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Abstract: This paper discusses the real-time optimal path planning of autonomous humanoid 

robots in unknown environments regarding the absence and presence of the danger space. The 

danger is defined as an environment which is not an obstacle nor free space and robot are 

permitted to cross when no free space options are available. In other words, the danger can be 

defined as the potentially risky areas of the map. For example, mud pits in a wooded area and 

greasy floor in a factory can be considered as a danger. The synthetic potential field, linguistic 

method, and Markov decision processes are methods which have been reviewed for path planning 

in a free-danger unknown environment. The modified Markov decision processes based on the 

Takagi–Sugeno fuzzy inference system is implemented to reach the target in the presence and 

absence of the danger space. In the proposed method, the reward function has been calculated 

without the exact estimation of the distance and shape of the obstacles. Unlike other existing path 

planning algorithms, the proposed methods can work with noisy data. Additionally, the entire 

motion planning procedure is fully autonomous. This feature makes the robot able to work in a 

real situation. The discussed methods ensure the collision avoidance and convergence to the target 

in an optimal and safe path. An Aldebaran humanoid robot, NAO H25, has been selected to verify 

the presented methods. The proposed methods require only vision data which can be obtained by 

only one camera. The experimental results demonstrate the efficiency of the proposed methods. 

Keywords: robot path planning; danger space; unknown environment; modified Markov decision 

processes 

 

1. Introduction 

Nowadays robot path planning, as an open problem, are attracting considerable attention. A 

robot must be capable to work in a large spectrum of environments. In fact, the environment 

changes dynamically and robots must be able to deal with these changes. Obviously, to navigate in 

unknown environments, it is not possible to just rely on built-in memories. Bug algorithms are the 

first path planning algorithms that the robot reaches the target definitively. Due to the real-time 

performance, these algorithms are very appropriate for the robots. For the first time, Lumelsky and 
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Skewis used sensors in the Bug algorithms [1]. Some improved Bug algorithms are proposed to 

reduce the time cost and computational complexity and improve the adaptability and performance. 

The I-Bug algorithm [2], Point Bug algorithm [3], EgressBug algorithm [4], InsertBug algorithm [5], 

and H-Bug algorithm [6] can be identified as the improved Bug algorithms. 

Because the environment can be changed at any time and only limited information is available 

at any given time, the strategy of determining the path of the robot must be such that the robot can 

approach to the target with the least possible information (preferably the position of the robot and 

the target at any time). González et al. presented a comparative review of intelligent vehicles’ 

motion algorithms in complex environments by considering the safety factor [7]. In another review 

paper, Ravankar et al. summarized the path planning algorithms for autonomous mobile robots. 

They focused on the path smoothing techniques which satisfy certain constraints like continuity 

and safety [8]. From managerial insights, Sarkar et al. have focused on increasing the safety factors 

and reducing the setting time [9]. Some well-known path-planning techniques like A* [10,11], 

Dijkstra [12], distance conversion [13,14], potential field [15–19], sampling-based [20,21], and piano 

stimulation problem [22–24] need more information and sometimes they require a full map. This 

weakness shows that in unknown environments, point-to-point guidance is necessary. On the other 

hand, fuzzy logic has been used widely to successfully solve a wide range of problems in various 

application fields [25–29]. As a more potent tool, Zavlangas et al. proposed a fuzzy-based algorithm 

to navigate the omnidirectional mobile robots [30]. The proposed strategy considers only the 

nearest obstacle to decide on the next robot’s move. Although this method is real-time and seems 

efficient, these parameters are not provided for a humanoid robot with on camera. In other words, 

this method can be used for robots with omnidirectional range sensors. An effective approach to 

navigate the wheeled mobile robots has been presented by Al Yahmedi and Fatmi [31]. Issues of 

individual behavior design and action coordination of the behaviors were addressed using fuzzy 

logic. This resulted in saving the time and computational resources. The research involves 14 

sensors to find the positions of all obstacles around the robot. Thus, this method cannot be 

implemented on the most humanoid robots. In another work, Iancu et al. presented a fuzzy 

reasoning method of Takagi–Sugeno type controller to navigate a two-wheeled autonomous robot 

[32]. This mobile robot is equipped with a sensorial system which contains seven radial sectors. 

Most humanoid robots do not have such a system of sensors and so this method cannot be 

implemented on them. 

A path-planning algorithm for the humanoid robots is proposed by Michel et al. [33]. They 

used an external camera that provides a top view of the environment for the robot to obtain 

information of the position of the obstacles. Their method is not applicable in most situations 

because it is impossible to use a camera with a global view of the robot work sites. Besides, Nakhaei 

and Lamiraux used the online 3D mapping and combined it with path planning task. They used a 

roadmap-based method for motion planning because the dimension of configuration space is high. 

This algorithm was implemented on HRP2 [34]. Their method is not efficient because it needs exact 

stereo vision and a lot of time to find a path in each step. Furthermore, Sabe et al. presented a 

method for path planning and obstacle avoidance for the humanoid robot Quest for cuRIOsity 

(QRIO). This algorithm allows the robot to move in a home-like environment [35]. The A* algorithm 

was used in this method, which requires high processing time. Their method seems effective, but it 

needs stereo vision and high computational processes. As a result, it cannot be applied in most 

conditions. Another path-planning project on HRP-2 humanoid robot is done by Michel et al. [36]. 

