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Abstract: The task context switch operation, the inter-task synchronization and communication
mechanisms, as well as the jitter occurred in treating aperiodic events, are crucial factors in
implementing real-time operating systems (RTOS). In practice and literature, several solutions can
be identified for improving the response speed and performance of real-time systems. Software
implementations of RTOS-specific functions can generate significant delays, adversely affecting the
deadlines required for certain applications. This paper presents an original implementation of a
dedicated processor, based on multiple pipeline registers, and a hardware support for a dynamic
scheduler with the following characteristics: performs unitary event management, provides access
to architecture shared resources, prioritizes and executes the multiple events expected by the same
task. The paper also presents a method through which interrupts are assigned to tasks. Through
dedicated instructions, the integrated hardware scheduler implements tasks synchronization with
multiple prioritized events, thus ensuring an efficient functioning of the processor in the context of
real-time control.
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1. Introduction

In the field of Real-time System (RTS), minimizing the jitter when treating the asynchronous
events is an important factor in increasing the response speed, this issue being an interesting subject
for obtaining fast enough equipment for the most demanding applications. In this regard, in order to
guarantee the performance of a RTS, only an increased speed for the execution of tasks does not suffice;
an optimal scheduler is also needed in order to meet individual tasks deadlines without reducing their
average response time [1,2].

The need to obtain shorter response times to external stimuli for rapid processes has led to
in-depth research regarding the processors and RTOS architecture [3]. In this case, most researchers in
the field reached the conclusion that some of the components (or even the entire RTOS–HW-RTOS)
must be embedded in hardware, due to its capacity to increase the parallel processing of information
and, therefore, to decrease response times of the embedded systems [4]. The aim of moving the
operating system, or some of its components in hardware, is to reduce the non-determinism sources
introduced by external synchronous interrupts and by the variable execution time of the real-time
operating system. This variable execution time is determined mainly by the number of tasks, the type
of scheduler, data dependency introduced by the assembly line, and interrupts.
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Affordable field-programmable gate array (FPGA) devices [5], with a large number of logic gates,
can be used as a hardware support for implementing and testing real-time operating systems. With their
extensive capabilities for a wide range of applications, the FPGAs are ideal to implement a vast amount
of digital logic in a single chip. The main advantages of the programmable logic gate arrays include
deep optimization, parallelism, an increased flexibility [6], cost savings and outstanding performances.

The novelty and relevance of the results presented in this paper is given by the nHSE (Hardware
Scheduler Engine for n tasks) patented in Germany, Munich [7], as well as through related work
publications [8,9]. Based on the multiplication of resources, such as program counter, the pipeline
registers and CPU general purpose registers, the nMPRA (multi-pipeline register architecture for n
tasks) processor depicted in this paper is based on a minimum response time in treating asynchronous
interrupts and events [9–11]. Following the validation of the processor using the Virtex-7 development
kit [12], Verilog HDL, and the Vivado 2018.2 Design Suite by Xilinx, Inc. (San Jose, CA, USA),
the experimental results confirm that context switching operation is performed within a critical
RTS timeframe. Considering the nMPRA architecture presented in [11], based on applied research,
the following contributions have been made:

• We proposed a real SoC (System on Chip) implementation of nMPRA and nHSE using the
xc7vx485tffg1761-2 FPGA chip (the patent [7] proposes and defines only the architecture with
logical gates and flip-flops).

• In the current implementation we designed the mapping of all nHSE registers in the MIPS32
coprocessor 2 (COP2) register file space, validating the model proposed in patent.

• We also designed the Verilog HDL implementation of registers and instructions in order to control
the dynamic nHSE scheduler (the original project [9] contains only a static round-robin scheduler).

• We have considered a set of benchmark tests for verifying data hazard and exceptions,
for treating asynchronous external interrupts and for inter-task synchronization and
communication mechanisms.

The first section of the paper contains a brief introduction, highlighting the contributions of the
authors. Section 2 shows a description of the nMPRA processor architecture. Section 3 is dedicated to
the integrated hardware scheduler on which the particular results of this processor implementation
are based, and Section 4 describes the validation of the proposed nHSE concept, testing the hardware
implementation of the inter-task synchronization and communication mechanisms, including the
system of handling multiple events. Section 5 compares the results from our nMPRA implementation
with other similar projects published in the literature, and Section 6 focuses on discussions regarding
the real-time evaluation of the nMPRA processor. The paper ends with the final conclusions in
Section 7.

2. nMPRA Architecture

The acronym nMPRA stands for an architecture with multiple (n) pipeline registers. The nMPRA
architecture was initially proposed and described in [11], in which a MIPS pipeline [13], the program
counter (PC), pipeline registers (PR) and general-purpose registers (GPR) have been multiplied by n
times, as shown in Figure 1. Consequently, a structure type PCi, PRi, and GPRi can be defined,
so that only a PCi, PRi, and GPRi triad can be activated at a given moment. The result is a
structure representing the n-multiplexed resources. Together with the memory and functional blocks
(ALU, hazard detection unit, forward unit and the control unit), this structure forms a typical MIPS
architecture [14] which we will call semi CPU (sCPU). An i instance of this semiprocessor will be called
semiprocessor i (sCPUi). All sCPUis share the same processor units, such as control unit, condition
testing unit, hazard detection unit, ALU, and data redirection unit, so that the design of the data path
and of the nHSE embedded scheduler must guarantee the consistency of data belonging to different
sCPUi. Due to the fact that each sCPUi has a PC, a set of pipeline registers and a GPR, the switch from
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one sCPUi to another, selected by the nHSE scheduler, does not require any saving of registers and
deletion of the pipeline register content [15,16].
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If at a certain point, the nHSE deactivates a sCPUi and activates another, all the information specific
to the program running on the deactivated sCPUi is preserved due to resources multiplication [17].
The program executed on a sCPUi could be a task, part of a small real-time application. The transition
from one sCPUi to another does not require any action in order to save the pipeline register content.
This context switching operation generates a very fast switch to a sCPUi scheduled by the nHSE.
If every sCPUi runs a task i, then switching from one task to another is very rapid, therefore minimizing
the jitter effect produced by interrupts and asynchronous events. In this context each task handles a
set of different interrupts (an interrupt can be attached only to a single task at a certain moment).

