
electronics

Article

Robust Control of Heterogeneous Vehicular Platoon
with Non-Ideal Communication

Bao Liu 1, Feng Gao 1,*, Yingdong He 2 and Caimei Wang 1

1 School of Automotive Engineering, Chongqing University, Chongqing 400044, China;
20161102021@cqu.edu.cn (B.L.); 20183202001T@cqu.edu.cn (C.W.)

2 Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; heyingd@umich.edu
* Correspondence: gaofeng1@cqu.edu.cn; Tel.: +86-189-9618-8196

Received: 5 November 2018; Accepted: 29 January 2019; Published: 12 February 2019
����������
�������

Abstract: The application of wireless communication to platooning brings such challenges as
information delay and varieties of interaction topologies. To compensate for the information delay,
a state predictor based control strategy is proposed, which transmits the future information of
nodes instead of current values. Based on the closed loop dynamics of platoon with state predictor
and feedback controller, a decoupling strategy is presented to analysis and design the platoon
control system with lower order by adopting the eigenvalue decomposition of topological matrix.
A numerical method based on LMI (Linear Matrix Inequality) is provided to find the required robust
performance controller. Moreover, the influence of information delay on performance is studied
theoretically and it is found that the tolerable maximum delay is determined by the maximum
topological eigenvalue. The effectiveness of the proposed strategy is validated by several comparative
simulations under various conditions with other methods.

Keywords: cooperative control; vehicular platoon; multi-agent system; communication delay;
system decoupling

1. Introduction

The problem of traffic congestion, safety and pollution is getting increasingly serious [1].
Worldwide researchers, companies and governments are devoted to solving these issues and one of
these technologies is called platooning, that is, a coordinated motion of a group of vehicles with the
same destination and speed (referring to the leader) [2,3]. By this way, the air drag is reduced greatly,
meanwhile the traffic flow is increased due to the smaller car-following distance. Many demo projects
have already been carried out, for example, the Konvoi project in Germany [4], the founding of the
California Partners for Advanced Transit and Highways program in USA [5], the Energy Intelligent
Transport Systems project in Japan [6]. With these efforts, many challenges on practical application
have been studied and overcome, such as vehicle dynamic control [7,8], vehicle-to-vehicle (V2V)
communication [9,10], platoon controller design [11,12] and spacing policies [13].

Over the past 30 years, wireless communication has experienced rapid development, meanwhile
lots of new V2V technologies appear, for example, vehicular ad-hoc network and dedicated short range
communication [14,15]. Besides such assistance systems as collision warning at intersection, V2V has
also been applied to platooning, which brings the benefit of better performances but leads to varieties
of information topologies, for example, the bidirectional type (BD), two-predecessors following
type (TPF), predecessor-leader following type (PLF) and so forth. [11,12]. Moreover compared with
earlier radar-based system, V2V inevitably introduces other issues like information delay, packet
dropout and so forth. From the previous studies, it is known that delay will cause platoon to be
degraded and even string instable [16].
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To achieve better performances, many advanced control approaches have been applied, such as
linear state feedback control [17], optimal control [18], sliding mode control [19] and model predictive
control, which require the information topology to be known in advance and unchanged [20]. When
V2V is adopted, the topology becomes uncertain because of the environmental degradation of
communication, which combined with information delay poses great challenges on platoon control
system design. One way is to consider the behavior of platoon as a multi-agent system and the varieties
of topologies is uniformly described by the graph theory. In particular, it is known that the consensus
control performance is influenced by the Laplacian matrix [21,22]. Based on this approach, Zheng et al.
studied the stability of homogeneous platoon based on the Routh–Hurwitz theory [23]. Moreover to
deal with the uniform delay, Peters et al. provided a general linear control method [24] and Gong et al.
established a newly sampled-data control method [25]. Both of them guarantee the string stability of
homogeneous platoon with PLF. Gao et al. further presented an H∞ control method for heterogeneous
platoon to ensure robust stability, string stability and tracking ability simultaneously [26]. Considering
heterogeneous delay, Bernardo et al. designed a distributed controller by treating it as a consensus
issue [27]. This strategy maintains a stable platoon but the referenced velocity is constant and only PLF
is applicable. Besides these advanced methods dealing with communication delay, some new wireless
communication technologies, such as future 5G and LTE-V2X, have been studied and demonstrated to
enhance communication itself [28,29]. These new technologies reduce the delay to a negligible level
but today IEEE 802.11p and its related standard are already available [30].

The aforementioned work mostly focuses on one of the difficulties caused by V2V, that is,
the topological uncertainties and heterogeneous communication delay. Consequently, the primary
objective and main contribution of this paper are: 1) To deal with heterogeneous communication delay,
a state predictor is designed to transmit future information of next sampling so that the negative effect
of delay is compensated for. 2) Considering the topological uncertainty, eigenvalue decomposition
of topological matrix and linear transformation are applied to decouple the platoon into multiple
systems with lower order. 3) Based on the Lyapunov stability theory, a numerical way is presented to
numerically solve a robust state feedback controller by LMI (Linear Matrix Inequality).

The reminder of paper is organized as follows: Section 2 introduces the studied problems and
the closed-loop dynamics of the vehicular platoon is established in Section 3. Section 4 presents
the decoupling design strategy and the theoretical analysis is conducted in Section 5. Comparative
simulations are demonstrated in Sections 6 and 7 concludes the paper.