This method used several cameras to produce the maps. This method is inefficient because of the 

constraints in embedding the cameras. Meanwhile, Chestnutt et al. implemented best-first search 

and A* algorithms for footstep path planning of H7 humanoid robot [37]. Both of them need stereo 

vision and high computational processes. In another work, Okada et al. proposed another method 

for path planning of a humanoid robot [38]. In this method, robot and obstacles were modeled with 

cylinders and vision helped eliminate the floor from the decision. This method may encounter with 

a conflicting problem when the robot confronts a big obstacle at the start point. In this situation, the 

robot could not be able to detect the floor and may miss the path. 
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One of the most important tasks of mobile robots is to move in environments that include 

danger space or sensitive areas. This should be considered in the path planning algorithms. The 

real-world robots’ workspaces such as fire in rescue mission and landmines usually includes 

numerous danger sources. To navigate the robot in a safe and optimal path in such an environment, 

Zhang et al. introduced a multi-objective path planning algorithm based on particle swarm 

optimization [39]. In a similar paper, Purcaru et al. proposed a new optimal path planning 

algorithm in which a hybrid of the gravitational search algorithm and the particle swarm 

optimization algorithm is implemented [40]. In this algorithm, the robot tries to avoid collisions 

with danger spaces and obstacles, in addition to moving in the shortest possible path from start 

point to the target. Zhang et al. suggested an improved A* path planning algorithm to create a 

smooth and safe path with regard to the potentially risky areas of the map [41]. The robot path 

planning using the artificial potential field procedure is one of the most popular path planning 

methods. By implementing the artificial potential field method, Matoui et al. proposed a path 

planning algorithm to push the robots far from the danger space in unknown environment [18]. 

As can be seen from the above study, an appropriate and efficient method for path planning of 

a humanoid robot in an unknown environment is still not proposed. Considering the identified 

research gap, four methods including synthetic potential field method, Linguistic method, Markov 

decision processes, and fuzzy Markov decision processes are studied. In this paper, at first, the 

color model is discussed. After that, Synthetic potential field, linguistic method, Markov decision 

processes, and fuzzy Markov decision processes are introduced and implemented for path-

planning in unknown environments. Finally, the path planning in an environment regarding the 

presence of a danger space is discussed.  

2. Robot Path Planning Using Vision Sensors 

Sensor-based path planning uses three different sensors including occupancy sensor, distance 

sensor, and vision sensor. The occupancy sensor usually extends the path and provides the least 

information to the robot. For this reason, methods that rely solely on these sensors are obsolete. The 

distances sensors provide good data for path planning, but the extracted data does not provide the 

ability to identify the danger zones for the robot. The vision sensors are the best sensors in the robot 

path planning, given the information they provide. 

2.1. The Color Models 

Differences in the frequency and wavelengths differentiate colors. Therefore, a way to display 

pixels is storing the frequency vector and the corresponding light intensity. Unfortunately, current 

technology does not allow such sensors to be build. As a result, different methods have been 

developed to measure and store pixels. The most famous color model is called the Red Green Blue 

(RGB) model, in which the intensity of the three red, green, and blue colors is stored. Yellow, 

turquoise, and purple are three subclasses produced from the combination of each pair of these 

original colors (Figure 1). The white color refers to the presence of all three original colors and the 

black color refers to the absence of any of these three original colors. Typically, the color intensity is 

shown by integers between 0 and 255. To obtain light intensity (regardless of color), it is enough to 

measure the mean intensity of the three main colors. The human eye has cells that are sensitive to 

the frequency of red, green, and blue lights and therefore functions similar to the RGB model. 
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Figure 1. The combination of red (R), blue (B), and green (G) colors in the RGB color model. 

Robots equipped with vision sensors use different models depending on the type of sensor 

used. As a result, in the first step, there should be a tool for transforming their color model. For 

example, the Nao humanoid robot uses the 422 YUV color model (Figure 2). The Luminance (Y), 

blue–luminance (U), and red–luminance (V) refers to a system which defines color with one 

luminance value and two chrominance values. 

 

Figure 2. YUV color model. 

Using Equation (1), the 422 YUV can be converted to the RGB. 

[
𝑅
𝐺
𝐵
] = [

1 0 1.13983
1 −0.39465 −0.58060
1 2.03211 0

] [
𝑌
𝑈
𝑉
] (1) 

2.2. Low-Pass Filter 

Due to the electromagnetic nature of light, the noise in the sensors is normal. Due to the 

continuity of the bodies, there is also an approximation continuity of color. As a result, the presence 

of a high-frequency signal (the color difference of one pixel relative to its neighbors) is likely to be 

noise. As a result, the noise should be deleted by using the low-pass filter. 

2.3. Segmentation and Mode Filter 

As mentioned, each pixel represents three intensity levels of red, green, and blue which varies 

between 0 and 255. Although these data are needed to display the image, they do not play a role in 
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the path planning. A robot only needs to know the type of pixel to determine its path. To do this, it 

must be determined that each pixel indicates which obstacle, danger, free, or target spaces. The 

conversion of the image from the color space to the environmental space is called segmentation. 

Various ways to segment an image are suggested. Selecting the appropriate segmentation method 

depends on the location of the robot. All segmentation techniques can have an error (noise). In 

order to remove this noise, the image must be passed through the Mode filter. 

2.4. Expansion 

During the recording process, the parts of the outer boundary of the obstacles may be recorded 

in the form of other spaces (usually free space). As a result, to avoid collisions, obstacles are slightly 

widened. Also, the expansion of the obstacles increases the effect of the small obstacles. Figure 3 

shows the image expansion. 

  

(a) (b) 

  

(c) (d) 

Figure 3. Image expansion to enhance the obstacle effect (a) main image; (b) filtered image; (c) 

segmented and filtered image; (d) expanded image. 

2.5. Schematic Structure of Vision System 

The humanoid robot implemented in this paper uses a camera to collect environmental 

information. After capturing an image by the camera, the image passes through a filter to obviate 

the concomitant noise. The next step is the segmentation of the image. After image segmentation, 

the image passes through a mode filter to remove the effect of noise generated during the 

segmentation. Finally, the dilation process is applied to produce the final image. The structure of 

the vision system can be simplified as Figure 4. 

 

Figure 4. Schematic structure of the vision system. 