3. nHSE Unit and Hardware Support

The GPR from the nMPRA processor was specifically designed to achieve a rapid switching of
the sCPUi’s contexts, in order to meet the stringent conditions imposed by the real-time systems.
The architecture described in this paper does not use the stack concept as in existing processors;
however, it uses the functionality of the nested function calls and their order [18], based on the
XUM project described in [19]. The scalability of the nMPRA architecture facilitates the convenient
organization of n sCPUi’s, in order to dynamically or statically schedule a reasonable number of tasks.
Because the nHSE scheduler implements a preemptive scheduling algorithm based on priorities,
the architecture proposed in the present paper fully meets the requirements of applications for
monitoring and controlling industrial processes. Thus, the interrupts can be attached to the sCPUis
with a higher or a lower priority and their asynchronous activation would not alter the feasibility of
scheduling the set of tasks.

If the periodic execution of a task is needed, as in the case of managing the human machine
interface (HMI), or that of collecting data from sensors, the timers implemented at the level of each
sCPUi can play a very important role in the structure of such a system. Under these circumstances,
the robustness of the CPU results from the outstanding performances obtained from context switching,
from handling external interrupts, and from the simplicity of the architecture.

Figure 2 shows the nHSE scheduler module designed at the level of COP2. The events treated
by the nHSE scheduler are the following: the timer-generated event (TEvi), the event produced by
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overcoming the first critical limit (D1Evi), the event produced by overcoming the second decisive
limit (D1Evi), the event produced by the watchdog timer (WDEvi), interrupts (IntEvi), inter-task
communication mechanism (SynEvi), and the mutex-generated events (MutexEvi).
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3.1. Command, Control, and Status Registers of the nMPRA Concept with Direct and Indirect Effect
over the nHSE

MIPS provides the user with a system of coprocessors for extending the functionality of the basic
CPU. Coprocessor 2 is available to the user. The nHSE architecture contains four types of registers:

• Monitoring registers (mr_)—can be accessed only by the sCPU0 and possibly by the
monitored sCPUi.

• Control registers (cr_)—specific to each sCPUi.
• Local registers (lr_)—private space of each sCPUi.
• Global registers (gr_)—can be accessed by all sCPUi.

The presence of new registers requires also the extension of the MIPS32 instruction set. The COP2
instructions are generic and, according to their implementation, they can have other mnemonics or
also can be implemented using macros. As can be seen in Figure 3, the multiplication of resources for
4 sCPUi is represented by the ID_Instruction_reg[3:0] pipeline registers. With the Vivado simulator,
we can observe the control and monitoring registers designed at the level of the nHSE module. Through
the nHSE_Task_Select (ID_sCPUi) and nHSE_EN_sCPUi (en_sCPU0/en_sCPUn−1) signals, the hardware
scheduler module dictates the execution state for all sCPUi, and the nHSE_inhibit_CC signal can inhibit
context switching in certain critical situations.
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3.2. Implementing the Instructions Dedicated to the nHSE Embedded Scheduler

This implementation represents an example of a generic nHSE-type correspondence MIPS
coprocessor with two instructions. Other processor implementations can perform other
correspondences, depending on the application. Thus, data transfer between nHSE and COP0 is
achieved by using four instructions implemented at the level of COP2, namely CFC2 (copy control
word from coprocessor 2), CTC2 (copy control word to coprocessor 2), MFC2 (move word from
coprocessor 2), and MTC2 (move word to coprocessor 2). The new instructions presented in Table 1
have been designed using the MIPS32 Release 1 ISA, the significance of the registers being explained
in detail in the specifications of the nMPRA processor. We have improved the patented nMPRA
concept, removing the multiplication of the register file for each function call, because this involves
high resource consumption.

The time required for switching contexts is the key element of this hardware scheduler.
The nMPRA concept uses a unified space for interrupts and tasks and, therefore, interrupts inherit the
priority and the characteristics of the tasks to which they are attached [20]. Thus, contexts switching
takes place within a clock cycle, depending on the moment of the event threated by nHSE. At the same
time, the task can respond to an external event, if that event is masked by the wait Rj instruction with
movcr mnemonic. This instruction is very important because it allows the synchronization of execution
when multiple events are to be expected.

The execution of the wait Rj instruction by COP2 results in copying the content of the Rj register
(COP0) in the crTRi register (COP2) of the nHSE scheduler, in order to validate the events expected
by task i attached to the sCPUi. If at least one of the events is active, its value is copied in the Rj.
The action of the wait Rj instruction for a semiprocessor i is crTRi← Rj, where Rj represents a general
purpose register GPR[rt] at the level of COP0, and crTRi is a register intended to validate or inhibit one
of the seven events.
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Table 1. The instructions dedicated to the nHSE hardware integrated scheduler.

Mnemonic Instruction Effect OpCode (31..26) Field 25..21 Operation Involved Registers

CFC2 Move control word
from COP2 0100_10 CF 00010 GPRi[rt]← COP2[Immediate]

Data Registers Bank (Figure 2) (crTRi,
crEVi, cr0D1, cr0D2, crEPRi, cr0MSTOP,
cr0CPUID, cr0RESET, crEERij, crEMRij)

CTC2 Move control word to
COP2 0100_10 CT 00110 COP2[Immediate]← GPRi[rt]

Data Registers Bank (crTRi, cr0D1, cr0D2,
crEVi, crEPRi, cr0MSTOP, crEMRij,

cr0RESET, crEERij)

MFC2 Move monitoring word
from COP2 0100_10 MF 00000 GPRi[rt]← COP2[Immediate]

Configuration Registers Bank (Figure 2)
(mrPRIsCPUi, mrTEvi, mrD1EVi,
mrD2Evi, mrWDEVi, mrCntRuni,

mr0CntSleep, mrCntSleepi,
mrCommRegij)

MTC2 Move monitoring word
to COP2 0100_10 MT 00001 COP2[Immediate]← GPRi[rt]