2. Problem Description

2.1. Notations and Definitions

Let Rm×n be the set composed of real matrix with dimension m× n, 0 denote the matrix with all
entries being zero, IN ∈ RN×N be the identity matrix and 1N ∈ RN be the vector with all entries being 1.
Notion ‖·‖2 is the L2 norm of signal and its induced norm is ‖·‖∞, the superscript “T” represents the
transposition of matrix, “*” denotes the symmetric part in one matrix, “⊗” represent the Kronecker
product, σ(X) is the singular value of X, among which σ(X) and σ(X) are the maximum and minimum
one respectively.

2.2. Problem Analysis Caused by V2V

As shown in Figure 1a, the studied platoon consists of N + 1 heterogeneous vehicles, that is,
N followers (Indexed by 1, · · · , N) and one leader (Indexed by 0) sharing their state by V2V.

Because of the degradation of V2V, two issues arise naturally: (1) Uncertainties of topology caused
by change of communication range and so forth. (See Figure 1a); (2) Information delay influenced by
environments and distances. Figure 1b gives an example of the delay between two nodes, where node
j is assumed to receive the state xi(kh) of node i, h is the sampling period and the delay is td(k). At the
(k + 1)-th sample, node j calculates its control with the state xi(kh) at k-th sampling of node i, which
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introduces a time delay in the closed loop dynamics and is bad to control performances. As indicated
by red line in Figure 1b, if all nodes transmit their predicted state at the future, such information delay
can be reduced and even eliminated completely when the sampling time is known. Motivated by
this idea and considering the fact that such global clock as GPS (Global Position System) can be used
to synchronize the control period of platoon [16], a state predictor based platoon control system is
proposed as shown in Figure 2, where K is the state feedback to be designed in Section 4.2. With this
control strategy, all nodes transmit their predicted state at next sampling and control themselves
by a predefined control cycle to compensate for the information delay. The topology uncertainty
will be dealt with in Section 4 based on the closed loop dynamics of this predictor based platoon
control system.Electronics 2019, 8, 207 3 of 15 
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3. Closed-Loop Dynamical Model of Platoon

3.1. Vehicle Dynamical Model

Though the original vehicle dynamics is nonlinear, referring to [11,23,26] the following linear
format is used to describe the dynamics of vehicle node, whose nonlinearities and environmental
disturbances are compensated for by a lower dynamical controller [8]:

xi(k + 1) = Aixi(k) + Biui(k), i = 0, . . . , N, (1)
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where Ai and Bi are the state and control matrices respectively, k denotes the sampling time, ui(k) is the

control input, xi(k) =
[

pi(k) vi(k) ai(k)
]T

where pi(k), vi(k) and ai(k) are the position, velocity
and acceleration of node i. Note that the studied platoon is heterogeneous, that is, A0 6= · · · 6= AN and
B0 6= · · · 6= BN but each vehicle known its own parameters. According to the control strategy shown
by Figure 2 and (1), the state predictor is designed to be

x̂i(k + 1) = Aixi(k) + Biui(k), i = 0, . . . , N, (2)

where x̂i(k) is the predicted state. Note that being different from followers controlled by the
designed state-feedback controller, leader receives the command from others, such as driver or traffic
management system whose dynamical characteristics are unknown.

3.2. Topology of Information Flow

To generate a unified description of varieties of topologies, the graph theory is used to model
as a directed graph G = (V, E), where V = {1, . . . , N} denotes the set of nodes and E ⊆ V × V
indicates the set of edges [23]. The adjacency matrix Z =

[
zij
]
∈ RN×N indicates the connections

among followers: {
zij = 1, i f {j, i} ∈ E
zij = 0, i f {j, i} /∈ E

i, j = 1, . . . , N, (3)

where {j, i} ∈ E means there exists a directional edge from node j to i, that is, vehicle i can receive
information from j and there is no self-loop, that is, zii = 0. Base on Z, the Laplacian matrix L =

[
lij
]
∈

RN×N associated with G is

lij =

{
∑ N

j=1zij, i = j
−zij, i 6= j

, (4)

The connectivity between leader and followers is described by the pinning matrix P =

diag{p1, p2, . . . , pN}, where pi = 1 if node i receives information from leader, otherwise pi = 0.
Combined the above definitions, the topological matrix for information flow is G = L + P. Note that
to keep the formation each follower has a direct or indirect connection with leader, which makes all
eigenvalues of G be greater than zero [26].

3.3. Closed-Loop Dynamical Function of Platoon

Considering the control objective, that is, all followers track leader with predefined constant
space, the following state feedback control logic with the predicted state as feedback is used [23,26,31]:

ui(k) = K{∑ N
j=1lij

[
xi(k)− x̂j(k)− dij

]
+ pi[xi(k)− x̂0(k)− di0]}, i = 1, . . . , N, (5)

where dij =
[
(i− j)d 0 0

]T
and d is the desired clearance between neighboring vehicles, K ∈ R3

is the distributed state feedback. Furthermore, the dynamical function of control error is obtained
from (1):

ei(k + 1) = Aiei(k) + Biui(k) + Aix0(k) + Bdρi(k), i = 1, . . . , N, (6)

where ei(k) = xi(k) − x0(k) − di0 is the tracking control error, Bd =
[
−A0 −B0

]
and ρi(k) =[

x0(k)
u0(k)

]
. The uncertain closed loop dynamics of platoon control system is formulated by substituting

(2) and (5) to (6):

E(k + 1) = (IN
⊗

A)[E(k) + X0(k)] + (IN
⊗

H)W(k) + [G⊗ (BK)]Ê(k) + (IN
⊗

Bd)Γ(k),
W(k) = FZ(k), Z(k) = (IN

⊗
H1)[E(k) + X0(k)] + [G⊗ (H2K)]Ê(k),

(7)
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where E(k) =

 e1(k)
...

eN(k)

, Γ(k) =

 ρ1(k)
...

