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Abstract: Neighborhood preserving embedding (NPE) is a classical and very promising supervised
dimensional reduction (DR) technique based on a linear graph, which preserves the local
neighborhood relations of the data points. However, NPE uses the K nearest neighbor (KNN)
criteria for constructing an adjacent graph which makes it more sensitive to neighborhood size. In
this article, we propose a novel DR method called weighted neighborhood preserving ensemble
embedding (WNPEE). Unlike NPE, the proposed WNPEE constructs an ensemble of adjacent graphs
with the number of nearest neighbors varying. With this graph ensemble building, WNPEE can obtain
the low-dimensional projections with optimal embedded graph pursuing in a joint optimization
manner. WNPEE can be applied in many machine learning fields, such as object recognition, data
classification, signal processing, text categorization, and various deep learning tasks. Extensive
experiments on Olivetti Research Laboratory (ORL), Georgia Tech, Carnegie Mellon University-Pose
and Illumination Images (CMU PIE) and Yale, four face databases demonstrate that WNPEE achieves
a competitive and better recognition rate than NPE and other comparative DR methods. Additionally,
the proposed WNPEE achieves much lower sensitivity to the neighborhood size parameter as
compared to the traditional NPE method while preserving more of the local manifold structure of the
high-dimensional data.

Keywords: dimensional reduction; graph construction; machine learning; neighborhood preserving
embedding; face recognition

1. Introduction

In many machine learning applications, such as data classification [1,2], face recognition [3,4],
signal processing [5,6], and text categorization [7,8], the input data is usually high-dimensional which
makes the calculations too complex, as well as requiring more computational time. In order to boost
the performance and computational efficiency, various dimensionality reduction (DR) techniques have
been proposed to preprocess these high-dimensional data. The employment of DR techniques aims at
extracting the optimal representative features and transforming the original high-dimensional data
into a low-dimensional feature space using different algorithms. According to the general framework
these DR methods can be grouped into linear and non-linear methods [9].

Principal component analysis (PCA) [10] and linear discriminant analysis (LDA) [11] are two
well-known linear subspace learning DR approaches. Both PCA and LDA assumes that the sample
lies on a linear embedded manifold. PCA preserves the global geometrical information whereas LDA
tries to preserve the global discriminant information of the high-dimensional data points. As these
both aforementioned linear methods are very simple and convenient to use, they still fail to exploit
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the essential non-linear structure of the data. In order to overcome the issues in linear DR methods,
many manifold learning algorithms have been introduced to discover the non-linear structure of the
data. These include isometric feature mapping [12], local linear embedding (LLE) [13], and Laplacian
eigenmaps (LE) [14]. However, these algorithms suffer from the out-of-sample problem [15].

To solve the out-of-sample problem in manifold learning algorithms, graph-based embedding
methods have been presented to reveal the local manifold structure of the data [16]. Graph-based
embedding models preserve the spatial similarities of neighborhoods of the original data points
in the form of node pairs by defining each node of graph as a low-dimensional eigenvector
using a graph similarity weight matrix. Finally, the optimized projections can be computed by
solving the graph-based eigenvector decomposition. Locality preserving projection (LPP) [17] and
neighborhood preserving embedding (NPE) [18] are famous graph-based embedding manifold
learning DR techniques. Both methods preserve the intrinsic manifold structure of the data without
particular conjecture of the data distribution.

Due to the simplicity and effectiveness, NPE has been investigated in many recent studies [19–22].
Although NPE has shown better results than other competitive DR algorithms it is still highly sensitive
to the neighborhood size parameter [23,24] as it uses the K nearest neighbor (KNN) criteria for
constructing an adjacency graph. In this paper, we propose a novel DR method called weighted
neighborhood preserving ensemble embedding (WNPEE). With this approach, our method can
preserve more satisfactory local neighborhood structure that illustrates the intrinsic manifold of
original high-dimensional data. The key properties of the proposed WNPEE method are summarized
below:

• Unlike NPE, the proposed WNPEE constructs an ensemble of adjacent graphs with the number
of nearest neighbors varying. With this graph ensemble building, WNPEE can obtain the
low-dimensional projections with optimal embedded graphs pursuing in a joint optimization way.

• As rationale behind proposed WNPEE algorithm is similar to NPE; therefore, NPE can be viewed
as a special instance of the WNPEE for a fixed parameter of the neighborhood size.

• The WNPEE provides an efficient weighting scheme for the eigenspace which makes it much
less sensitive to the parameter of neighborhood size and it can get more stable recognition rate as
compared to NPE.

We arrange rest of the paper, subsequent to introduction in Section 1 in the following manner.
In Section 2, we present a brief but comprehensive review of state-of-the-art DR methods. The
preliminaries of both LPP and NPE are given in Section 3. In Section 4, we describe the proposed
WNPEE method with suitable explanation. Experimental results with a comparative discussion of
the proposed method along with four comparative DR methods are shown in Section 5. We draw our
conclusion and the future directions of research in Section 6.

2. Related Work

Recently, a number of dimensionality reduction methods have been developed with different
ideas and methodology. However the aim of these numerous methods is same, that is, to obtain
low-dimensional data on which further machine learning tasks can be easily performed with improved
computational complexity. The following are some related comparable linear DR techniques used in
this article to show the superiority of the proposed WNPEE method.