Configuration Registers Bank
(mrPRIsCPUi, mrTEvi, mrD1EVi,
mrD2Evi, mrWDEVi, mrCntRuni,

mr0CntSleep, mrCntSleepi,
mrCommRegij)

LWC2 Load word to COP2
from data memory 1100_10 base COP2[rt,0]←MEM[GPRi[base] +

SignExtImmediate]

Interrupts, Mutex /Message Handling
Unit (Figure 2) (grINT_Idi, grMutexi,

grESSRi, grESSF, grINT_PR)

SWC2 Store word to data
memory from COP2 1110_10 base MEM[GPRi[base] +

SignExtImmediate]← COP2[Rt,0]

Interrupts, Mutex and Communication
Control Block (grINT_Idi, grMutexi,

grESSRi, grESSF, grINT_PR)
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Table 2 lists the specialized task manipulation functions implemented by the nHSE unit. Switching
from one state to another can be performed either through the task managing functions (wait Rj), or by
the nHSE scheduler in the presence of validated events at the level of each sCPUi. These instructions
enable the activation/deactivation of a task. The wait instruction enables the creation/inhibition of one
or more periodic or aperiodic events at the level of each sCPUi. This way, the registers corresponding
to each sCPUi in the Data Registers Bank (Figure 2) memory area of the nHSE (activated/inhibited
events) are accessed. If at least one event is active at the time of the call, the task is not preempted.
Otherwise, the current task is suspended (Preempts) and the scheduler dispatches the next task to
execute, putting it on the running state. The block diagram in Figure 2 shows the Configuration Registers
Banks implemented in nHSE that makes possible to access the monitoring registers of each task, i.e.,
the sCPUi, by the means of the RWsCPUiState instruction (Table 2).

Table 2. The task managing specialized instructions.

Instruction Description

EnSchedsCPUi The instruction marks task i as schedulable and places it in the IDLE state

DisSchedsCPUi The instruction marks task i as unschedulable, deactivating its
corresponding context represented by the multiplied resources

wait It activates/preempts multiple events and alters the state of the task
(activates/preempts current task)

RWsCPUiState It reads/writes monitoring registers of the specified sCPUi

sCPUiswEv It generates or inhibits an event through software

sCPUiswExc It generates a software exception in order to signal an error condition

Before activating the task, the parameters corresponding to each task must be set through the
CTC2 and MTC2 MIPS32 instructions (Table 1), taking into account the priority of the tasks and
the RTS requirements. It should be specified that the implementation of instructions, such as the
Create/Destroy Task was not necessary, because each task running on the sCPUi has its own context
due to the resources multiplication on which the nMPRA concept is based. The last two instructions
(sCPUiswEv and sCPUiswExc) enable the software to alter the state of an event treated by a certain
sCPUi, and the sCPUiswExc instruction generates a software exception (Table 2).

Figure 4 shows the supported task states and the corresponding transitions between them.
There are also the conventional task states, such as stopped, idle, ready, running, preempted, and
blocked. For conceptual considerations of the nMPRA architecture, the free and sleeping state have
not been implemented.
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4. Implementation and Validation of the nMPRA Architecture

4.1. Management of the Events and Interrupts with Support of Dynamic nHSE Embedded Scheduler

The crTRi, crEVi, and crEPRi control registers (Table 1) validate, store, and prioritize the events
and interrupts expected by each sCPUi. With an independent execution, the scheduler has entries
for multiple events prioritized differently by each sCPUi through the crEPRi (event priority register)
control register. In order to store each event treated at the level of a sCPUi, gr_EV_select_sCPU[3:0]
global registers have been used, with values from 0 to 6, depending on the treated event; 7 indicates
the fact that there is no active event. The mrPRIsCPUi[3:0] registers provides the priority of each sCPUi,
which can only be modified by the sCPU0. Figure 5 shows the support for the dynamic scheduler. For
each sCPUi a local register is provided, enabling the writing of the desired priority at a given moment.
An exception to this rule is sCPU0 which always has 0 priority (the highest).
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Based on the value stored in the mrPRIsCPUi register, which can be from 1 to n − 1 (without
0), sCPU_Evi and nHSE_EN_sCPUi signals, the pri_1/pri_n − 1 signals are generated; in turn, these
signals generate the muxi signal. The sCPU_Ev0, mux1, mux2, . . . , muxi, . . . , muxn-1 signals are used to
generate the task ID in a similar manner like it was generated for the static scheduler. In fact, the same
coder is used for the static ID, the correspondence being sCPU0_ready with sCPU_Ev0, sCPU1_ready
with mux1, sCPU2_ready with mux2, sCPUi_ready with muxi, sCPUn-1_ready with muxn-1 respectively.

Figure 6a presents the scheme proposed for the interrupt events. We assume that there are
p interrupts in the system. For each interrupt, there is a global register with n useful bits and a
INT_IDi_register that stores the ID of the task to which the interrupt is associated. The activation
of the INTi interrupt validates the decoder Decoder which, in turn, activates one of the INT_i0 . . .
INT_in-1 signals.
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The gate OR (Figure 6a) can collect all interrupts from the system. They can be attached to sCPUi if
all p INT_IDi_register (i = 0 . . . p-1) registers are written with the i value. Correspondingly, no interrupt
can be attached, if none of the p INT_IDi_register (i = 0 . . . p – 1) registers are written with an i value.
The D type bistable has the role of synchronizing the random occurrence of the INTi interrupt event,
generating the IntEvi event. The HW-RTOS scheduler automatically detects that a high priority task
(sCPUi) is waiting for this interrupt and thus makes the task ready-to-run.

A deficiency of the priority encoding scheme is that when a task has multiple interrupts attached
to it, a loop testing is executed when the prioritization is performed through software, and the response
time depends on the position in the loop.