ρN(k)

, Ê(k) =

 x̂1(k)− x̂0(k)− d10
...

x̂N(k)− x̂0(k)− dN0

, X0(k) = 1N
⊗

x0(k),

the matrix H1, H2 and H are used to normalize the platoon heterogeneity to a uniform uncertain
format as the following:

Ai = HFiH1, Bi = HFiH2, i = 1, . . . , N,
F = diag{F1, . . . , FN}, ‖F‖∞ ≤ 1

(8)

where Fi denotes the normalized heterogeneity of platoon.
Compared with the standard uncertain format used in robust control, (7) has the following

differences: (a) An extra predicted tracking error Ê(k) is in the closed loop; (b) The dimension, structure
and entity of G all change with running because of the degradation of communication performance,
cut in/off of adjacent vehicles and so forth. To overcome these problems, a topological decoupling
strategy is proposed in Section 4.

4. Synthesis of Robust Control System for Platooning

Before presenting the decoupling synthesis approach, the following lemma about matrix
decomposition is introduced:

Lemma 1 ([23]). Any matrix P ∈ RN×N has the following eigenvalue decomposition:

P = XΛX−1, X = X̃D, (9)

where Λ = diag(Λ1, . . . , Λn) ∈ RN×N is composed of the eigenvalues λi of P and
n
∑

i=1
rank(Λi) = N,

X̃ ∈ RN×N is composed of the unit generalized eigenvectors of P, D ∈ RN×N is a diagonal matrix to convert
the unit eigenvector to general one and obviously X is also composed of the generalized eigenvectors of P.
The diagonal block Λi of Λ has four possibilities:

(a) Λi = λi if λi ∈ R and has only one linearly independent eigenvector;

(b) The Jordan format Λi =

 λi 1
. . . 1

λi

 if λi ∈ R is a m-repeated eigenvalue and only has one

linearly independent eigenvector;

(c) Λi =

[
α −β

β α

]
if λi = α + βj is a complex and has a pair of conjugate eigenvectors;

(d) Λi =



[
α −β

β α

]
I2

. . . I2[
α −β

β α

]


∈ R2m×2m if λi = α + βj is a m-repeated eigenvalue

and only has one pair of conjugate eigenvectors.

4.1. Topological Decoupling of Closed-Loop Platoon System

The fundamental of decoupling synthesis strategy is depicted in Figure 3.
According to Lemma 1, G has the following eigenvalue decomposition:

G = ΘΛΘ−1, Θ = Θ̃D, (10)
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where Θ ∈ RN×N is made up of the generalized eigenvectors of G, Λ = diag(Λ1, . . . , Λn) ∈ RN×N and
rank(Λi) = m . Substituting (10) to (7) and the decoupled format is obtained by linear transformation
as shown in Figure 3:

E(k + 1) = (IN
⊗

A)
[
E(k) + X0(k)

]
+ (IN

⊗
H)W(k) + [Λ

⊗
(BK)]

[
E(k)− ∆0(k)

]
+ Γ0(k),

Z(k) = (IN
⊗

H1)E(k) + [Λ⊗ (H2K)]
[
E(k)− ∆0(k)

]
,

(11)

where E(k) =
(
Θ−1 ⊗ I3

)
E(k), W(k) = FZ(k), X0 =

(
Θ−1 ⊗ I3

)
X0(k), Γ0(k) =

(
Θ−1 ⊗ I3

)
Γ0(k),

F =
(
Θ−1 ⊗ I6

)
F(Θ

⊗
I6), ∆0(k) =

(
Θ−1 ⊗ I3

)
∆0(k) and ∆0(k) = 1Nu0(k).

By this way, the coupling of G is partly transferred into F, whose uncertain degree is related
to the design of robust controller directly. For an undirected graph, G is symmetrical and ‖F‖∞ =

‖F‖∞ [11,12]. Otherwise if G is asymmetric, F may be enlarged by the linear transformation, whose
bound can be estimated by:

‖F‖∞ ≤ σ
(

Θ
⊗

I6

)
/σ
(

Θ
⊗

I6

)
= σ(Θ)/σ(Θ) = ρ. (12)

Such conversion can be reduced by optimizing D with such method as singular value analysis.
Base on (11), the original platoon system with higher dimension and uncertain interaction is considered
as multiple independent subsystems with lower order:

Ei(k + 1) = [Im ⊗A + Λi
⊗
(BK)]Ei(k) + (Im

⊗
H)Wi(k)

−[Λi
⊗
(BK)]∆0i(k) + [Im ⊗ Bd]Γ0i(k),

Zi(k) = (Im
⊗

H1)Ei(k) + [Λi
⊗
(H2K)]

[
Ei(k)− ∆0i(k)

]
, i = 1, . . . , n.

(13)

where Ei(k), Wi(k), ∆0i(k), Γ0i(k), Zi(k) are the corresponding parts in (11). The following theorem
establishes the performance relationship between the platoon system before and after decoupling,
which is the basis to numerically solve the state feedback using the decoupled format.