Linear dimensionality reduction approaches are widely used in face recognition because of their
relative simplicity, analytical manipulability, and the direct ability to deal with the testing data points.
The most popular linear DR methods include PCA [10], LPP [16], LDA [12], and NPE [18]. In face
recognition applications, they are well known as Eigenfaces [11], Fisherfaces [16], Laplacianfaces [25],
and NPEfaces [18]. Eigenfaces, which is based on PCA, finds a set of mutually orthogonal basis vectors
to characterize the high-dimensional data in a least-squares sense. Different from Eigenfaces, which
does not appropriately use label information of the given input data, Fisherfaces spread on LDA to
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search the information on which the data points belonging to different classes are expected as distant
from each other as possible. However, it assumes that the data points of the same class must be close
to each other. Therefore, Laplacianfaces was proposed to find an optimally linear approximation of
the eigenfunctions using the Laplace Beltrami operator on the face manifold [25]. The representation
map generated by LPP preserves better local information of the essential manifold structure with more
discriminating power.

Additionally, to preserve the neighborhood relations of high-dimensional data an unsupervised
locally linear embedding (LLE) was firstly introduced by Roweis and Saul [13]. It is based on two
linear perceptions: first is that each data point and its neighbors lies on or close to a locally linear
cover of a manifold, and second is that the local symmetrical classification in original data space is
unchanged in the output data space. LLE is very effective for feature extraction of high-dimensional
data, yet it is unable to generate a loading matrix necessary for construction of a prediction model.
Therefore, to overcome this problem a linear approximation of the LLE algorithm called neighborhood
preserving embedding (NPE) has been developed [18]. NPE possibly outperforms Eigenfaces and
Fisherfaces to preserve more Euclidian structure in DR tasks. The following is a brief overview of these
related linear dimensionality reduction algorithms.

Let us consider P =
{

pi ∈ RD}N
i=1 a high D-dimensional data with N number of samples.

Linear DR mapping is to assign the original high-dimensional data to a low d-dimensional data i.e.,

Q =
{

qi ∈ Rd
}N

i=1
(d� D). If A is a transformation matrix, then linear DR is defined as:

qi = AT pi f or i = 1, . . . , N. (1)

PCA idea is to find a projection direction that will give maximum variance, i.e., the reconstruction
error can be minimal. The objective function of PCA is defined as follows:

Aopt = arg maxA

N

∑
i=1

(qi − q)2,

Aopt = arg maxA ATCA. (2)

where q = 1
N ∑ qi and C is the data covariance matrix. Finally the eigenvalues and orthogonal set of

eigenvectors are computed for this covariance matrix. However, PCA impairs class discrimination as
it uses directions which are only efficient for class representation. Thus, LDA, a linear supervised DR
method, is a better choice for extracting discriminant features. Let the input data P belong to l classes,
then LDA is optimized by the followig objective function:

Aopt = arg maxA
ATSB A
ATSW A

, (3)

SB =
l

∑
i=1

Ni

(
m(i) −m

)
(m(i) −m)

T
, (4)

SW =
l

∑
i=1

(
Ni

∑
j=1

(
p(i)j −m(i)

)
(p(i)j −m(i))

T
)

(5)

where m is the total sample mean vector, Ni is the number of samples in the ith class, m(i) is the average
vector ofthe ith class, and p(i)j is the jth sample in the ith class. Additionally, SB is the between-class
scatter matrix and SW is the within-class scatter matrix.

3. Preliminaries

In this section we briefly describe the functioning of LPP and NPE DR algorithms.
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3.1. Locality Preserving Projections

LPP is an unsupervised graph-based embedding method [17]. LPP is designed with different
objective principle from classical linear DR techniques. Due to locality preserving quality of LPP,
it has been used in many information retrieval applications [26–28]. LPP can be simply functional
everywhere unlike non-linear DR techniques. LPP could be carry out in the inventive space or in the
reproducing kernel Hilbert space into which data points are mapped. The functioning of the LPP is
defined as follows:

• Constructing an adjacent graph: using ε-neighborhood or k-neighborhood. In the ε-neighborhood:
nodes i and j are connected by an edge if ||pi − pj ||2 < ε. In the k-neighborhood: nodes i and j
are connected by an edge if i is in k nearest neighbors of j or j is in k nearest neighbors of i.

• Choosing the weights: Weights Wij are given to edges between nodes i and j by a symmetric weight
matrix W, computed either by uniform weight or Gaussian weight of Euclidean distance.W is
often defined as:

Wij =

{
exp ||pi−pj ||2

t , pj ∈ KNN o f pi or pi ∈ KNN o f pj
0, otherwise.

, (6)

where parameter t is a positive constant.
• Eigenmaps: by computing eigenvectors and eigenvalues for the below eigenvector problem:

PLPTa = λPDPTa. (7)

where D is a diagonal matrix whose entities are column (or row) sum of W, Dii = ∑j Wij,
L = D−W is the Laplacian matrix and a is a transformation vector.