3. Path Planning in the Absence of Danger Space 

Here, four approaches including synthetic potential field method, linguistic method, Markov 

decision processes, and fuzzy Markov decision processes are reviewed and implemented on the 

Aldebaran humanoid robot–Nao H25 V4. 

3.1. Synthetic Potential Field Method 

A pair of electrical charges exert a force on each other as follows [42]: 
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𝐹
→
= 𝑘

𝑞1𝑞2
|𝑟|2

𝑒𝑟
→

 (2) 

In this equation, 𝑘 is a constant, 𝑞1 and 𝑞2 are electrical charges, r is the distance between them, and 

𝑒𝑟
→

 is the unit vector connecting these two electrical charges. It is supposed that robot and obstacles 

carry negative charges, while the target has a positive one. As the result, obstacles repulse and the 

target attract the robot. From electrostatic laws, it is concluded that one positive and N negatives 

charges exert a force to a negative charge as Equation (3): 

𝐹
→
= 𝐹𝑎

→
+∑ 𝐹𝑑

→
(𝑘)

𝑁

𝑘=1

 (3) 

where 𝐹𝑎  and 𝐹𝑑  are attraction and repulsion forces, respectively. Additionally, 𝑘  represents the 

number of obstacles. By confining each cell of meshed space to the environmental space, Equation 

(3) is rewritten as Equation (4). 

𝐹
→
= 𝐹𝑎

→
+∑ 𝐹𝑑

→
(𝑖, 𝑗)

𝑁

𝑘=1

 (4) 

where (𝑖, 𝑗) represents the cell’s position. Additionally, 𝑛 represents the number of cells in a row 

and 𝑘 = 𝑛𝑗 + 𝑖. Forces 𝐹𝑎 and 𝐹𝑑 are calculable from the vector decomposition along the main 𝑥 and 

𝑦 axes as below: 

𝐹𝑎
→
= 𝐹𝑎𝑥𝒊 + 𝐹𝑎𝑦𝒋 (5) 

𝐹𝑑
→
(𝑖, 𝑗) = 𝐹𝑑𝑥(𝑖, 𝑗)𝒊 + 𝐹𝑑𝑦(𝑖, 𝑗)𝒋 (6) 

The respective components are as below: 

𝐹𝑎𝑥 = 𝐹𝑎
→
.
𝑥
→
𝑔𝑜𝑎𝑙

|𝑟𝑔𝑜𝑎𝑙|
 (7) 

𝐹𝑎𝑦 = 𝐹𝑎
→
.
𝑦
→

𝑔𝑜𝑎𝑙

|𝑟𝑔𝑜𝑎𝑙|
 (8) 

𝐹𝑑𝑥(𝑖, 𝑗) = 𝐹𝑑
→
(𝑖, 𝑗).

𝑥
→
(𝑖, 𝑗)

|𝑟(𝑖,𝑗)|
 (9) 

𝐹𝑑𝑦(𝑖, 𝑗) = 𝐹𝑑
→
(𝑖, 𝑗).

𝑦
→
(𝑖, 𝑗)

|𝑟(𝑖,𝑗)|
 

(10

) 

By inserting Equations (7) and (8) into Equation (5), and inserting Equations (9) and (10) into 

Equation (6), Equations (11) and (12) can be obtained as follows: 

𝐹𝑎
→
= 𝐹𝑎

→
.
𝑥
→
𝑔𝑜𝑎𝑙

|𝑟𝑔𝑜𝑎𝑙|
𝒊 + 𝐹𝑎

→
.
𝑦
→

𝑔𝑜𝑎𝑙

|𝑟𝑔𝑜𝑎𝑙|
𝒋 

(11

) 
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𝐹𝑑
→
(𝑖, 𝑗) = 𝐹𝑑

→
(𝑖, 𝑗).

𝑥
→
𝑔𝑜𝑎𝑙

|𝑟𝑔𝑜𝑎𝑙|
𝒊 + 𝐹𝑑

→
(𝑖, 𝑗).

𝑦
→

𝑔𝑜𝑎𝑙

|𝑟𝑔𝑜𝑎𝑙|
𝒋 

(12

) 

Considering Equations (11) and (12), Equation (4) changes as follows: 

𝐹
→
= 𝐹𝑥

→
+𝐹
→

𝑦 (13

) 

where 

𝐹𝑥
→
= (𝐹𝑎

→
.
𝑥
→
𝑔𝑜𝑎𝑙

|𝑟𝑔𝑜𝑎𝑙|
+∑ 𝐹𝑑

→
(𝑖, 𝑗)

𝑁

𝑘=1

.
𝑥
→
(𝑖, 𝑗)

|𝑟(𝑖,𝑗)|
) 𝒊 (14

) 

𝐹𝑦
→
= (𝐹𝑎

→
.
𝑦
→

𝑔𝑜𝑎𝑙

|𝑟𝑔𝑜𝑎𝑙|
+∑ 𝐹𝑑

→
(𝑖, 𝑗)

𝑁

𝑘=1

.
𝑦
→
(𝑖, 𝑗)

|𝑟(𝑖,𝑗)|
) 𝒋 (15

) 

Since all obstacles are the same (attributed as obstacle space), Equation (2) can be rewritten for 

obstacles as: 

𝐹𝑑
→
(𝑖, 𝑗) = −𝑘𝑑

1

(|𝑟(𝑖,𝑗)|)
2
𝑒𝑟
→

 (16

) 

Considering the target point, it is possible to rewrite the attraction equation as follows: 

𝐹𝑎
→
= 𝑘𝑎

1

(|𝑟𝑔𝑜𝑎𝑙|)
2
𝑒
→
𝑟 (17

) 

By inserting Equations (17) and (16) into Equation (14) and Equation (15), Equations (18) and 

(19) can be obtained as follows: 

𝐹𝑥
→
= (𝑘𝑎.