The proposed scheme is very versatile and can implement many interrupt working models in
a real-time executive, Figure 6b presenting a real improvement in this context. If all interrupts were
attached to a single task, the interrupt with the highest priority would be INT0, and the interrupts
with the lowest priority would be INTp-1. From this point of view, the priorities are fixed. In order
to take into consideration only the interrupts of a single task, with the highest priority at a given
moment, the local registers crEPIji (one of the local registers for validating the interrupts for their
priority encoder) were considered (j is sCPUj, i is the register number). These registers contain one bit
for each of the p interrupts. If the bit is 1, the interrupt is attached to the task and the INT_IDi register
must be written with the task ID. This correspondence must be ensured for any interrupt attached
to a task. If this correspondence does not occur for an interrupt, the interrupt will never generate
an interrupt code because an evINT_ji signal will always be 0 logic. The evINT_ji signal will activate
only if the sCPUj, to which it was attached, is in execution corresponding to the sCPUj_ready signal
on 1 logic. For example, the evINTi signal can collect all possible i interrupts attached to any sCPUi’s,
but it is mandatory that an interrupt is attached to a single task (sCPUj). Consequently, since only one
sCPUj is active at a given moment on the input of the priority encoder, only the interrupts of that task
can be active. Using the grNrINT register, sCPUj will read the number of the highest priority event.

The response time of the nMPRA processor can be simulated and measured when an asynchronous
external event occurs; the time required to switch contexts can also be determined. Simulation
waveforms with Vivado illustrate the internal signals of the processor at the working frequency
of 33 MHz, GPIO_SW_N representing the input signal assigned to the ExtIntEv[0] interrupt event
(pushbutton), marked by time moment T1 (Figure 7). Therefore, to treat this external interrupt attached
to sCPU0, about three clock cycles are sufficient (T1–T2 time period). The time moment T2 indicates the
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response of the nHSE scheduler by modifying the nHSE_Task_Select internal signals to execute sCPU0.
Time moment T3 indicates the change of the LED[7] signal state (Figure 7) and the corresponding
output of this LED is mapped in the data memory address space. In order to access this led, the
processor will run a sw type MIPS instruction (0xadcc0000). From the occurrence of the external
event, until the LED on the Virtex-7 is switched ON, up to eight clock cycles are required (245.062 ns),
depending on the moment T1 when GPIO_SW_N pushbutton is activated.
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For treating multiple events with their own trap cells (interrupts, mutexes and message events),
the proposed solution integrates the priority encoder for interrupts, on the one hand, and for local
events associated to a sCPUi, on the other. This way, the scheduler provides hardware support
for an automatic jump to the handler, treating the event with the highest priority assigned to the
semiprocessor sCPUi. In software operating systems, the operation of saving and eventually restoring
the current task contexts inserts significantly longer delay times (from a few us to tens of us), and it
increases the degree of unpredictability generated by various search operations in lists or tables based
on the task identifier.

4.2. Inter-Task Synchronization and Communication Mechanisms

Two other fundamental aspects, distinctive to the nMPRA concept are the mechanisms of
synchronization and communication. This is an interesting research topic and is related to the sharing
of resources by the nMPRA processor tasks. The integration of these mechanisms in hardware
conveniently improves the worst-case execution time (WCET), thus providing an optimal solution
for communication between tasks and mutual exclusion in the case of shared resources. From an
architectural standpoint, these mechanisms must introduce extremely brief critical code sections
corresponding to certain atomic operations. In other words, the implementation of mutexes is based
on atomic instructions, achieving good performance, and short CPU blocking times.

Table 3 shows the working instructions for mutexes and the communication mechanism through
messages implemented at the level of the nHSE module. Mutex and message type events are created
through the CTC2 and MTC2 MIPS32 instructions (Table 1). The mutexPend, mutexPost, mutexAccept,
and msgSent functions are fully or partially implemented in hardware using MIPS32 LWC2 and SWC2
instructions. Therefore, the validation of multiple events, such as mutex or message, can be signaled
by the dedicated wait Rj instruction.
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Table 3. Specialized manipulation instructions for synchronization and communication mechanisms.

Instruction Description

mutexCreate, msgCreate Validation instructions for mutexes and inter-task
communication mechanisms

mutexDestroy, msgDestroy Inhibition instruction for mutexes and inter-task
communication mechanism

mutexPend, mutexPost, mutexAccept Lock, unlock, and accept a mutex

msgSent, msgAccept Creates or expects a message type event

The hardware support for implementing the synchronization mechanism is Mutex Regiter File
(MRF) and the associative search of a mutex release is done based on a Content Addressable Memory
(CAM) principle. These grMutexi special registers, which compose the MRF, contain the mutex
status and the owner task ID. The number of mutexes (we used m as an example) depends on the
application. Sharing resources by all sCPUi’s in nMPRA implies that the grMutexi global registers can
be accessed by any sCPUi under the direct control of the nHSE scheduler. Regarding the real-time
aspect, it is fundamental to avoid suspending execution when a mutex is modified, as the operations
with these entities are atomic. As soon as the mutex or the expected message is unlocked or received,
the suspended task is reactivated by the nHSE, entered into the Ready state and executed according to
its priority. Every grMutexi register contains a bit for storing the state of the mutex and m-1 bits for
storing the owner sCPUi ID. When a task i running on the sCPUi semiprocessor receives a message or
expects the release of a mutex, it is necessary to identify the source of the event.

Being accessed by all sCPUis, the mutex lock and release operations must be performed indivisibly
with the help of nHSE_inhibit_CC signal. When the Mutex_i bit is 0, it is considered that the mutex
i is available, a sCPUi being able to lock only one mutex at a certain time. Since these mechanisms
are implemented in hardware, the time needed to search the message source or the selection of a
sCPUi that is expecting a mutex can be performed in a time period characteristic to real-time systems.
Table 4 describes the MIPS code of a benchmark test to evaluate the synchronization mechanism
presented in Figure 8. In the example illustrated in Figure 8, the crEMRi0 = 0x0000000F and crEERi0
= 0x0000000F registers (Table 1) indicate the fact that four mutexes and four inter-task communication
events are validated. It should be emphasized that these registers have the role of validating the
synchronization and communication mechanisms and cannot produce MutexEvi or SynEvi events.
Next we illustrate the situation where the scheduler waits to deactivate the nHSE_inhibit_CC signal,
delaying the response of the nHSE scheduler. Therefore, it is possible to analyze the contents of the
COP2 registers when a context switch is performed concurrently with the occurrence of a mutex event
(T1). As we can see, context switching performed at time moment T2 to treats the mutex event requires
one clock cycle. When the mutex (MutexEvi event) is signaled, the HW-RTOS automatically determines
whether a sCPUi is waiting for the signal and if so, initiates a context switch to the waiting task based
on sCPUi priorities.