3.2. Neighborhood Preserving Embedding

The neighborhood preserving embedding (NPE) method is identical to LPP as both are targeted
to discover the local structure of the original data manifold, yet their objective functions are totally
different [19]. Linearity makes NPE a fast and suitable technique for practical applications [29–36].
NPE can be performed in either supervised or unsupervised mode. When the class information is
available, it can be utilized to build a better weight matrix. It models the manifold structure directly
by constructing the nearest-neighbor (NN) graph that reveals neighborhood relations of data points,
and then retains the graph structure in the projection. The algorithmic procedure of NPE is defined
as follows:

• Constructing an adjacency graph: using k-neighborhood or ε-neighborhood. In the k-neighborhood:
a directed edge from nodes i and j if pj is in k nearest neighbors of pi. In the ε-neighborhood: put
an edge between nodes i and j if ||pi − pj ||2 ≤ ε.

• Computing the weights: Weights Wij are given to edges between nodes i and j by a symmetric
weight matrix W, and weight 0 if there is no such edge. The weight is calculated by minimizing
following objective function:

min ∑
i
||pi −∑

j
Wij pj ||2, (8)

s.t ∑
j

Wij = 1 , j = 1, 2, . . . N.

• Computing the projections: final projections are obtained by minimizing the following
eigenvector problem:

PMPTa = λPDPTa. (9)
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where M = (I −W)T(I −W), I is an identity matrix and D is a diagonal matrix as in
Equation (7). The optimal mapping transformation matrix A is embedded by the optimal mapping
transformation vectors (a0, a1, . . . , ad−1), which are arranged in the order of their corresponding
eigenvalues as λ0 ≤ . . . ≤ λd−1.

4. The Proposed WNPEE Method

The aforementioned NPE is based on graph embedding and the neighbor relationship is measured
by an artificially-constructed adjacent graph. Usually the KNN [2] criteria is used to construct an
adjacent graph which makes the performance of the NPE very sensitive to the parameter of the
neighborhood size. Thus, to overcome the neighborhood size sensitivity in NPE, we are motivated
to propose a novel DR technique called weighted neighborhood preserving ensemble embedding
(WNPEE). The proposed WNPEE is designed to capture the locality of the original data in the phase of
manifold learning using an ensemble of adjacent graphs with varying the number of nearest neighbors.
This graph ensemble building helps in obtaining the optimal embedded graph with low-dimensional
projections pursued in a joint optimization way. Simultaneously, WNPEE makes the projections less
sensitive to the parameter of the neighborhood size.

Let us assume a high-dimensional data set X =
{

xi ∈ RD}N
i=1, where xi are data samples,

D represents the dimensions, and N is the total number of samples. WNPEE aims to reduce the
original D-dimensional data into reduced d-dimensional data (d� D) by constructing an optimal

transformation matrix A. Let Y =
{

yi ∈ Rd
}N

i=1
represent the reduced d-dimensional data such that A

maps xi to yi or we can say yi represents xi, where yi = ATxi in which locality of xi is preserved by
linear dimensionality reduction. In our proposed WNPEE method, the low-dimensional projections
are carried out through the following steps:

Step 1: Firstly, it constructs an ensemble of adjacent graphs unlike NPE, i.e., constructing only
one graph. Let G1, G2, . . . , GL are adjacent graphs computed by varying the neighborhood size
parameter ranges from 1 to L. These graphs can be formed either by K nearest neighbors (KNN) or
ε-neighborhood. In proposed WNPEE, we assume the KNN criteria for constructing an ensemble of
adjacent graphs. Each adjacent graph having N nodes, where the i-th node is corresponds to data
point xi. Using the KNN method, a directed edge is placed from node i to node j if xj is among K
nearest neighbors of xi. Simultaneously weights are given to multiple adjacent graphs to ensemble
them, by using parameter αk where k is the neighborhood size parameter.

Step 2: Secondly, we compute the weights on the edges with fixed parameter αk where the
neighborhood size k = 1 to L. By using a fixed αk we assume that each adjacent graph has an equal
weight, i.e., if L = 10 then each adjacent graph have weight 1/10 while computing the weights on the
edges. Let Wk be an N × N weight matrix for every k adjacent graph, with Wk,ij is the weight of the
edge from node i to j, and 0 if there is no such edge. Minimization of the below objective function is
used for weighting the edges:

min ∑
i
||xi −∑

j
∑
k
αkWk,ijxj||2,

s.t ∑
j

Wk,ij = 1, j = 1, 2, . . . , N. (10)

Step 3: Then the low-dimensional projections are obtained by solving the below generalized
eigenvalue problem:

XMXTa = λXXTa. (11)

where X is high-dimensional data, M = (I−∑ αkWk)
T(I−∑ αkWk) , and I = diag(1, . . . , 1) is a

diagonal matrix. By solving Equation (11), the low-dimensional projection vectors a0, a1, . . . , ad−1
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are obtained with their corresponding eigenvalues λ0 ≤ . . . ≤ λd−1. Thus, WNPEE embedding is
as follows:

xi → yi = ATxi, A = (a0, a1, . . . , ad−1). (12)

where yi is a d-dimension vector and A is a D× d matrix.
Step 4: Finally, we compute the weight coefficients α1, α2, . . . , αL according to Equation (26), on

G1, G2, . . . , GL adjacent graphs while taking the projection vector a fixed obtained from Equation (11).
With these updated weights on ensemble adjacent graphs, the weighted neighborhood preserving
ensemble embedding projection vector a as well as αk are iteratively computed until the loss converges.
The whole WNPEE procedure is summarized in Algorithm 1.