𝑥
→
𝑔𝑜𝑎𝑙

(|𝑟𝑔𝑜𝑎𝑙|)
3
−𝑘𝑑 ∑

𝑥
→
(𝑖, 𝑗)

(|𝑟(𝑖,𝑗)|)
3

𝑁

𝑘=1

) 𝒊 (18

) 

𝐹𝑦
→
= (𝑘𝑎.

𝑦
→

𝑔𝑜𝑎𝑙

(|𝑟𝑔𝑜𝑎𝑙|)
3
−𝑘𝑑 ∑

𝑦
→
(𝑖, 𝑗)

(|𝑟(𝑖,𝑗)|)
3

𝑁

𝑘=1

) 𝒋 (19

) 

Each cell (except the target point) can share obstacle and free space beside some uncertainty. 

So, to fuzzify these equations, the magnitude of the repulsive force is multiplied to the membership 

function of obstacle space (μ) [43]. Thus, Equations (20) and (21) can be obtained as: 

𝐹𝑥
→
= (𝑘𝑎.

𝑥
→
𝑔𝑜𝑎𝑙

(|𝑟𝑔𝑜𝑎𝑙|)
3
−𝜇𝑘𝑑 ∑

𝑥
→
(𝑖, 𝑗)

(|𝑟(𝑖,𝑗)|)
3

𝑁

𝑘=1

) 𝒊 (20

) 
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𝐹𝑦
→
= (𝑘𝑎.

𝑦
→

𝑔𝑜𝑎𝑙

(|𝑟𝑔𝑜𝑎𝑙|)
3
−𝜇𝑘𝑑 ∑

𝑦
→
(𝑖, 𝑗)

(|𝑟(𝑖,𝑗)|)
3

𝑁

𝑘=1

) 𝒋 (21

) 

To reach the target, the robot must move in the direction of the force. In other words, the robot 

angle is calculated using the following equation: 

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛2 (𝐹𝑦
→

, 𝐹𝑥
→

) 
(22

) 

where “arctan2” is defined as Equation (23): 

𝑎𝑟𝑐𝑡𝑎𝑛2 (𝐹𝑦
→

, 𝐹𝑥
→

) =

{
 
 
 
 
 

 
 
 
 
 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑦

𝑥
) 𝑥 > 0

𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥
) + 𝜋𝑦 ≥ 0; 𝑥 < 0

𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦

𝑥
) − 𝜋𝑦 < 0; 𝑥 < 0

𝜋

2
𝑦 > 0; 𝑥 = 0

−𝜋

2
𝑦 < 0; 𝑥 = 0

𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑𝑦 = 0; 𝑥 = 0

 
(23

) 

3.1.1. The Rectifier 

In close proximity of target point, the denominator of fractions in (20) and (21) tend to zero and 

accordingly, attraction takes large magnitudes. This matter results in the ineffectiveness of 

repulsive force from obstacles. To overcome this liability, it is proposed to add integer 1 to the 

denominator of the relevant fraction. 

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑘𝑎.
𝑦
→

𝑔𝑜𝑎𝑙

(|𝑟𝑔𝑜𝑎𝑙|)
3 + 1

− 𝜇𝑘𝑑∑
𝑦
→
(𝑖, 𝑗)

(|𝑟(𝑖,𝑗)|)
3

𝑁

𝑘=1

, 𝑘𝑎.
𝑥
→

𝑔𝑜𝑎𝑙

(|𝑟𝑔𝑜𝑎𝑙|)
3 + 1

− 𝜇𝑘𝑑∑
𝑥
→
(𝑖, 𝑗)

(|𝑟(𝑖,𝑗)|)
3

𝑁

𝑘=1

) 

(24

) 

Figure 5 shows the effect of this change. 
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. 

Figure 5. Attraction force with and without the rectifier. 

3.1.2. Result of Synthetic Potential Field Method 

As previously mentioned, to evaluate the proposed method, Aldebaran humanoid robot–NAO 

H25 V4 is used. The construction of employed humanoid robot including implemented actuators 

and sensors are described [44]. Additionally, the control mechanism of this robot is presented in 

[45]. The software architecture was developed using Aldebaran’s NaoQi as a framework and an 

extended code in C++. In this way, Kubuntu 12.0.4 and Open CV 2.3.1 writing program in C++ in Qt 

creators is used. In Figure 6, at the beginning of the process, the target is considered a virtual point. 

In the first step, the robot does not see any obstacles and decides to move directly to the target. By 

observing the first obstacle by the robot, a distraction force will be added. The resultant force causes 

the robot to move between the two obstacles. 
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Figure 6. The path traversed by the Nao humanoid robot using the fuzzy synthetic potential field 

method (see the video of the robot’s movement). 

3.2. Linguistic Method 

While the linguistic method has a root in the natural potential field, it tries to compute the field 

by linguistic rules, instead of deterministic relations. The intensity of natural potential force is 

proportional with square of distance. Also, the intensity of the synthetic potential field must be a 

descending function of distance. Regarding the dimensions of the Nao and the height of its camera, 

the taken image is divided into 25 cells. Tables 1 and 2 summarize the rules of the calculating forces 

of the obstacles and the target point. The variables are Positive (P), Negative (N), Small (S), Zero 

(Z), Very (V), Medium (M), and Big (B). 
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Table 1. The rules of obstacles’ force in the direction of the x- and y-axis. 

 x Axis y Axis 

i 

j 
1 2 3 4 5 1 2 3 4 5 

1 VSN VSN Z VSP VSP VSP VSP VSN VSN VSN 

2 VSN VSN Z VSP VSP VSN SN SN SN VSN 

3 SP SN Z SP SP SN MN MN MN SN 

4 MN MN Z MP MP MN BN VBN BN MN 

5 BN VBN Z VBP BP MN VBN VBN VBN MN 

Table 2. The rules of the target’s force in the direction of the x- and y-axis. 

 x Axis y Axis 

i 

j 
1 2 3 4 5 1 2 3 4 5 

1 VSP VSP Z VSN VSN VSP VSP VSP VSP VSP 

2 VSP VSP Z VSN VSN VSP SP SP SP VSP 

3 SP SP Z SN SN SP MP MP MP SP 

4 MP MP Z MN MN MP BP VBP BP MP 

5 BP VBP Z VBN BN MP VBP VBP VBP BP 

When the target is seen by the robot, through the fuzzification, a non-zero magnitude is 

assigned to the cells in which the target is located. This obviously attracts robot to the target. On the 

other hand, if the robot fails to view the target, it receives a virtual repulsive force and gives up to 

approach the target. To overcome this problem, it is assumed that a virtual target is located in the 

closest cell to the main target (Figure 7). 