In order to implement the inter-task communication mechanism, the nMPRA architecture uses a
number of grERFi global registers, each of 2n+k+1 bits. These registers compose the Events Register File
(ERF), each register using a bit to store the event status, 2nj bits to store the their tasks ID, source, and
destination, and k bits to store the message. Therefore, grERFi is the register that defines an event, and
is part of the ERF; after a reset, all bits are 0. The source and destination identifiers have nj bits, where
n represents the ID of the sCPUis.
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Table 4. The code of some applications for validating the mutexes using the MIPS32 and
COP2 instructions.

Application Description MIPS32 Code for Mutexes and Messages Validation Transmitted through the
ID_Instruction[31:0] Wire Type Signals

sCPU0 is executed for treating a
mutex event, the

nHSE_inhibit_CC signal
preventing the nHSE to perform

the context switch when a
grMutexi[0] is accessed

(Figure 8).

//sCPU0 run
20010000, //addi (Add Immediate), SignExtImm = 0000
00000000, //nop (no operation)
AC2F0000, //sw (Store Word), save r15 COP0 in memory
C8220000, //ldgr, load from data memory in grMutexi[0] COP2 register
//Context switch: sCPU0 to sCPU3
C8220000, //ldgr, load from data memory in grMutexi[0] COP2 register
00000000, //nop
48C1ffff, //movcr, the wait instruction causes the next context switch

//dictated by nHSE
//Context switch: sCPU3 to sCPU0
20010070, //addi (Add Immediate), SignExtImm = 0070
20010071, //addi, SignExtImm = 0071
CC030000, //stgr, save grMutex[0] COP2 register in data memory
8C030000, //lw (Load Word), load from data memory in r3 register

//located in general purpose register (GPR)

Electronics 2019, 8, x FOR PEER REVIEW 12 of 21 

 

Table 4. The code of some applications for validating the mutexes using the MIPS32 and COP2 
instructions. 

Application 
description 

MIPS32 code for mutexes and messages validation transmitted through 
the ID_Instruction[31:0] wire type signals 

sCPU0 is executed for 
treating a mutex 

event, the 
nHSE_inhibit_CC 

signal preventing the 
nHSE to perform the 
context switch when 

a grMutexi[0] is 
accessed (Figure 8). 

//sCPU0 run 
20010000,    //addi (Add Immediate), SignExtImm = 0000 
00000000,    //nop (no operation) 
AC2F0000,   //sw (Store Word), save r15 COP0 in memory 
C8220000,    //ldgr, load from data memory in grMutexi[0] COP2 register 
//Context switch: sCPU0 to sCPU3 
C8220000,    //ldgr, load from data memory in grMutexi[0] COP2 register 
00000000,    //nop 
48C1ffff,     //movcr, the wait instruction causes the next context switch 
             //dictated by nHSE 
//Context switch: sCPU3 to sCPU0 
20010070,    //addi (Add Immediate), SignExtImm = 0070 
20010071,    //addi, SignExtImm = 0071 
CC030000,   //stgr, save grMutex[0] COP2 register in data memory 
8C030000,   //lw (Load Word), load from data memory in r3 register 
             //located in general purpose register (GPR) 

 

Figure 8. Waveforms for treating a MutexEvi event based on a CAM search. 

In order to implement the inter-task communication mechanism, the nMPRA architecture uses 
a number of grERFi global registers, each of 2n+k+1 bits. These registers compose the Events Register 
File (ERF), each register using a bit to store the event status, 2nj bits to store the their tasks ID, source, 
and destination, and k bits to store the message. Therefore, grERFi is the register that defines an 
event, and is part of the ERF; after a reset, all bits are 0. The source and destination identifiers have nj 
bits, where n represents the ID of the sCPUis. 

The oscilloscope capture in Figure 9a illustrates the results of the response time measurement 
when treating an asynchronous external event attached to sCPU0 semiprocessor. Thus, the 
presented signals validate the nHSE scheduler by practically checking the waveforms in Figure 7. 
There can be a 30.3 ns jitter, depending on the moment when the interrupt occurred and the next 
rising edge of the clock cycle (nMPRA clock = 33 MHz). The trigger of the input signal generated by 
the GPIO_SW_N pushbutton is at the time moment T1 = −2.575 ns, and the reaction of the 
semiprocessor sCPU0, by switching ON the LED[7] on the Virtex-7 kit, occurs at time moment T2 = 

Figure 8. Waveforms for treating a MutexEvi event based on a CAM search.

The oscilloscope capture in Figure 9a illustrates the results of the response time measurement
when treating an asynchronous external event attached to sCPU0 semiprocessor. Thus, the presented
signals validate the nHSE scheduler by practically checking the waveforms in Figure 7. There can be a
30.3 ns jitter, depending on the moment when the interrupt occurred and the next rising edge of the
clock cycle (nMPRA clock = 33 MHz). The trigger of the input signal generated by the GPIO_SW_N
pushbutton is at the time moment T1 = −2.575 ns, and the reaction of the semiprocessor sCPU0,
by switching ON the LED[7] on the Virtex-7 kit, occurs at time moment T2 = 266.0 ns. The response
time, obtained by using the PicoScope 2205MSO oscilloscope by Pico Technology (St Neots, UK),
is only of ∆t = 268.6 ns (Figure 9a); this validates the real-time characteristic of the nMPRA architecture
and checks the WCET coefficients in Table 8.
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Figure 9. (a) Response time of the highest priority task sCPU0 highlighted in relation with the
asynchronous event generated by GPIO_SW_N pushbutton; and (b) the response time to send a message
from sCPU1 to sCPU0 (lr_enSyni event is validated at the sCPU0 level since crTRi[sCPU0][7] = 1).