Algorithm 1. The weighted neighborhood preserving ensemble embedding algorithm.

Input: High-dimensional data X
Output: projection vector a
Parameter: αk
Initialize:
- Construct an ensemble of adjacent graphs using KNN with αk weights
while loss not converged do
1. Computing the weights on edges with fix αk acc. to (10)
2. Obtain projection vector a acc. to (11)
3. Fix a and update αk acc.to (26)
4. Compute current loss
End while

Obtaining Parameter αk in the Proposed WNPEE

In this paper we proposed an approach to make NPE less sensitive to neighborhood size k while
preserving the local manifold structure of the input data during dimensionality reduction. To do so we
introduce a new ensemble of adjacent graphs framework to NPE manifold learning technique. We
therefore discuss how to obtain the value for the parameter αk, which is the weight coefficient for the
ensemble adjacent graphs which satisfies αk ≥ 0 and ∑L

k=1 αk = 1.
In WNPEE each node of the adjacent graph can be represented by a linear combination of its

neighbors with the weight Wk,ij on the edge. Thus, the local spatial distribution of these patches
can be characterized by linear coefficients that reconstruct each data point from its neighbors. With
proper constraints and fixed Wk,ij weights [18], the reconstruction errors are measured by the following
cost function:

Φ(y) = ∑
i

(
yi −∑

j
∑
k

αkWk,ijyj

)2

. (13)

Although the projections are linear, i.e., yT = aTX, where the i-th column vector of X is xi it can
be written as:

zi = yi −∑
j

∑
k

αkWk,ijyj , (14)

or in vector form:
z = y−∑ αkWky, (15)

z =
(

I−∑ αkWk

)
y. (16)

where I is a identity matrix. Further the cost function can be reduced to:

Φ(y) = ∑i(zi)
2, (17)
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Φ(y) = zTz, (18)

Φ(y) = yT
(

I−∑ αkWk

)T(
I−∑ αkWk

)
y, (19)

Φ(y) = aTX
(

I−∑ αkWk

)T(
I−∑ αkWk

)
XTa,

s.t.
L

∑
k=1

αk = 1. (20)

However from Equation (20), we can see that Φ(y) is linear with respect to αk. It is also noted that the
optimal solution of the linear programming will always be the extreme points, that is either αk = 0
or αk = 1, which means there will only be one adjacent graph selected contrary to our objective of
exploring the rich complementation of multiple adjacent graphs. Thus, to overcome this problem,
we make a relaxation by considering αk to be αr

k(r represents a control parameter for the weights
of the multiple adjacent graphs). Thus, while r > 1 the outcome is a balance of multiple adjacent
graphs [37,38]. Thus, by adding a Lagrangian multiplier, we obtain the formulation of WNPEE as:

L(y, λ) = aTX
(

I−∑ αr
kWk

)T(
I−∑ αr

kWk

)
XTa− λ

(
∑ αr

k − 1
)

. (21)

Let B =
(
I−∑ αr

kWk
)
, and taking partial derivative by using Leibniz’s notation as follows:

∂L(y, λ)

∂(αk)
=

∂(Φ(y))
∂(B)

∂(B)
∂(αk)

, (22)

∂L(y, λ)

∂(B)
= 2 tr

[(
I−∑ αr

kWk

)
XTa aTX

]
, (23)

∂(B)
∂(αk)

= −tr (Wk)r αr−1
k , (24)

Therefore:
∂L(y, λ)

∂(αk)
= r αr−1

k tr
{[(

I−∑ αr
kWk

)
XTa aTX

]
TWk

}
− λ, (25)

Thus, when projections are fixed, and considering the constraint
L
∑

k=1
αk = 1, we can further

derive that:

αk =

r−1
√

1
tr(∑k)

∑L
j=1

r−1
√

1
tr(∑j)

. (26)

where ∑k =
[(

I−∑ αr
kWk

)
XTa aTX

] TWk. Therefore, by computing the value of αk we can iteratively
obtain the weights on ensemble of adjacent graphs. Furthermore using this graph ensemble building,
our proposed WNPEE DR algorithm can obtain the low-dimensional projections with optimal
embedded graph pursuing in a joint optimization way. As from [18] it reveals that NPE essentially tries
to obtain the linear approximations to the eigenfuntions of the iterated Laplacian Beltrami operator.
Therefore, WNPEE also provides a way to linearly approximate the eigenfunctions. In the next
section, extensive experiments are carried out on a variety of face databases to verify performances in
both recognition and lower sensitivity to the neighborhood size parameter with other state-of-the-art
DR methods.
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5. Experimental Results and Analysis