Electronics 2019, 8, 207 5 of 15 

 

𝑬(𝑘 + 1) = (𝑰𝑁⨂𝑨)[𝑬(𝑘) + 𝑿0(𝑘)] + (𝑰𝑁⨂𝑯)𝑾(𝑘) + [𝑮⊗ (𝑩𝑲)]�̂�(𝑘) + (𝑰𝑁⨂𝑩𝑑)𝜞(𝑘), 

𝑾(𝑘) = 𝑭𝒁(𝑘), 𝒁(𝑘) = (𝑰𝑁⨂𝑯1)[𝑬(𝑘) + 𝑿0(𝑘)] + [𝑮⊗ (𝑯2𝑲)]�̂�(𝑘), 

(7) 

where 𝑬(𝑘) = [
𝒆1(𝑘)
⋮

𝒆𝑁(𝑘)
] , 𝜞(𝑘) = [

𝝆1(𝑘)
⋮

𝝆𝑁(𝑘)
] , �̂�(𝑘) = [

�̂�1(𝑘) − �̂�0(𝑘) − 𝒅10
⋮

�̂�𝑁(𝑘) − �̂�0(𝑘) − 𝒅𝑁0

] , 𝑿0(𝑘) = 𝟏𝑁⨂𝒙0(𝑘) , the 

matrix 𝑯1, 𝑯2 and 𝑯 are used to normalize the platoon heterogeneity to a uniform uncertain format 

as the following: 

𝑨𝑖 = 𝑯𝑭𝑖𝑯1,   𝑩𝑖 = 𝑯𝑭𝑖𝑯2,   𝑖 = 1,… ,𝑁, 

                                                    𝑭 = diag{𝑭1, … , 𝑭𝑁}, ‖𝑭‖∞ ≤ 1 
(8) 

where 𝑭𝑖 denotes the normalized heterogeneity of platoon. 

Compared with the standard uncertain format used in robust control, (7) has the following 

differences: (a) An extra predicted tracking error �̂�(𝑘) is in the closed loop; (b) The dimension, 

structure and entity of 𝑮 all change with running because of the degradation of communication 

performance, cut in/off of adjacent vehicles and so forth. To overcome these problems, a topological 

decoupling strategy is proposed in section 4.  

4. Synthesis of Robust Control System for Platooning 

Before presenting the decoupling synthesis approach, the following lemma about matrix 

decomposition is introduced: 

Lemma 1 [23]: Any matrix 𝑷 ∈ ℝ𝑁×𝑁 has the following eigenvalue decomposition: 

𝑷 = 𝑿𝜦𝑿−1,  𝑿 = �̃�𝑫, (9) 

where 𝜦 = diag(𝜦1, … , 𝜦𝑛) ∈ ℝ
𝑁×𝑁 is composed of the eigenvalues 𝜆𝑖 of 𝑷 and  ∑ 𝑟𝑎𝑛𝑘(𝜦𝑖)

𝑛
𝑖=1 = 𝑁, 

�̃� ∈ ℝ𝑁×𝑁 is composed of the unit generalized eigenvectors of 𝑷, 𝑫 ∈ ℝ𝑁×𝑁 is a diagonal matrix to 

convert the unit eigenvector to general one and obviously 𝑿 is also composed of the generalized 

eigenvectors of 𝑷. The diagonal block 𝜦𝑖 of 𝜦 has four possibilities: 

  (a) 𝜦𝑖 = 𝜆𝑖 if 𝜆𝑖 ∈ ℝ and has only one linearly independent eigenvector; 

  (b) The Jordan format 𝜦𝑖 = [
𝜆𝑖 1

⋱ 1
𝜆𝑖

] if 𝜆𝑖 ∈ ℝ is a 𝑚-repeated eigenvalue and only has one 

linearly independent eigenvector; 

  (c) 𝜦𝑖 = [
𝛼 −𝛽
𝛽 𝛼

] if 𝜆𝑖 = 𝛼 + 𝛽𝑗 is a complex and has a pair of conjugate eigenvectors; 

  (d) 𝜦𝑖 =

[
 
 
 
 [
𝛼 −𝛽
𝛽 𝛼

] 𝑰2

⋱ 𝑰2

[
𝛼 −𝛽
𝛽 𝛼

]
]
 
 
 
 

∈ ℝ2𝑚×2𝑚 if 𝜆𝑖 = 𝛼 + 𝛽𝑗 is a 𝑚-repeated eigenvalue and only 

has one pair of conjugate eigenvectors. 

4.1. Topological Decoupling of Closed-Loop Platoon System 

The fundamental of decoupling synthesis strategy is depicted in Figure 3. 

 

Figure 3. Fundamental of platoon decoupling. Figure 3. Fundamental of platoon decoupling.

Theorem 1. For the platoon described by (7), if there exist positive constants α1, β1, α2, β2 ∈ R such that all
decoupled subsystems in (13) satisfy

‖Zi‖2
2 ≤ α1‖Wi‖2

2 + β1
(
‖Γ0i‖2

2 + ‖∆0i‖2
2
)
,

‖(Im
⊗

Q)Ei‖2
2 ≤ α2‖Wi‖2

2 + β2
(
‖Γ0i‖2

2 + ‖∆0i‖2
2
)
, i = 1, . . . , n.

(14)

then the original system has robust performance with the weighting matrix Q:

‖
(

IN
⊗

Q
)

E‖2 ≤ µ‖Γ̃‖2, (15)

where Γ̃ =

[
Γ

∆0

]
and µ = ρ

√
β2 +

α2β1ρ2

1−α1ρ2 .
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Proof. From (11) and the second inequality in (14), we have

‖(IN
⊗

Q)E‖2
2 ≤ σ2(Θ)

[
α2‖W‖

2
2 + β2

(
‖Γ‖2

2 + ‖
¯
∆0‖2

2

)]
,

‖Z‖2
2 ≤ α1‖Wi‖2

2 + β1

(
‖Γ‖2

2 + ‖
¯
∆0‖2

2

)
, ‖W‖2

2 ≤ ‖F‖
2
∞·‖Z‖

2
2 ≤ ρ2‖Z‖2

2.
(16)

�

Substituting ‖F‖∞ ≤ ρ to (16) yields (17), which is equivalent to (15) and the conclusion is proved.