Regarding n and m, there are totally 4 nm fuzzy rules that determine the level of the output. In 

the natural potential field, the force exerted on a charged body is the sum of the single forces issued 

by other charged bodies (superposition principle). As a guide, this matter can be implemented for 

the synthetic potential field method. In this method, the superposition is equivalent to the weighted 

average defuzzification that can be defined as follows: 

𝑓𝑥 =
∑ 𝑃𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

𝑖𝑁
𝑖=1 𝑓

^

𝑟𝑥

𝑖

+𝑃𝑡𝑎𝑟𝑔𝑒𝑡
𝑖 𝑓

^

𝑎𝑥

𝑖

∑ 𝑃𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒
𝑖𝑁

𝑖=1 +𝑃𝑡𝑎𝑟𝑔𝑒𝑡
𝑖

 
(25

) 

𝑓𝑦 =
∑ 𝑃𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

𝑖𝑁
𝑖=1 𝑓

^

𝑟𝑦

𝑖

+𝑃𝑡𝑎𝑟𝑔𝑒𝑡
𝑖 𝑓

^

𝑎𝑦

𝑖

∑ 𝑃𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒
𝑖𝑁

𝑖=1 +𝑃𝑡𝑎𝑟𝑔𝑒𝑡
𝑖

 
(26

) 
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where 𝑃𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒
𝑖  is the probability of the presence of the obstacle, 𝑃𝑡𝑎𝑟𝑔𝑒𝑡

𝑖  is the probability of the 

presence of the target, and 𝑓𝑥  and 𝑓𝑦 are the force components along the x- and y-axis, respectively. 

 

Figure 7. Positions of robot and sub-targets in the purview of the robot. 

3.2.1. Simplification 

In the proposed method, the robot moves in the direction of the field. So simply knowing the 

direction of the field is enough. As can be seen in Equations (25) and (26), denominators of fractions 

are the same and it is possible to multiply both equations into the common denominator to simplify 

them without changing directions of the forces. 

𝑓𝑥
′
=∑ 𝑃𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

𝑖
𝑁

𝑖=1
𝑓
^

𝑟𝑥

𝑖

+𝑃𝑡𝑎𝑟𝑔𝑒𝑡
𝑖 𝑓

^

𝑎𝑥

𝑖

 
(27

) 

𝑓𝑦
′
=∑ 𝑃𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒

𝑖
𝑁

𝑖=1
𝑓
^

𝑟𝑦

𝑖

+𝑃𝑡𝑎𝑟𝑔𝑒𝑡
𝑖 𝑓

^

𝑎𝑦

𝑖

 
(28

) 

The direction of the force can be determined as follows: 

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑓𝑦
′, 𝑓𝑥

′) (29

) 

3.2.2. Result of Linguistic Method 

Figure 8 illustrates the path traversed by the Nao robot through the use of the linguistic 

method. At the beginning of the process, the robot is unable to see the target. So, the robot uses a 

sub-target and thus tries to approach the approximated target position. The robot moves between 

obstacles and approaches the sub-target. After the target is identified by the robot, the robot directly 

moves to the target without colliding with obstacles. 
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Figure 8. The path traversed by the Nao humanoid robot using the linguistic method (see the video 

of the robot’s movement). 

3.3. Markov Decision Processes 

Markov decision processes presented a mathematical framework for decision-making 

modeling in situations that the outcomes are random and out of control [46]. The Markov decision 

processes is the generalized form of Markov chains. In other words, Markov decision process is a 

discrete time stochastic control process. So, in each time step, the state of the process is 𝑠 and the 

decision maker chooses an action form the possible actions. After that, the process randomly moves 

to the next state 𝑠′, and reward 𝑅 is given to the decision maker [47]. Therefore, the probability that 

the process will go to a certain state is a function of the chosen action. This means that the state 𝑠′ 

depends on the state 𝑠 and the action of the decision-maker 𝑎. This is while 𝑎 and 𝑠 are independent 

of all former actions and states. In other words, moving from a state to another in Markov decision 
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processes has Markov property [48–50]. The main problem in Markov decision processes is finding 

a function 𝜋 that specifies the action 𝜋(𝑠) that the decision maker will choose when in state 𝑠. 

Actually, the goal is to find a policy 𝜋 which will maximize some cumulative function of the 

random rewards. Additionally, the value function represents the magnitude of expected rewards 

which a system receives by working from state 𝑠 and following the policy. Therefore, each policy 

leads to a value function as follows: 

𝑉𝜋(𝑠0) = 𝐸[𝑅(𝑠0)+𝛾𝑅(𝑠1)+𝛾2𝑅(𝑠2)+⋯ |𝜋] = 𝐸[∑ 𝛾𝑡
𝑁

𝑡=0
𝑅(𝑠𝑡)|𝜋] 

(30

) 

This equation can be rewritten as below: 

𝑉𝜋(𝑠0) = 𝐸[𝑅(𝑠0)+𝛾(𝑅(𝑠1)+𝛾𝑅(𝑠2)+⋯ |𝜋] (31

) 

Equation (31) is named after Bellman and is abbreviated to: 

𝑉𝜋(𝑠) = 𝐸 [𝑅(𝑠)+𝛾∑ 𝑃(𝑠, 𝑎, 𝑠′)𝑉𝜋(𝑠′)
𝑠′

] (32

) 

By displaying the optimum policy and the optimum value function with 𝜋∗  and 𝑉∗ , 

respectively, Equations (33) and (34) can be obtained as: 

𝑉∗(𝑠) = 𝑅(𝑠)+𝑚𝑎𝑥𝑎𝛾∑ 𝑃(𝑠, 𝑎, 𝑠′)𝑉∗(𝑠′)
𝑠′

 (33

) 

𝜋∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∑ 𝑃(𝑠, 𝑎, 𝑠′)𝑉∗(𝑠′)
𝑠′

 (34

) 

By assuming 𝑛  states, there will be 𝑛  equations which constitute a solvable system of 

equations. 