In this section, we have conducted experiments on four publicly available high-dimensional face
databases ORL, Georgia Tech (GT), CMU PIE and Yale respectively. To demonstrate the effectiveness
of our proposed WNPEE, results are compared with other competitive DR algorithms including
Eigenfaces, Fisherfaces, LPP, and NPE. The performance is evaluated by considering the recognition
rates corresponding to dimensions. Furthermore, to show the superiority of the proposed WNPEE
method, its sensitivity to neighborhood parameter k is computed for different databases. The
environment for the experiments is MATLAB (R2014a) (version 8.3.0.532, MathWorks, Natick, MA,
USA) on an Intel® Core™ i5-6500 CPU @3.2 GHz, DELL machine with 4.0 GB RAM. In all experiments
in this section, k nearest neighbor classifier is employed to construct the adjacent graphs. The value of
the parameter of neighborhood size is pre-set to 15 with a step size of one, i.e., k = 1, 3, . . . , 15. The
weight control parameter r is taken as 6 [37]. To overcome the small sample size problem, the PCA
preprocessing is applied in the LPP method by keeping nearly 98% image energy. The eigenvector
dimension taken in all experiments is fixed to 50 to compare the recognition results.

5.1. Experiments on the ORL Face Database

The ORL (Olivetti Research Laboratory) database [39] contains 400 images of 40 persons (10 images
per person). To be subjected, the images were taken at different times, varying the light, facial
expressions (open or closed eyes, smiling or not smiling), and facial details (glasses or no glasses). The
size of each image is 112 × 92 pixels, with 256 gray levels per pixel. In our experiments, the images
were normalized and cropped to a resolution of 32 × 32 pixels. Figure 1 shows some sample images of
one person from the ORL face database.

The average recognition rates (%) of five different methods used with their correspondent
standard deviation and dimension of the best subspace are shown in Table 1. We randomly select
l = 4, 5, 6, 7 images for each individual for training and rest to be used as testing samples. For
effective performance, experiments are repeated 10 times for each value of l. It can be easily seen
from the table that the proposed WNPEE method achieves the best recognition results for value of
l = 4, 6, 7 and NPE has the best recognition when l = 5. The best average recognition rates for
Eigenfaces, Fisherfaces and LPP are, respectively, lower then NPE and WNPEE.
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Table 1. The average recognition rates of each method on four face databases with the corresponding
STDs and dimension of best subspace.

Database No. of Trains Eigenface Fisherface LPP NPE WNPEE

ORL

l = 4 34.02 ± 1.91(41) 66.69 ± 1.21(41) 70.20 ± 0.94(43) 82.05 ± 1.42(37) 84.80 ± 1.22(48)
l = 5 21.61 ± 0.91(43) 64.62 ± 1.75(47) 74.28 ± 1.46(41) 86.01 ± 1.41(27) 82.56 ± 1.74(37)
l = 6 18.35 ± 0.73(50) 69.16 ± 1.83(34) 78.76 ± 1.57(24) 86.68 ± 1.42(43) 89.37 ± 1.79(23)
l = 7 16.18 ± 0.63(50) 71.36 ± 1.92(39) 80.05 ± 1.41(17) 86.05 ± 1.31(22) 86.99 ± 1.78(14)

GT

l = 3 10.24 ± 0.71(50) 30.40 ± 0.72(33) 34.11 ± 0.68(49) 46.28 ± 0.92(24) 47.85 ± 1.94(19)
l = 5 7.82 ± 0.46(50) 39.51 ± 0.94(37) 49.37 ± 1.53(50) 56.65 ± 1.23(49) 63.84 ± 1.42(22)
l = 7 7.50 ± 0.35(48) 42.01 ± 0.94(45) 56 ± 1.34(32) 59.59 ± 1.22(39) 69.83 ± 1.48(17)
l = 9 9.22 ± 0.83(50) 50.40 ± 1.13(41) 59.33 ± 1.33(23) 63.46 ± 1.33(38) 73.26 ± 1.51(20)

CMU PIE

l = 10 70.88 ± 2.43(50) 57.40 ± 2.91(50) 64.05 ± 1.76(50) 62.48 ± 1.84(50) 74.69 ± 1.83(47)
l = 15 73.24 ± 2.72(48) 77.23 ± 1.22(49) 76.26 ± 2.31(49) 74.54 ± 2.17(47) 84.35 ± 1.91(47)
l = 20 73.52 ± 2.65(47) 74.50 ± 2.15(48) 82.16 ± 2.14(37) 79.77 ± 2.28(49) 88.13 ± 1.95(31)
l = 25 76.25 ± 2.61(33) 75.67 ± 2.85(39) 80.17 ± 2.13(33) 79.10 ± 2.25(47) 88.92 ± 1.93(29)