‖
(

IN
⊗

Q
)

E‖2 ≤ ρ

√
β2 +

α2β1ρ2

1− α1ρ2 ‖Γ̃‖2. (17)

Theorem 1 converts the performance requirements of platoon system into that of its decoupled
format, whose dimension is much smaller and the unknown interactions can be evaluated by certain
information, that is, eigenvalues and decomposition formats of G.

4.2. Numerical Design of State Feedback Controller

The following theorem provides a numerical way to solve the required distributed state feedback
using LMI, which ensures robust stability, tracking performance and disturbance attenuation ability.

Theorem 2. If there exist matrices Σ = ΣT > 0 ∈ R3×3, W ∈ R1×3 and constants α1, α2, β1, β2 > 0 ∈ R,
such that the following LMIs establish:[

S11 S12

∗ S22

]
< 0,

[
S33 S34

∗ S44

]
< 0 , S11 =

[
−Im ⊗ Σ 0
∗ −I6m

]
,

S12 =

[
Im ⊗ (AΣ) + Λi ⊗ (BW) Im ⊗H Im ⊗ Bd −Λi ⊗ (BW)

Im ⊗ (H1Σ) + Λi ⊗ (H2W) 0 0 −Λi ⊗ (H2W)

]
S22 = diag

(
−Im ⊗ Σ,−α1I6m,−β1I12m,−β1Im ⊗ Σ2 ),

S44 =

 −α2I6m 0 0
∗ −β2I12m 0
∗ ∗ −β2Im ⊗ Σ2

, S33 =

[
−Im ⊗ Σ Im ⊗ (AΣ) + Λi ⊗ (BW)

∗ Im ⊗
(

ΣQTQΣ− Σ
) ]

,

S34 =

[
Im ⊗H Im ⊗ Bd −Λi ⊗ (BW)

0 0 0

]
, i = 1, · · · , n,

(18)

then with the distributed state feedback K = WΣ−1, the platoon is asymptotic stable and with the weighting
matrix QεR3×3, the disturbance Γ̃(k) is attenuated by

‖
(

IN
⊗

Q
)

E‖2 ≤ µ‖Γ̃‖2. (19)

Proof. Left and right multiplying the left side of the first inequality in (18) with
diag

{
I3m, I6m, Im ⊗ Σ−1, I6m, I12m, Im ⊗ Σ−1

}
and substituting K = WΣ−1 to it, we get:

[
S11 S12

∗ S22

]
< 0, S12 =

[
Im ⊗A + Λi ⊗ (BK) Im ⊗H Im ⊗ Bd −Λi ⊗ (BK)

Im ⊗H1 + Λi ⊗ (H2K) 0 0 −Λi ⊗ (H2K)

]
,

S22 = diag
(
−Im ⊗ Σ−1,−α1I6m,−β1I12m,−β1β1I3m

)
.

(20)

�
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Applying the Schur Supplement Theorem on (20) yields [32]:

S22 − ST
12S−1

11 S12 < 0. (21)

From (21), the following inequality establishes:

[Im ⊗A + Λi ⊗ (BK)]T
(

Im ⊗ Σ−1
)
[Im ⊗A + Λi ⊗ (BK)] < Im ⊗ Σ−1 < 0. (22)

Therefore (13) is asymptotic stable according to the Lyapunov stability theory and the
corresponding Lyapunov function is Vi(k) = ET

i (k)
(

Im ⊗ Σ−1
)

Ei(k). And so the platoon system
is also asymptotic stable because linear transformation will not change the stability of linear system.

Furthermore defining new Lyapunov function Vi(k) = eT
i (k)Σ

−1ei(k),∆Vi(k) = Vi(k + 1) −
Vi(k) and

L1i(k) = ‖Zi(k)‖
2
2 − α1‖Wi(k)‖

2
2 − β1

(
‖Γ0i‖2

2 + ‖∆0i‖2
2
)
,

L2i(k) = ‖(Im
⊗

Q)Ei‖2
2 − α2‖Wi(k)‖

2
2 − β2

(
‖Γ0i‖2

2 + ‖∆0i‖2
2
)
, i = 1, . . . , n.

(23)

The first equation in (23) is re-written by substituting (13) to it:

L1i(k) =


Ei(k)
Wi(k)
Γ0i(k)
∆0i(k)


T(

S22 − ST
12S−1

11 S12

)
Ei(k)
Wi(k)
Γ0i(k)
∆0i(k)

− ∆Vi(k), i = 1, . . . , n. (24)

Then we have L1i(k) < −∆Vi(k), that is,

‖Zi(k)‖
2
2 < α1‖Wi(k)‖

2
2 − β1

(
‖Γ0i‖2

2 + ‖∆0i‖2
2

)
− ∆Vi(k), i = 1, . . . , n. (25)

The initial state is assumed to be zero and Vi(0) = 0 and the following inequality is derived by
summarizing all sampling time from k = 0, · · · , N together:

∑ N
k=0‖Zi(k)‖

2
2 < ∑ N

k=0

[
α1‖Wi(k)‖

2
2 − β1

(
‖Γ0i‖2

2 + ‖∆0i‖2
2

)]
−Vi

(
N + 1

)
. (26)

Since the platoon is asymptotic stable, lim
N→∞

Vi(N) = 0 and substituting it to (26) yields

‖Zi‖2
2 ≤ α1‖Wi‖2

2 + β1

(
‖Γ0i‖2

2 + ‖∆0i‖2
2

)
, i = 1, . . . , n. (27)

Similar to the analysis of (20)–(27), the following inequality also establishes:

‖
(

Im
⊗

Q
)

Ei‖2
2 ≤ α2‖Wi‖2

2 + β2

(
‖Γ0i‖2

2 + ‖∆0i‖2
2

)
, i = 1, . . . , n. (28)

Equation (19) is obtained from Theorem 1 by combining (27) and (28) and Theorem 2 is proved.