3.3.1. Path Planning 

Determining the direction of movement of the robot in each step using the Markov decision 

processes is possible. To do so, a collision with an obstacle will result in a negative reward. 

However, achieving the target point will embody a positive reward. As the result, in order to avoid 

the negative reward, the robot may prefer to stay motionless in some situations, such as near an 

obstacle. To overcome this problem, a small negative reward (compared to the big negative reward 

of obstacles) is assigned to the free space.  

The calculation of the reward is based on the observation of the target. If the robot can see the 

target, the robot will rely on information obtained from the image. But if the robot cannot see the 

target, in addition to the information obtained from the image, it needs its own coordinates and the 

target coordinates in order to create a sub-target. 

A sub-target, that can be defined as a virtual target, could guide the robot toward the original 

target. Figure 9 shows how to calculate the state of the sub-targets. As seen in this figure, if the 

black hexagon is selected as the target, the gray hexagon is defined as the sub-target. Similarly, if 

the black circle and the black triangle are considered as the target, the gray circle, and the gray 

triangle are defined as the sub-target, respectively. 

In situations where the robot is unable to see the obstacle, the free space has −𝑤1 point, the 

obstacle has −𝑤2 point, and the sub-target has +1 point. Therefore, the reward function could be 

calculated as follows: 

𝑅(𝑖, 𝑗) = 𝑃𝑠𝑢𝑏−𝑡𝑎𝑟𝑔𝑒𝑡(𝑖, 𝑗) + 𝑤1𝑃𝑓𝑟𝑒𝑒𝑠𝑝𝑎𝑐𝑒(𝑖, 𝑗) + 𝑤2𝑃𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒(𝑖, 𝑗) (35
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) 

On the other hand, in situations where the robot can see the obstacle, the target has +1, the free 

space has −𝑤1 point, and the obstacle has −𝑤2 point. So, the reward function could be calculated as 

follows: 

𝑅(𝑖, 𝑗) = 𝑃𝑡𝑎𝑟𝑔𝑒𝑡(𝑖, 𝑗) + 𝑤1𝑃𝑓𝑟𝑒𝑒𝑠𝑝𝑎𝑐𝑒(𝑖, 𝑗) + 𝑤2𝑃𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒(𝑖, 𝑗) (36

) 

In some situations, as in Figure 9, the target is out of the robot field of view. Therefore, instead 

of the main target, a sub-target is utilized. Figure 10 shows the probable movement function of the 

robot, assuming that it moves forward.  

 

Figure 9. The procedure for assigning sub-targets for the main target. 

 

Figure 10. The probability of moving to other states based on selecting forward movement. 

The Bellman equation (Equation (33)) is nonlinear and hard to solve. In this case, to obtain the 

optimal value function without directly solving the Bellman equation, the Algorithm 1 is used: 
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Algorithm 1 Optimal value function.  

Input: Reward function R(s) 

Output: Value function V(s) 

Begin 

∀𝑠𝑉(𝑠) → 0 
repeat 

for all the s do 

𝑅(𝑠) + 𝑚𝑎𝑥𝑎𝛾∑𝑃(𝑠, 𝑎, 𝑠
′)𝑉(𝑠′) → 𝐵(𝑠) 

end 
𝐵(𝑠) → 𝑉(𝑠) 

until 𝑉(𝑠) converges; 
end 

Markov decision processes, always, propose an optimal path based on the current state. Due to 

the fact that the robot does not always have a full view of its environment, the optimal path is not 

always the best choice. For example, when the robot moves along a wall and cannot see the target, 

the robot tries to approach directly to the target. In this situation, the robot may have a severe 

collision with the wall. A rectifier can unravel this problem by informing the robot from lateral 

obstacles and preventing a collision in the next steps.  

3.3.2. Results of Markov Decision Processes 

Figures 11 and 12 are the results of the implementation of the Markov decision processes on 

the Nao humanoid robot. In these two figures, the arrangement of obstacles is different. As can be 

seen from these figures and the videos associated with these figures, the robot successfully 

approaches the target without colliding with obstacles. 
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Figure 11. The path traversed by the Nao humanoid robot using the Markov decision processes in 

the first sample environment (see the video of the robot’s movement). 
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Figure 12. The path traversed by the Nao humanoid robot using the Markov decision processes in 

the second sample environment (see the video of the robot’s movement). 

3.4. Fuzzy Markov Decision Processes 

As previously stated, the policy of the Markov decision processes is the choice of an action that 

leads to the highest reward. Here the classic decision-making framework is being modified. For this 

purpose, as the first step, the value function is evaluated. After that, a fuzzy system determines the 

action based on the function. According to the reward, the value function takes different intervals 

in different steps. This is while the inputs of the fuzzy inference engine are fuzzy sums of values 0 

to 1. So, the cost function must be normalized in the first step. Thus, the normalized value function 

can be obtained as follows: 
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𝑉𝑛𝑒𝑤(𝑖, 𝑗) =
𝑉∗(𝑖, 𝑗)−𝑏
𝑎− 𝑏

;𝑎 = 𝑚𝑎𝑥(𝑖,𝑗)𝑉
∗
(𝑖, 𝑗); 𝑏 = 𝑚𝑖𝑛(𝑖,𝑗)𝑉

∗
(𝑖, 𝑗) 

(37

) 

where 𝑉∗(𝑖, 𝑗) is the value function in each step, a is the maximum, and b is the minimum of 𝑉∗(𝑖, 𝑗), 

respectively. In principle, the inputs of the fuzzy inference engine are a neighbor of the robot's 

position. In the classical approach, only the closest robot neighbors are selected as optimal choices, 

while in the fuzzy Markov decision processes, the neighboring radius extends. Table 3 summarizes 

the square of the Euclidean distance between each cell and robot’s position. This is amended by 

Figure 13 in which four neighborhoods with different radii are represented. 