YALE

l = 6 29.57 ± 1.42(47) 43.86 ± 0.98(14) 48.90 ± 0.89(15) 49.22 ± 1.28(24) 55.65 ± 0.90(27)
l = 7 25.86 ± 1.37(39) 39.86 ± 0.73(24) 48.83 ± 0.91(41) 51.43 ± 0.9(42) 59.33 ± 0.89(25)
l = 8 23.51 ± 1.27(49) 44.97 ± 1.19(24) 49.95 ± 0.81(35) 55.77 ± 1.14(25) 69.68 ± 1.13(9)
l = 9 32.53 ± 1.32(47) 47.33 ± 0.90(42) 53.60 ± 0.61(48) 58 ± 1.13(13) 71.80 ± 1.13(20)
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Figure 2 shows the recognition rate versus reduced dimensions of different DR methods used
in experiments with our proposed WNPEE algorithm. Figure 2a–d for different values of l. From
the figures we conclude that Eigenfaces have lowest and proposed WNPEE method have the highest
recognition rate. Almost all DR algorithms starts from their lowest value of recognition and achieves
the peak value when number of dimensions is 25 and after that almost stable.
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Figure 2. Average recognition rate versus reduce dimensions on ORL dataset. (a) l = 4, (b) l = 5, (c) l = 6,
and (d) l = 7.

We list the computational time (in seconds) of each method for one run with different values
of training samples l, shown in Table 2. As can be seen from the time results that the time taken
by proposed method is slightly more than the other methods and the difference is not much. This
is because of one more loop added in our algorithm. However, the performance of the WNPEE is
superior to the other algorithms.

Table 2. Computation time on ORL face database under different trains for one run (time in seconds).

No. of Trains Eigenface Fisherface LPP NPE WNPEE

l = 3 1.21 1.35 2.16 1.81 2.44
l = 5 2.08 2.87 2.98 2.08 3.16
l = 7 3.07 3.17 3.48 2.27 4.11
l = 9 2.80 2.98 3.74 2.41 4.27

Average 2.29 2.59 3.09 2.14 3.50

5.2. Experiments on the GT Face Database

Georgia Tech (GT) face database [40] contains 750 images of 50 people taken in two or three
sessions between at the Center for Signal and Image Processing at Georgia Institute of Technology. All
people in the database are represented by 15 color JPEG images with cluttered background. These
images show frontal and/or tilted faces with different facial expressions, lighting conditions and scale.
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In our experiments, all the images in the data set were manually cropped to size to 32 × 32 pixels
and converted into gray scale images for training and testing. Figure 3 shows some sample images of
GT database.
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Figure 3. Sample face images of GT face database.

The experimental results in form of average recognition rates (%) of each DR methods with their
corresponding standard deviation and best subspace dimension are shown in Table 1. The training
sets are chosen randomly with l = 3, 5, 7, 9 images of each individual and rest to be used as testing
samples. For different values of l the experiments are performed for 10 repetitions for satisfactory
results. The best results are highlighted in bold face. Results clearly shows that the proposed WNPEE
has the best recognition rates among all five comparative DR methods. Additionally, WNPEE achieves
its best performance with the increase in value of l.

The recognition rate corresponds to reduce dimensions for different DR algorithms are shown in
Figure 4a–d for different values of l. It is observed from graphs that mostly all comparable methods
achieves their peak values of recognition rates in between dimensions 15 to 20 and then becomes
stable for higher dimensions. We can also deduce that WNPEE shows the best results whereas NPE
overcomes the other three graph-based DR methods.Electronics 2019, 8, x FOR PEER REVIEW 11 of 18 
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Figure 4. Average recognition rate versus reduce dimensions on GT dataset. (a) l = 3, (b) l = 5, (c) l = 7,
and (d) l = 9.
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According to the computational time results shown in Table 3, it is detected that the time consumed
by WNPEE is different from other methods. On the other hand it shows that the time difference is not
so large, it is in some seconds that make our proposed method suitable for many real time applications.

Table 3. Computation time on GT face database under different trains for one run (time in seconds).

No. of Trains Eigenface Fisherface LPP NPE WNPEE

l = 3 4.31 4.28 4.31 4.25 4.63
l = 5 5.23 5.12 5.09 5.08 5.78
l = 7 5.72 5.53 5.58 5.54 6.23
l = 9 5.70 5.54 5.62 5.51 7.04

Average 5.24 5.12 5.15 5.09 5.92

5.3. Experiments on the CMU PIE Face Database

The CMU PIE face database [41] contains 41,368 images of 68 people, each person under
13 different poses, 43 different illumination conditions, and with four different expressions. Images
are taken under 15 view points and 19 illumination conditions while displaying a range of facial
expressions. All images are moved to gray scale and cropped to 32 × 32 pixels in our experiments.
Some sample images are shown in Figure 5.Electronics 2019, 8, x FOR PEER REVIEW 12 of 18 
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Figure 5. Sample face images of the CMU PIE face database.

Table 1 shows the average recognition rates (%) of five DR algorithms with their corresponding
standard deviation and best subspace dimension, where the highest rates are in boldface. We choose
the first l = 10, 15, 20, 25 images for the training and rest for the testing samples. Experiments are
repeated ten times for best average recognition rates. From the results shown in Table 1 it is found
that proposed WNPEE outperform other four comparative DR methods with different training sets.
Furthermore, NPE achieves the second best results due to its superiority over other three methods.

Figure 6a–d illustrates the recognition rate against dimensions for each value of l. The graph
results demonstrate that our proposed WNPEE outperforms all other comparative DR methods used
in experiments. Although when the value of l = 10, NPE shows more superior recognition but, as the
value of l increases, our proposed WNPEE outperforms all methods. It is also noted that with higher
values of l overall performance of all DR methods increases.