5. Closed Loop Performance Analysis

5.1. Internal Stability

This section focuses on the analysis of delay on closed loop stability. To simplify the theoretical
analysis, it is assumed that the time constant of vehicle drive dynamics is the same, that is, τi = τ, i =
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0, 1, . . . , N and there is no Jordan format in the eigenvalue decomposition of G. Then the dynamics of
vehicle node becomes [11,23]:

x0(k + 1) = Axi(k) + Bui(k), i = 0, 1, . . . , N. (29)

where A =

 1 h τ2v + τh
0 1 −τv

0 0 v + 1

, B =

 τ2v− τh + 1
2 h2

−τv + h
−v

, v = e−
h
τ − 1 and h is the sample period.

Note that there are two types of stability for platoon, that is, internal stability [17] and string
stability [5]. The following analysis focuses on the influence of delay on internal stability of platoon
controlled by the distributed state feedback which is pre-designed in Section 4.2. The internal stability
is defined as following.

Internal stability. A linear and time-invariant platoon is said to be asymptotic stable, if and only
if all the eigenvalues of its discrete closed-loop system are located in the union disk of complex plane,
that is, the magnitude of all eigenvalues is less than 1.

It is known from the previous studies that the internal stability criterion is not compact enough to
get the parameter range directly, because Jury Criterion uses roots of equations [33]. The following
Lemma gives a sufficient and necessary condition of internal stability, which is the basis to study the
influence of delay and topology on platoon internal stability.

Lemma 2 ([33]). Given a characteristic polynomial of third-order discrete system:

D(z) = z3 + c2z2 + c1z + c0, (30)

where c0, c1 and c2 are coefficients and the system is stable if and only if the following inequalities establish:
D(1) > 0,

−D(−1) > 0,
1 > |c0|,

1− c2
0 > |c1 − c2c0|.

(31)

Similar to the analysis process of heterogeneous platoon, the characteristic polynomial of studied
homogeneous platoon system in this section is obtained by combing (29) with pre-designed state
feedback K =

[
kp kv ka

]
in Section 4.2:

D(z) = |zI− (G + λφK)| = z3 + c2z2 + c1z + c0, (32)

where c0 = yTA0y + B0y− 1, c1 = yTA1y + B1y + 3 and c2yTA2y + B2y− 3 are the coefficients whose
variables are calculated by

A0 =


kpλ

2 − λ(kpτ+kv)
2

kpλ
4

∗ 2τλ
(
kv − kpτ

)
−kpτλ

∗ ∗ 0

, A1 =

 0 − λ(kpτ+kv)
2

kpλ
4

∗ 2τλ
(
kv − kpτ

)
0

∗ ∗ 0

,

A2 =

 −
kpλ

2 0 0
∗ 0 0
∗ ∗ 0

, B0 =
[
(kpτ − kv)λ (−kpτ + kv)τλ + kaλ− 1 −(kpλ + kv)τ

]
,

B1 =
[

2(kv − kpτ)λ 2(kpτ − kv)τλ− 2kaλ + 2 (kpτ + kv)λ
]
, y =

[
h v hv

]T
,

B2 =
[
(kaτ − kv)λ (−kpτ + kv)τλ + kaλ− 1 0

]
.

(33)
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The sufficient and necessary condition ensuring internal stability is derived from Lemma 2 as:
f1(y) = yT(A0 + A1 + A2

)
y +

(
B0 + B1 + B2

)
y > 0

f2(y) = yT(A0 + A1 + A2
)
y +

(
B0 + B1 + B2

)
y + 8 > 0

f3(y) = 1−
∣∣yTA0y + B0y− 1

∣∣ > 0
f4(y) = 1− c2

0 − |c1 − c2c0| > 0

. (34)

5.2. Numerical Analysis

In this section the influence of topology and delay on platoon internal stability is studied
numerically based on the sufficient and necessary condition (34), from which the platoon internal
stability can be measured by index fmin = min

i=1,··· ,4
fi(y). Moreover, considering the fact that linear

transformation does not change the system stability and the decoupling synthesis strategy in
Section 4.1, the influence of topology is expressed by its eigenvalues. During the numerical analysis,
τ = 0.5, h = 0.1 and the state feedback is K =

[
−5.75 −5.05 −1.03

]
designed by Theorem 1.

The numerical analysis results are shown in Figure 4.
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communication delay.

From (34), it is known that the platoon is internal stable if and only if fmin > 0. Then from
Figure 4a, it is found that with the increasing of both of delay and eigenvalue, the platoon tends to be
instable. The former phenomenon is consistent with the common sense while the latter is different
from the previous conclusions without considering delay in Reference [23]. The previous studies show
that both of the stability region and scalability of platoon is limited by the minimum eigenvalue of G.
When considering the time delay, the internal stability is also affected by the maximum eigenvalue
as shown in Figure 4b and the allowable delay decreases with the increase of it. From the decoupled
format of platoon in (13), the topological eigenvalue equivalently acts on the open loop gain of
control system. And from the stability theory of delay system, it is known that a higher gain is
bad for the stability. According to our discovery and the communication delay is unavoidable in
practical, the maximum topological eigenvalue also need to be considered when synthesizing a platoon
control system.

