and Control of the Electromagnetic Coupling Effect of the
Levitation and Guidance Systems for a Semi-High-Speed MAGLEV Using a Magnetic Equivalent Circuit.
IEEE Trans. Magn. 2016, 52, 8300104. [CrossRef]

12. Lee, H.; Kim, K.; Lee, J. Review of MAGLEV train technologies. IEEE Trans. Magn. 2006, 42, 1917–1925.
13. Shamma, J.; Athans, M. Analysis of gain scheduled control of nonlinear plants. IEEE Trans. Autom. Control

2002, 35, 898–907. [CrossRef]
14. Wai, R.; Lee, J.; Chuang, K. Real-time PID control strategy for MAGLEV transportation system via particle

swarm optimization. IEEE Trans. Ind. Electron. 2011, 58, 629–646. [CrossRef]
15. Kim, C.H. Robust Control of Magnetic Levitation Systems Considering Disturbance Force by LSM Propulsion

Systems. IEEE Trans. Magn. 2017, 53, 8300805. [CrossRef]
16. Wai, R.J.; Lee, J.D. Backstepping-based levitation control design for linear magnetic levitation rail system.

IET Control Theory Appl. 2008, 2, 72–86. [CrossRef]
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