To evaluate the computation complexity we record the time consumed for all DR techniques for
one run which are shown in Table 4. The time is in seconds with different values of trains. Time results
reveals that proposed method is almost equal in terms of computations. However, a slight difference
in time makes our proposed WNPEE slow, but its performance makes it a competitive algorithm in the
field of DR.

Table 4. Computation time on CMU PIE face database under different trains for one run (time
in seconds).

No. of Trains Eigenface Fisherface LPP NPE WNPEE

l = 3 1.04 2.14 2.57 2.08 2.61
l = 5 1.13 2.23 2.75 2.11 2.79
l = 7 1.12 2.16 2.78 2.13 2.75
l = 9 1.01 2.11 2.95 2.01 3.06

Average 1.07 2.16 2.76 2.08 2.80
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Figure 6. Average recognition rate versus reduce dimensions on CMU PIE dataset. (a) l = 10, (b) l = 15,
(c) l = 20, and (d) l = 25.

5.4. Experiments on the YALE Face Database

The Yale database [42] was used to evaluate the system performance under conditions where
the facial expressions and illumination are varied. It contains 165 gray scale images of 15 individuals
under various facial expression (normal, happy, sad, sleepy, surprise, and wink), lighting conditions
(left-light, center-light, right-light), and facial details (with glasses or without). The original size of the
images is 243 × 320 pixels but in our experiments we have normalized each image to 32 × 32 pixels.
Some sample images with different face expressions are shown in Figure 7.
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Figure 7. Sample face images of the YALE face database.

In this experiment, we have evaluated the performance of the five methods: Eigenfaces,
Fisherfaces, LPP, NPE, and WNPEE. The recognition rates with STDs and dimensions are recorded by
taking their mean for 10 runs shown in Table 1. For better implementation of the algorithms different
training sets for l = 6, 7, 8, 9 images of each individual are taken and rest are for testing sets. The
result shows the superiority of the WNPEE and also it reveals that with the use of an optimal weighted
graph, the performance can be increased for a DR algorithm.

The result graphs are in the form of recognition rate with respect to the dimensions as shown
in Figure 8. For different values of l different results are recorded as shown in the figure. Graphs
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demonstrate two interesting facts, i.e., with a greater amount of training, the greater the accuracy will
be, and KNWPE outperforms the other four DR methods in terms of recognition rate. This makes our
WNPEE more superior to use in many tasks, including face recognition and pattern analysis.
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Figure 8. Average recognition rate versus reduce dimensions on YALE dataset. (a) l = 6, (b) l = 7,
(c) l = 8, and (d) l = 9.

For any algorithm to be of practical use, it should have a lower computation time. As revealed
from Table 5, the overall time for proposed WNPEE is slightly more than the other DR methods with a
difference of 0.38 s. The slightly greater time is practically negligible if the performance is far better
than the other methods. Thus, we can easily use this proposed WNPEE in practice.

Table 5. Computation time on the YALE face database under different training for one run (time
in seconds).

No. of Trains Eigenface Fisherface LPP NPE WNPEE

l = 6 0.91 1.9 2.19 2.93 3.03
l = 7 0.93 1.86 2.39 2.89 3.14
l = 8 1.14 1.96 2.94 3.07 3.59
l = 9 1.71 1.87 3.09 4.02 4.65

Average 1.17 1.89 2.65 3.22 3.60

5.5. Analyzing the Sensitivity to Neighborhood Size Parameter

As mentioned before the NPE is among the best graph-based DR methods, but still its performance
is very sensitive to the neighborhood size parameter. Thus, to overcome this sensitivity problem in
classical NPE we proposed a new WNPEE DR technique. To evaluate the WNPEE sensitivity to the
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neighborhood size parameter we have conduct experiments on four face databases ORL, GT, CMU
PIE, and Yale. The experimental results are observed in form of error rates with varying the parameter
of neighborhood size. In these experiments, we vary the value of parameter k from 1 to 15 with a step
size of one and plot the corresponding average error rates, as shown in Figure 9. Figure 8a–d are for
ORL, GT, CMU PIE, and Yale databases, respectively.
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Figure 9. Error rates of NPE and proposed KWNPE corresponding to parameter of neighborhood size
k on different databases (a) ORL with l = 7, (b) GT with l = 9, (c) CMU PIE with l = 25, and (d) Yale with
l = 9, respectively.

For ORL database, each individual with l = 7 images are selected randomly for training and rest
are used as testing. Figure 8a shows the average error rate versus parameter of neighborhood size
on ORL database. From the figure we observe that the error rate for NPE is continuously changing
with varying neighborhood size. Firstly it decreases fast when parameter changes from 1 to 3, then
suddenly increases up to k = 7, and continue varying with parameter k. On the other hand, the average
error rate of our proposed WNPEE shows a sharp down when parameter changes from 1 to 3 and
then it is almost stable with contrast of neighborhood size. The above observation clearly shows that
proposed WNPEE is very less sensitive to parameter of neighborhood size.