6. Simulation and Discussion

To validate the effectiveness and further analysis of the proposed decoupling synthesis strategy,
numerical simulations are conducted in this section. The simulated heterogeneous platoon includes
1 leader and 5 followers. During simulation, v0(0) = · · · = vN(0) = 5 m/s, d = 10 m, K =[
−5.75 −5.05 −1.03

]
, h = 0.1 s except where noted, the platoon heterogeneity is reflected by

τi pre-selected in [0.3 s, 0.7 s] randomly. A statistical model is used to describe the communication



Electronics 2019, 8, 207 11 of 16

delay, which is a function of the distance two communicated nodes [26]. The acceleration and velocity
profiles of leader are shown in Figure 5, which are from the naturalistic driving data.
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6.1. Delay Bound under Different Topologies

Note that the condition in Theorem 1 is sufficient but not necessary, which implies that the designed
controller still may be applicable even if LMIs in (18) are infeasible. And so in this section, we further
study the actual maximum delay under different topologies. During this simulation, the maximum
allowable delay is increased gradually and the maximum distance tracking error under different
topologies is shown in Figure 6.
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As shown in Figure 6a, the maximum distance tracking error, that is, the maximum one of all
followers, monotonically increases with the delay. The maximum error of BD is smaller than 2m when
the delay is smaller than 0.15 s. Then it increases slowly to 5 m with the delay increases to 0.3s, after
which increases sharply and even collision occurs. The maximum distance errors of other topologies
agree with the trend of BD. When designing the controller, the sample period is set to 0.1s, which is
large enough compared with the end-to-end communication delay of IEEE 802.11p (about 0.01s) [30].
It is found from Figure 6a that the control performance is still stable even the delay exceeds 0.1s.
This shows that LMIs in (18) only are sufficient conditions and the solved controller still can control
platoon acceptably even the system runs out of the designed constraints.

To show the influence of topology on distance tracking performance more clearly, the tracking
error profile under the condition that the maximum delay is 0.1s is extracted shown in Figure 6b.
The maximum errors of BD, BDL, TPF, PF and PLF are 1.95 m, 0.6 m, 0.22 m, 0.22 m, 0.21 m respectively.
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And maximum eigenvalues of these normalized topologies are 1.9511, 1.6236, 1, 1, 1 accordingly.
It agrees with the results of numerical analysis in Section 5.2 that the performance is also affected by
the maximum topological eigenvalue.

6.2. Comparison of Stability Performance

To show the necessity of considering information delay, a comparison simulation between
the proposed method (denoted by method 1) and an existing one (denoted by method 2) without
considering delay [11] is conducted in this section. During simulation, the topology is BD having
the worst performance in Section 6.1 and the maximum delay is set to 0.001s and 0.08s respectively.
The former delay is negligible compared with the control period and the latter is a typical value of
general V2V [30]. The compared simulation results are shown in Figure 7.

Electronics 2019, 8, 207 11 of 15 

 

which is large enough compared with the end-to-end communication delay of IEEE 802.11p (about 

0.01s) [30]. It is found from Figure 6 (a) that the control performance is still stable even the delay 

exceeds 0.1s. This shows that LMIs in (18) only are sufficient conditions and the solved controller still 

can control platoon acceptably even the system runs out of the designed constraints.  

To show the influence of topology on distance tracking performance more clearly, the tracking 

error profile under the condition that the maximum delay is 0.1s is extracted shown in Figure 6 (b). 

The maximum errors of BD, BDL, TPF, PF and PLF are 1.95 m, 0.6 m, 0.22 m, 0.22 m, 0.21 m 

respectively. And maximum eigenvalues of these normalized topologies are 1.9511, 1.6236, 1, 1, 1 

accordingly. It agrees with the results of numerical analysis in section 5.2 that the performance is also 

affected by the maximum topological eigenvalue.  

6.2. Comparison of Stability Performance 

To show the necessity of considering information delay, a comparison simulation between the 

proposed method (denoted by method 1) and an existing one (denoted by method 2) without 

considering delay [11] is conducted in this section. During simulation, the topology is BD having the 

worst performance in section 6.1 and the maximum delay is set to 0.001s and 0.08s respectively. The 

former delay is negligible compared with the control period and the latter is a typical value of general 

V2V [30]. The compared simulation results are shown in Figure 7. 

  
(a) (b) 

  
(c) (d) 

Figure 7. Compared results of different control methods. (a) Method 1 (Maximum delay is 0.001 s). 

(b) Method 2 (Maximum delay is 0.001 s). (c) Method 1 (Maximum delay is 0.08 s). (d) Method 2 

(Maximum delay is 0.08 s). 