Figure 9b presents the jitter of the application running on nMPRA in order to test the
communication mechanism. Since the CAM search in the grERFi registers is performed in hardware,
the jump to the trap cell assigned to message events is done in only two clock cycles, sCPU0 having the
highest priority in the system. As can be seen in Figure 10, in order to simulate the standard deviation
of the response time, multiple overlapped events attached to sCPU0 and sCPU2 were considered. The
crEPRi[i] registers presented in Figure 10, represents the priorities attached to each event that can be
validated or not at the level of each sCPUi. Thus, at the level of sCPU0 (mrPRIsCPUi[0] = 0x00000000)
the interrupt event has the highest priority (crEPR0[14:12] = 000), with no other events waiting to be
executed for that moment. If a sCPUi has more validated events, the jitter increase according to the
priority of the enabled events.

Electronics 2019, 8, x FOR PEER REVIEW 13 of 21 

 

266.0 ns. The response time, obtained by using the PicoScope 2205MSO oscilloscope by Pico 
Technology (St Neots, UK), is only of Δt = 268.6 ns (Figure 9a); this validates the real-time 
characteristic of the nMPRA architecture and checks the WCET coefficients in Table 8.  

 

(a) 

 

(b) 

Figure 9. (a) Response time of the highest priority task sCPU0 highlighted in relation with the 
asynchronous event generated by GPIO_SW_N pushbutton; and (b) the response time to send a 
message from sCPU1 to sCPU0 (lr_enSyni event is validated at the sCPU0 level since crTRi[sCPU0][7] 
= 1). 

Figure 9b presents the jitter of the application running on nMPRA in order to test the 
communication mechanism. Since the CAM search in the grERFi registers is performed in hardware, 
the jump to the trap cell assigned to message events is done in only two clock cycles, sCPU0 having 
the highest priority in the system. As can be seen in Figure 10, in order to simulate the standard 
deviation of the response time, multiple overlapped events attached to sCPU0 and sCPU2 were 
considered. The crEPRi[i] registers presented in Figure 10, represents the priorities attached to each 
event that can be validated or not at the level of each sCPUi. Thus, at the level of sCPU0 
(mrPRIsCPUi[0] = 0x00000000) the interrupt event has the highest priority (crEPR0[14:12] = 000), with 
no other events waiting to be executed for that moment. If a sCPUi has more validated events, the 
jitter increase according to the priority of the enabled events. 

 
Figure 10. Simulation of the nHSE ability to handle multiple events overlapped (timer and interrupt). 

4.3. The Impact of Different Configuration Models on FPGA Resources and Energy Consumption 

Figure 10. Simulation of the nHSE ability to handle multiple events overlapped (timer and interrupt).

4.3. The Impact of Different Configuration Models on FPGA Resources and Energy Consumption

Although nMPRA is a resource multiplexing architecture, its implementation is more cost
effective compared to other architectures proposed in the literature. It should be specified that
such an implementation has significant advantages over the existing commercial implementations
for a number of 16, 32, or even 64 tasks. Implementing this architecture for a large number of tasks
would entail too many resources related to the system in which the processor is used, and unwarranted



Electronics 2019, 8, 211 14 of 21

large signal propagation times, significantly reducing the processor’s working frequency. Since the
multiplexing resource multiplication operation was performed at the level of each memory element,
the cost/performance ratio obtained was more than convenient. Therefore, only the multiplication of
the registers contained in the ID/EX pipeline stage was performed, and not the multiplication of the
whole ID/EX module, thus gaining a significant advantage over other implementations. The modules
containing only combinational elements, such as the Hazard Detection module, have not been multiplied
because they provide output signals corresponding to the inputs, these values being already stored in
the nMPRA registers.

Table 5 illustrates the logic blocks requirements for implementing the nMPRA architecture with
various sCPUi, mutexes (grMutexi) and message events (grERFi), where i = 4, 8, and 16, including
the resources needed to implement the nHSE scheduler, the recent version being greatly improved
than the one described in [11,21]. Therefore, in designing the nHSE module, the number of sCPUis,
inter-task synchronization events, and the number of external interrupts are firstly taken into account.
The scheduler must contain all the memory elements needed by the above-mentioned entities, as well
as the combinational logic necessary to ensure the correct operation of the static and dynamic scheduler,
even when exceptions occur. The number of sCPUi that nHSE controls through the generated signals
is the key factor in determining the resource requirement for implementing the nMPRA architecture.

Table 5. The resources required by the nMPRA Processor that incorporates the support for the dynamic
scheduler using the Virtex-7 kit (post-implementation).

nMPRA
Implementation/Resources

FPGA Resources Used by nHSE and nMPRA Processor

LUTs (LUTs as Logic + LUTs
as Memory)

Slice Registers
(FFs + Latch)

4 sCPUi/4 grMutex/4 grERF 13,929 8466

8 sCPUi/8 grMutex/8 grERF 26,388 16,706

16 sCPUi/16 grMutex/16 grERF 57,379 33,031

Table 6 presents the resource requirements for implementing the entire SoC project that includes
the nMPRA processor. It is worth mentioning that these requirements include the resources used for
the on-chip implementation of the dual-port memory for instructions and data, the resources needed
for implementing the HMI, and the UART communication for writing the program memory and
implementing the oversampling mechanism for the input data of the UART module.

Table 6. The use of resources (post-implementation) at the level of the SoC project, incorporating the
nMPRA processor and the nHSE module.

Resources/SoC prj. 4 sCPUi/4 grMutex/4
grERFi

8 sCPUi/8 grMutex/8
grERFi

16
sCPUi/16grMutexi/16

grERFi

Virtex-7
Resources

LUT 15,320 27,784 58,774 303,600
LUTRAM 814 858 946 130,800

FF 8708 16,495 31,916 607,200
BRAM 148 148 148 1030

IO 32 32 32 700
BUFG 15 15 15 32

MMCM 1 1 1 14

Figure 11 shows, in details, the power consumed by the nMPRA implementations, with eight
sCPUi, eight grMutexi, and eight grERFi, based on the hardware support for treating interrupts, their
dynamic attachment to any sCPUi, and the hardware implementation of the inter-task synchronization
and communication mechanisms.
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(eight sCPUi); MMCM—mixed mode clock manager; BRAM—block RAM; device static represents
the power consumed by the FPGA at startup, when the device is configured with the work logic
(quiescent power).