As compared to ORL, Georgia Tech face database is more complex because of increased number
of expressions for various pose faces. In our experiment, we choose l = 9 for everyone to form
training and balance were used as testing sets. The average error rates with varying neighborhood
size parameter for 10 iterations are presented in Figure 8b. The results show that NPE error rates
are different with different value of the neighborhood size parameter. Oppositely, the error rates of
WNPEE changes sharply at the start, then up to parameter value 7 it changes little and, further, it
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become stable. The reason behind this may be the GT database has a very complex bunch of data that
needs more time to achieve a stable accuracy as compared to the ORL database.

In CMU PIE face database, a random subset of l = 25 training samples are selected and the rest
were taken for the testing set. The average error rates of NPE and WNPEE versus the parameter of
neighborhood size for 10 iterations is shown in Figure 8c. Form the plot it is clear that both the error
rates for NPE and WNPEE are changing with different values of parameter k, but WNPEE will become
stable after k = 7. This shows that WNPE is less sensitive to neighborhood size as compared to NPE.

The Yale database experiment results are shown in Figure 8d. In this experiment, each individual
with l = 9 images are selected as the training set and the rest are taken for the testing set. In the same
way, the error rates are used to measure the sensitivity to parameter of neighborhood size. As shown
in plot 8d, the performance of the WNPE is less sensitive to the neighborhood parameter than NPE.

Based on the above results on four face databases; we can realize two important facts. First is that
NPE accuracy continuously varies with changes in the parameter of neighborhood size. Additionally,
the accuracy of proposed WNPEE changes with respect to the neighborhood size parameter, but
it becomes relatively stable after the parameter reaches 7 in mostly cases. Another fact is that the
proposed WNPEE has attained greater accuracy than NPE in all four experiments. Therefore, an
ensemble of adjacent graphs can be utilized to get improved face recognition performance of NPE
which is pursued in a joint optimization way. From the above on-going discussions without any
obstruction we can conclude that our proposed WNPEE shows a very significant improvement in
terms of performance and is less sensitive to the neighborhood size parameter.

5.6. Computation Complexity

The most significant goal for dimension reduction is to help alleviate the problem of data
complexities so as to improve the performance of algorithms. In this section, a detailed complexity
analysis of the proposed WNPEE algorithm, and the computation cost compared with other approaches
on ORL, Georgia Tech, CMU PIE, and Yale datasets are discussed.

The proposed WNPEE algorithm consists of two parts: one is for multiple graph construction and
the other is for the iterative solution of the regularization framework. From Algorithm 1, computational
convergence of WNPEE subjects to continual update of the weight coefficients αk for multiple adjacent
graphs. Suppose a training set X of dimensions m x n, and k number of adjacent graphs for ensemble
embedding, then it will take O

(
kn2) to compute αk. Since our method is an eigenvalue problem,

a complexity of O
(
n3) for obtaining the low-dimensional projection vector a. Therefore, the total

complexity of the proposed WNPEE method is O
(
t
(
n3 + kn2)), whereis the number of iterations

for convergence.
The computation times for obtaining the low-dimensional projections on ORL, Georgia Tech, CMU

PIE and Yale datasets are reported in Tables 2–5. It can be seen that the proposed method is slightly
time consuming as compared to the rest of the methods. This is due to the utilization of multiple
adjacent graphs in our method. However, the proposed WNPEE obtained superior recognition rates,
as shown in Table 1. In conclusion, except for the slightly increased computational time consumption,
the proposed WNPEE generally obtains better recognition rates and is less sensitive to neighborhood
size k compared to the rest of the DR methods. Thus, there is no constraint to the practical application
of the proposed method.

6. Conclusions

In this paper, we proposed a new graph-based DR algorithm, called weighted neighborhood
preserving ensemble embedding (WNPEE). The proposed WNPEE method aims at improving the
sensitivity of traditional NPE to parameter of neighborhood size, as well as to increase its face
recognition performance as compared to other comparative methods. WNPEE significantly enhances
the face recognition performance mainly from two key factors. The first improvement resides in
the fact that in the WNPEE algorithm constructs an ensemble of adjacent graphs with varying
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parameters of neighborhood size. With this graph ensemble building, WNPEE can obtain the
low-dimensional projections with optimal embedded graph pursuing in a joint optimization way. This
helps WNPEE to preserve more local information that best determines the essential manifold structure
of high-dimensional data. The second improvement is that WNPEE provides an efficient weighting
scheme for eigenspace which makes the projections much less sensitive to the neighborhood size
parameter as compared to NPE. Four different DR approaches, Eigenfaces, Fisherfaces, LPP, and NPE,
have been compared, to calculate the performance of the proposed WNPEE algorithm. Experimental
results on four face databases ORL, GT, CMU PIE, and Yale demonstrate that the proposed WNPEE
DR method achieves the highest recognition rates. Additionally, the proposed WNPEE is less sensitive
to the neighborhood size parameter when compared to NPE.

Therefore, the proposed WNPEE method can be suitable for advanced driver assistance systems
(ADAS) in various tasks, such as object recognition, data classification, obstacle detection, signal
processing, text categorization, and various deep learning tasks. In future work we plan to extend
ensemble of adjacent graphs framework to other graph embedding techniques.
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