Table 3. Square of distance between each cell and robot’s position. 

5 4 3 2 1  

29 26 25 26 29 1 

20 17 14 17 20 2 

14 10 9 10 14 3 

8 5 4 5 8 4 

5 2 1 2 5 5 

- - Robot - - - 

 

Figure 13. Four different neighborhoods of the robot in its frontal view. 

Here, the neighborhood radius is assumed to be √10 and the inputs of the fuzzy inference 

engine are produced by Table 4. 
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Table 4. Inputs of the fuzzy inference method with neighborhood radius of √10 for a robot with 25 

cells of view. 

5 4 3 2 1  

- - - - - 1 

- - - - - 2 

- X3 X2 X1 - 3 

X8 X7 X6 X5 X4 4 

X13 X12 X11 X10 X9 5 

- - Robot - - - 

To continue, the new value function is fuzzified. As an option, the value function can be 

considered as the membership function. This may result in over-fuzzification of the path which is 

undesired. To overcome this liability, other fuzzification functions, such as exponential, may be 

used. For example, it is possible to calculate the membership function as below: 

𝜇(𝐴𝑖) = 𝑥𝑖
𝑛 (38

) 

where 𝑥𝑖 is the probability of x in cell i and n is an integer. Choosing the right integer requires 

experience and depends on the environment and camera of the robot. Each cell is dominated by a 

rule. The rule calculates the angle ϕ, which determines the direction of the robot’s motion. The 

right-hand angles are defined positive, the left-hands angles are considered negative, and the head-

on direction coincides with zero. 

If A1=1, then ϕ is a very small positive angle.  

1. If A2 = 1, then ϕ is zero. 

2. If A3 = 1, then ϕ is a very small negative angle. 

3. If A4 = 1, then ϕ is a medium positive angle.  

4. If A5 = 1, then ϕ is a small positive angle.  

5. If A6 = 1, then ϕ is a zero angle. 

6. If A7 = 1, then ϕ is a small negative angle. 

7. If A8 = 1, then ϕ is a medium negative angle. 

8. If A9 = 1, then ϕ is a big positive angle. 

9. If A10 = 1, then ϕ is a medium positive angle. 

10. If A11 = 1, then ϕ is a zero angle. 

11. If A12 = 1, then ϕ is a medium negative angle. 

12. If A13 = 1, then ϕ is a big negative angle.  

From different existing defuzzification methods, the weighted average is chosen and used as 

follows: 

𝜙 =
∑𝜇(𝐴𝑖)𝜙𝑖

^

∑𝜇(𝐴𝑖)
 

(39

) 

where 𝜇(𝐴𝑖) is the membership function and 𝜙𝑖
^

 is the direction of the robot’s motion. 

Result of Fuzzy Markov Decision Processes in the Absence of Danger Space 
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The result of implementing the fuzzy Markov decision processes on the Aldebaran humanoid 

robot–Nao H25 is shown in Figure 14. As can be seen in this figure and the video associated with 

this figure, the robot successfully passes through obstacles and reaches the target. 

 

Figure 14. The path traversed by the Nao humanoid robot using the fuzzy Markov decision 

processes (see the video of the robot’s movement). 

4. Path Planning in the Presence of Danger Space 

Generally, a robot encounters three types of environments: obstacle-free environment, 

obstacle, and target. While the robot may occasionally encounter another type of environment. 

For example, in a wooded area, trees may be considered as obstacles, while mud pits are not 

blocking the robot's movement and the robot can pass through it. Meanwhile, it is not wise to 

choose a muddy path in the presence of the dry ground. In this case, mud pits should not be 
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regarded as the free spaces (as dry ground) nor obstacles (as trees). To solve this problem, a new 

space called danger space is introduced and added to the three traditional environments. Danger 

space is extendible to other cases like the greasy floor in a factory and areas in sight of an enemy in 

a battleground. 

4.1. Disadvantages of Reward Calculation by Linear Relations 

In the previous section, Equation (36) was proposed to calculate rewards in cells without a 

danger area. Given the linearity of the equations, this equation can be extended to the danger space 

as follows: 

𝑅(𝑖, 𝑗) = 𝑃𝑔𝑜𝑎𝑙(𝑖, 𝑗) + 𝑤1𝑃𝑓𝑟𝑒𝑒𝑠𝑝𝑎𝑐𝑒(𝑖, 𝑗) + 𝑤2𝑃𝑑𝑎𝑛𝑔𝑒𝑟(𝑖, 𝑗)

+ 𝑤3𝑃𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒(𝑖, 𝑗) 
(40

) 

Although this equation appears to be effective, its linear properties may cause trouble. For 

example, while the coefficients of danger space and free space are close to each other, it may be 

preferable to cross the danger space to pass through the free space, which is definitely not desirable. 

Also, if the coefficients for the danger space and the space containing the obstacle are not different, 

when the passage of the danger space is the only option available, the robot may choose to traverse 

the obstacle and thus collide the obstacle. Therefore, an intelligent arrangement for determining 

rewards seems necessary. 

4.2. Reward Calculation by the Fuzzy Inference System 

Here, the Gaussian membership functions are used in fuzzification process. As can be seen in 

Figure 15, the space around each cell is a member of the fuzzy set including zero, small, medium, 

big, and very big. 