The different values presented in Figure 11, depending on the nHSE module and
xc7vx485tffg1761-2 FPGA used for implementation, were obtained following the practical
implementation of the nMPRA processor using the Vivado 2018.2 Design Suite and the Virtex-7
development kit by Xilinx, Inc. (San Jose, CA, USA). However, the overall power consumption is more
than acceptable compared to other similar implementations [22,23].

The implementation in hardware of the nHSE scheduler and of the synchronization and
communication events guarantees the predictability for the task set and the deadline set in the
boot and initialization sections. The results have been obtained using an nMPRA processor with
working frequency of 33 MHz, which can be increased by the improvement of the instructions and
data memory used.

5. Related Work

An interesting challenge is proposed by Edwards and Lee in [24]. They believe it is time for a
change in the architecture of real-time systems, which ignores the predictability and repeatability of
temporal features. Thus, as a solution, [25] presents a new processor architecture with a behavior
in time that is as easy to control as its logical functions. These processors are called Precision
Timed Machines—PRET. For this new processor architecture, there are a lot of challenges related
to programming languages, memory hierarchy, cache, virtual memory, pipeline techniques, power
consumption management, I/O and DRAM design, bus architecture, just-in-time compilation (JIT),
multitasking, task scheduling, and software component technologies.

The FlexPRET project presented in [26] is a fine grained multithreading processor.
This implementation has been designed to also support architectural techniques for mixed criticality
systems. The architecture proposed by the authors supports the interlacing of an arbitrary number
of controlled threads by a new scheduler. The threads are classified as hard (hard real-time thread -
HRTT) and soft (soft real-time thread—SRTT). FlexPRET supports the hardware isolation for HRTT,
enabling at the same time the SRTT threads to efficiently use the processor. Therefore, the dynamic
scheduler introduces the advantage of using all processor cycles at the expense of a WCET being more
difficult to obtain.

The Merasa project [27,28] has been developed in order to obtain a processor architecture which
is successfully used for the hard real-time systems. The MERASA project has a mixed criticality
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oriented hardware system, focusing on the multi-core level [27]. The main characteristics of this
project are task execution predictability and the efficient analysis of the WCET coefficient for each
task. The proposed architecture is based on the simultaneous multithreading (SMT) technique, and
is able to simultaneously execute both hard real-time (HRT) and non-real-time (NHRT) execution
threads. In order to manage the shared resources and critical execution thread sections, the proposed
architecture provides inter-task synchronization and communication mechanisms, such as spin-lock,
conditional variables or barriers.

The MicroBlaze processor [29] is a FPGA-optimized 32-bit RISC soft processor, with virtual
memory management, 32-bit general purpose registers, cache software support, and AXI4-Stream
interfaces. For an optimal configuration of the MicroBlaze processor, Xilinx provides the Configuration
Wizard tool. This option is used successfully with various FPGAs. The MicroBlaze core resource
utilization for various parameter configurations perfectly matches to the predefined templates in the
MicroBlaze Configuration Wizard.

The ARPA-MT processor provides several permanent execution contexts in hardware [30], the IF
and ID replication of the pipeline registers for each instanced task, and runs concurrently on the
last three pipeline stages (EX, MA, and WB). The solution of replicating the resources containing the
architectural state of tasks is an expensive hardware one. However, ARPA-MT processor improves
the efficiency and determinism of the system management functions and services, minimizes the task
switching speed, and reduces the number of task context switches.

In [31] the authors propose a hardware scheduler based on task queues. In order to meet the
stringent conditions imposed by the RTS, this scheduler improves the system performances in exchange
for the inflexibility, integration difficulties and for increasing the hardware resources used by the FPGA.
The proposed hardware scheduler can be configured to support various algorithms such as earliest
deadline first, time sliced priority scheduling and least slack time. Following the experimental results for
both periodic and aperiodic tasks, the authors argue that the hardware scheduler can significantly
reduce the event trigger latency, from 8518 (software eCos) to 1424 clock cycles (using eight tasks).
Therefore, the hardware scheduler proposed reduces the overhead generated by the scheduler by more
than 1000 clock cycles and raises the system utilization bound by a maximum 19.2%. Although it
adds an additional resource cost of around 17% of a typical softcore system, the scheduling jitter is
reduced from a few hundred clock cycles, when this operation is performed in software, to only two or
three clock cycles for most operations. The authors assert that the proposed configurable scheduler
architecture can achieve outstanding performances because it operates in parallel to the processor
and requires no system tick ISR (Interrupt Service Routine) when compared to a software scheduler.
However, the new task queue scheduling model can reduce drastically the operating frequency as the
queue depth increases the queue limit in order to not introduce this negative effect of up to 64 levels.

In [32], the authors propose a real-time management of hardware and software tasks for embedded
FPGA-based systems. Considering that real-time systems are subject to dynamic workloads and
have tasks that can be computationally intensive, this paper introduces a novel resource allocation
scheme and an online admission control test that achieves high performance and flexibility. However,
the system uses a runtime reconfiguration to maximize the number of admitted real-time tasks.
The results of simulations performed using a set of tasks show that the performance benefits of
relocation have been successfully measured and underlined. Studying this paper, we can assert that
the online task assignment and migration between the processor and the reconfigurable device are
detailed, obtained for both commonly used slotted and 1D area models.

Table 7 presents a comparison between the nMPRA architecture and a few other processor
implementations. The authors of the present paper aimed a realistic comparison between these
different implementations by using different designing platforms. Regarding the experimental data
presented in Table 7, nMPRA and MicroBlaze implementation was tested by the authors whereas for
the remaining solutions we took the values reported by the authors of the referenced papers.
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Table 7. Comparison between the processors and RTOS architectures proposed in the literature.