It can be found from Figure 7 (a) and (b) that the maximum distance errors of method 1 and 2 

are 1.1 m  and 2.5 m  respectively, which both are less than the desired spacing and a stable 

dynamics of platoon is guaranteed when the delay is negligible. If the delay increases to 0.08s, the 

maximum error of method 1 is 2.2m the platoon runs stably, while the platoon controlled by method 

2 becomes unstable as shown in Figure 7 (c) and (d). Moreover, the compared control results of 

platoon interacted by the optimal one in section 6.1, that is, PF is shown in Figure 8. The maximum 

Figure 7. Compared results of different control methods. (a) Method 1 (Maximum delay is 0.001 s).
(b) Method 2 (Maximum delay is 0.001 s ). (c) Method 1 (Maximum delay is 0.08 s ). (d) Method 2
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It can be found from Figure 7a,b that the maximum distance errors of method 1 and 2 are 1.1 m
and 2.5 m respectively, which both are less than the desired spacing and a stable dynamics of platoon is
guaranteed when the delay is negligible. If the delay increases to 0.08s, the maximum error of method
1 is 2.2m the platoon runs stably, while the platoon controlled by method 2 becomes unstable as shown
in Figure 7c,d. Moreover, the compared control results of platoon interacted by the optimal one in
Section 6.1, that is, PF is shown in Figure 8. The maximum delay is set to 0.1 s and method 1 achieves a
much better one than BD while method 2 still cannot ensure the platoon stability.
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Note that the eigenvalue varies with platoon length for some topologies such as BD. Figure 9
shows this further results of the influence of platoon length on control performance with the maximum
information delay 0.08s and BD topology. As shown in Figure 9, the maximum error increases with
the platoon length gradually when the vehicle number is smaller than about 140, after which the
maximum error reaches about 9m and keeps almost unchanged. After the vehicle number reaches 248,
the platoon become unstable. The reason is that both the minimum and maximum eigenvalues change
with the dimension of BD, which affect the closed loop dynamics of platoon.
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6.3. Robustness Performance Analysis

The robust performance considering both delay and parametric uncertainty is studied by
comparative simulations in this section to further validate the effectiveness of the proposed method.
During the simulation, the platoon is interacted by BD, the platoon heterogeneity evaluated by
τi (0 means a homogeneous platoon) and the maximum delay are increased gradually and the
robust performance is measured by the maximum distance tracking error among all followers.
The comparative results of robust performance are shown in Figure 10, where g1 and g2 represent the
maximum distance errors of method 1 and method 2 respectively. When there is no information delay,
the allowable disturbances of method 1 and method 2 are 2.3 and 1.8 respectively, which implies that
two methods have the similar robust performance and both can attenuate the platoon heterogeneity
efficiently. Furthermore, the robust performances of platoon controlled by both two methods are
deteriorated with the increase of information delay but the stability region of method 1 is much wider
than that of method 2 (denoted by green line). Under the condition that the maximum delay reaches
0.08 s, the allowable disturbance of method 1 is 2.2 but that of method 2 is only 0.2. This shows that
method 1 has much better robustness than method 2.
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7. Conclusion 

This paper presents a state predictor based control strategy for heterogeneous vehicular platoon 

connected by non-ideal wireless communication. From the theoretical analysis and simulation 

results, we have the following conclusions: 

1. Both information delay and topological uncertainty caused by non-ideal wireless 
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to be dealt with when synthesizing a platoon control system; 
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3. The proposed state predictor based control strategy can compensate for the information 

delay and the numerical approach based on LMI can find the required state feedback 

controller ensuring robust performance of platoon. 

Acknowledgements: This work was supported by National key research and development program under grant 

2016YFB0100900 and 2016YFB0101104, Open Fund of State Key Laboratory of Vehicle NVH and Safety 

(NVHSKL-201705), Industrial Base Enhancement Project (2016ZXFB06002). 

Author Contributions: Liu B. and Gao F. took the theoretical analysis and wrote the paper; He Y. and Wang C. 

performed the numerical simulation and data analysis.  

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Banister, D.; Anderton, K.; Bonilla, D.; Givoni, M.; Schwanen, T. Transportation and the Environment. Soc. 

Sci. Elect. Pub. 2011, 36, 9–12. 

2. Li, S.; Li, R.; Wang, J.; Hu, X.; Cheng, B.; Li, K. Stabilizing Periodic Control of Automated Vehicle Platoon 

with Minimized Fuel Consumption. IEEE Trans. Transp. Electr. 2017, 3, 259–271. 

3. Swaroop, D.; Hedrick, J.K.; Choi, S.B. Direct adaptive longitudinal control of vehicle platoons. IEEE Trans. 

Veh. Technol. 2001, 50, 150–161. 

4. Kunze, R.; Ramakers, R.; Henning, K.; Jeschke, S. Organization and Operation of Electronically Coupled 

Truck Platoons on German Motorways. In Proceedings of the International Conference on Intelligent 

Robotics and Applications (ICIRA 2009), Singapore, 16–18 December 2009; pp. 135–146. 

5. Shladover, S.E.; Desoer, C.A.; Hedrick, J.K.; Tomizuka, M.; Walrand, J.; Zhang, W.B.; Mckeown, N. 

Automated vehicle control developments in the PATH program. IEEE Trans. Veh. Technol. 2002, 40, 114–

130. 

6. Tsugawa, S.; Kato, S.; Aoki, K. An automated truck platoon for energy saving. In Proceedings of the 

IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 

September 2011; pp. 4109–4114. 

Figure 10. Robustness performance of platoon interacted by BD. (a) Maximum distance error of
method 1. (b) Maximum distance error of method 2.

7. Conclusions

This paper presents a state predictor based control strategy for heterogeneous vehicular platoon
connected by non-ideal wireless communication. From the theoretical analysis and simulation results,
we have the following conclusions:

1. Both information delay and topological uncertainty caused by non-ideal wireless communication
are critical to the stability and tracking performances of platoon, which need to be dealt with
when synthesizing a platoon control system;

2. When considering the information delay, besides the minimum topological eigenvalue the
maximum one also affects the closed loop performance of platoon. And comparatively,
the influence of minimum one can be ignored if only stability is taken into account.

3. The proposed state predictor based control strategy can compensate for the information delay and
the numerical approach based on LMI can find the required state feedback controller ensuring
robust performance of platoon.
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