 

Figure 15. Fuzzy sets and membership functions of each space based on its probability. 

The Takagi–Sugeno method is implemented to calculate rewards using the rules presented in 

Table 5. For example, as rule 1, if the probability of the existence of the obstacle is between 0.375 

and 1, the probability of the existence of the danger is between 0 and 0.375, the probability of the 

existence of the free space is between 0 and 0.375, and the probability of the existence of the target is 

between 0 and 0.625, then the reward is considered as 0.1 Target. 
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Table 5. Fuzzy inference rule for reward. 

Reward Target Free Danger Obstacle Rule 

0.1 Target 

Small 
Zero 

Zero 

Big 1 

Medium 

Medium 

2 

Small 

Small 3 

Zero 
Small 4 

Medium 
Small 

5 

Medium Zero 6 

0.2 Target Medium 
Zero Small 

Small 
7 

Small Zero 8 

0.25 Target Big Zero Zero Small 9 

0.333 Target Small Zero Big Zero 10 

0.5 Target Small Small Medium Zero 11 

0.667 Target Small Medium Small Zero 12 

0.75 Target 
Medium 

Zero Medium 

Zero 

13 

Small Small 14 

Small Big Zero 15 

Target 

Very Big 
Zero 

Zero 

Zero 

16 

Big Small 17 

Medium Medium 
Zero 

18 

Big Small 19 

0.4 Obstacle Zero 

Zero Big 

Small 

20 

Small Medium 21 

Medium Small 22 

0.6 Obstacle Zero Small Small Medium 23 

0.8 Obstacle Zero 
Small 

Zero 
Big 24 

Medium Medium 25 

Obstacle Zero Zero 

Zero Very Big 26 

Small Big 27 

Medium Medium 28 

0.25 Danger Zero Big Small Zero 29 

0.5 Danger Zero Medium Medium Zero 30 
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Danger Zero 

Zero Very Big Zero 31 

Big Zero Small 32 

Small Big Zero 33 

Free Zero Very Big Zero Zero 34 

Here, the weighted average method is used for defuzzification of reward as: 

𝑅𝑒𝑤𝑎𝑟𝑑 =
∑𝜇𝑖𝑅

^

𝑖

∑𝜇𝑖
 

(41

) 

in which “Reward” is the defuzzification of reward, 𝜇𝑖 is the membership function, and 𝑅
^

𝑖 is the 

reward of each fuzzy rule. 

4.3. Schematic Structure of Fuzzy Markov Decision Processes 

After producing the final image, the reward associated with each part of the image is 

calculated. After that, Markov decision processes serve as an input for the fuzzy inference system. 

The output of the fuzzy inference system provides the robot with the necessary information for 

deciding on the direction and its movement. The schematic structure of this process is illustrated in 

Figure 16. 

 

Figure 16. Schematic structure of fuzzy Markov decision processes. 

4.4. Results of Fuzzy Markov Decision Processes in the Presence of Danger Space 

The results of implementing the fuzzy Markov decision processes on the Nao humanoid robot 

are shown in Figures 17 and 18. As shown in Figure 17 and the video associated with this figure, 

the robot at the beginning of the path, considering that it encounters obstacles and danger space, 

selects the passing of the danger space as the only available option. After that, the robot continues 

to move toward the target. As the robot approaches the next danger space and given the availability 

of free space, it tries to avoid the danger space and move toward the target. Additionally, the robot 

tries to select the optimal path to reach the target. At this time, the robot takes a step to the right 

and, assuming that it has been able to terminate the danger space, turns to the left and goes to the 
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target. This causes the robot to touch the danger space when rotated to move toward the target. 

This problem can be solved by expanding the danger space. In Figure 18, the robot bypasses the 

danger space and successfully reaches the target. 

 

Figure 17. The path traversed by the Nao humanoid robot in presence of danger space using the 

fuzzy Markov decision processes in the first sample environment (see the video of the robot’s 

movement). 
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Figure 18. The path traversed by the Nao humanoid robot in presence of danger space using the 

fuzzy Markov decision processes in the second sample environment (see the video of the robot’s 

movement). 

As the final discussion, the use of the Markov decision processes leads to faster performance 

compared to the other proposed methods. In addition, the use of the fuzzy inference system leads 

to a smoother optimal path than previous ones. Moreover, the fuzzy Markov decision processes 

makes it possible to design a path without the need for accurate information on the shape, position, 

and orientation of the obstacles, as well as the need for having enormous volumes of memory to 

store data collected from two-dimensional and three-dimensional maps. 
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5. Conclusions 

The present study addressed the path planning of the humanoid robot in the complex and 

unknown environments regarding the absence and presence of the danger space. A robot 

encounters three types of environments: obstacle-free environment, obstacle, and target. However, 

some spaces cannot be included in these three categories. In this regard, danger space was defined 

as specific space (like mud pits in a wooded area and greasy floor in a factory) which the robot is 

only permitted to be cross when no other options are available. Actually, the danger spaces are the 

potentially risky areas of the map. In the free-danger environment, synthetic potential field method 

was described and the governing equations were derived. To modify the inefficiency of this method 

in close proximity to the obstacles, a rectifier was introduced. The Linguistic method and Markov 

decision processes were other methods that are used for path planning in free-danger 

environments. A hybrid of Markov decision processes and fuzzy inference system was 

implemented to find an optimal and safe path from the start point to the target point in both 

environments, in the presence and absence of the danger space. This method improved the 

performance of the traditional Markov decision processes. Additionally, in order to real-time 

solving the Bellman equation, the value iteration was used. This method has been developed and 

successfully tested on an experimental humanoid robot (Nao H25 V4). As a future suggestion, the 

hybrid path planning algorithms using adaptive fuzzy membership functions can be implemented 

to create an optimal and safe path. 
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