Implementation Architecture Type Scheduler Implementation Frequency Platform Pipeline Stages/Processor
Type/Power Consumption

nMPRA4 [11] MIPS32 Static and support for dynamic
nHSE in hardware 33 MHz Virtex-7,

XC7VX485T-2ffg1761C 5 stages/single core/0.432 W

FlexPRET [26] RISC V Static and dynamic (EDF, rate
monotonic)/software 80 MHz Virtex-5, XC5VLX110T 5 stages/fine grained

multithreaded single core/-

Merasa [27,28] MERASA based on
SMT cores

Round-robin implemented in
hardware/software 25 MHz (real-time bus) Stratix II, EP2S180F1020C3 2 pipeline with 5

stages/multi core/-

MicroBlaze [29] MicroBlaze architecture
(RISC) Software Max. 396 MHz Virtex-7, XC7VX485T-ffg1761 3 stages/single core/0.233 W

ARPA-MT [30] SMT implementation of the
MIPS32 architecture

Static and dynamic in hardware
(EDF, rate monotonic) 42.8 MHz (4 contexts) Spartan-3, XC3S1500 5 stages/single core/-

Amber 23 [33,34] ARM compatible 32-bit RISC
processor Software 40 MHz—Spartan, 6/80

MHz—Virtex-6
Spartan-6,

xc6slx45t-fgg484-3/Virtex-6

3 stages—Amber23, 5
stages—Amber 25/Single

core/-

Nios II [35] Nios II architecture, 32-bit
RISC processor Software 50 MHz (max. 200 MHz) Cyclone III, EP3C16F484C6 1, 5 and 6 stages (Nios II/e, s,

f)/Single core/0.07642 W [35]
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6. nMPRA Evaluation Relative to Periodic Real-Time Executive Overhead and Discussions

In order to determine the impact of the nHSE scheduler on the execution of real-time applications
over nMPRA executive, several parameters have been evaluated. It has mainly been taken into
consideration the improvement of three parameters, namely the time for the selection and treatment of
multiple events, the time required for task context switching, and the software overhead of several
internal functions and application services.

Table 8 presents the WCET coefficients in microseconds following the processor performance
evaluation presented in this paper. For this, a set of four tasks that passed the feasibility tests have been
used, each with multiple periodic and aperiodic events attached, and with imposed relative deadlines.
The following times have been measured: the relative time for the initialization and boot operation of
the real-time executive, the time required for the task context switching operation in the least favorable
case when the assembly line contains atomic instructions, and the task activation time by an interrupt
or the selection of an aperiodic event. Following the execution of the inter-task synchronization
and communication mechanisms described and validated in Section 4, the results obtained by the
nHSE scheduler are significantly better than the existing proposed scheduling architectures which
use tens or even hundreds of clock cycles. The results of the experiments, obtained following the
implementation and validation of the nMPRA processor, have shown a minimum WCET. This is
because the combinational part related to the scheduling and configuration operation is performed
in hardware, in parallel with the execution of the user application, and not contributing to the
computational overhead of the RTOS. In most conditions, the HW-RTOS responds faster than its
equivalent software-based operation. The following aspects contributed to the WCET coefficients
obtained and presented in Table 8: the multiplication of resources for each sCPUi in nMPRA,
the hardware implementation of the nHSE scheduler at the level of COP2, as well as designing
the synchronization and communication mechanisms as part of the nHSE module.

Table 8. WCET parameters related to the executive functions and services implemented partially or
totally in hardware by the nHSE scheduler and other CPU architectures.

Parameter Evaluated/CPU
Implementation
(8 Tasks/sCPUi)

nMPRA, 8 sCPUi, WCET
(µs)

ARPA-MT: OReK-Sw [30],
WCET (µs)

hthreads [36], 100 MHz,
WCET (µs)

Task context save and restore 0.1212 (Figure 7, 33 MHz) 3.2 (72 cycles, 24 MHz) 0.51

Selection of the next task to
execute (scheduler time) 0.060 2.8 1.4 (scheduler jitter)

Preempt a task instance 0.090 0.5 -

Treating an asynchronous
external interrupt

0.268 (attached to sCPU0)
(Figure 9a) 2.3 1.910 (250 active

SW threads)

Executive booting and
configuration

21.8 (8 mutex and 8 message
events – grERF8) 39.7 0.5 (scheduler configuration:

HW-only)

Create/destroy a task 0.151 6.2/7.7 0.1

Activation and prioritization of
a periodic task 0.242 9.2 0.28 (SW thread)

Read/write task state
(1 parameter—32 bit) 0.151 2.3 0.1

Enable/disable a mutex or
semaphore 0.101 (mutex, Figure 8) 1.0 (semaphore) 0.03 (mutex)

Lock/unlock a mutex or
semaphore 0.212 (mutex) 2.6 (lock a semaphore) 0.0273/0.0521 (mutex)

7. Conclusions

The robustness and performance of the nMPRA architecture is guaranteed by the context switch
operations, presence of the inter-task synchronization and communication mechanisms and the efficient
use of multiplexed resources by designing in hardware the real-time nHSE scheduler. The interrupt
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prioritization scheme has also been extended over events, thus becoming a hardware solution for
a new event attached to any sCPUi for treating the situation when multiple events become active.
The round-robin or preemptive scheduling scheme, that can be implemented by the nMPRA module
with the help of integrated timers and hardware activated tasks, meets the AutosarOS requirements
that inherits the OSEK/VDX characteristics. By using the nMPRA architecture in the project segment
of this field, and by implementing the context isolation in accordance with ISO26262, a requirement
proposed for implementation starting with the 4.0.3 version of the Autosar standard, additional
performance can be achieved. It is a realistic idea because the multiplication of resources in the nMPRA
processor does not entail a significant cost related to the available resources. Increasing safety in such
systems is just one of the main important features of this concept.

The nMPRA architecture and nHSE scheduler also supports the configuration of the task
number with flexible priority levels. The proposed architecture allows high performance inter-task
synchronization and communication mechanisms, improving the overall response time when the
mutex or message is expected for a higher priority task. Since it is a configurable scheduler, nHSE
enables designers to more efficiently utilize the processor time and tune the task set parameters to
reach maximum performance for the applied applications.

8. Patents

The nMPRA and nHSE concept presented in this paper is patented in Germany, Munich
(DE202012104250U1) [7].
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