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Abstract: In recent years, using smartphones for indoor positioning has become increasingly popular
with consumers. This paper presents an integrated localization technique for inertial and magnetic
field sensors to challenge indoor positioning without Wi-Fi signals. For dead-reckoning (DR),
attitude angle estimation, step length calculation, and step counting estimation are introduced.
Dynamic time warping (DTW) usually calculates the distance between the measured magnetic
field and magnetic fingerprint in the database. For DR/Magnetic matching (MM), we creatively
propose 3-dimensional dynamic time warping (3DDTW) to calculate the distance. Unlike traditional
DTW, 3DDTW extends the original one-dimensional signal to a two-dimensional signal. Finally,
the weighted least squares further improves indoor positioning accuracy. In the three different
experimental scenarios—teaching building, study room, office building—DR/MM hybrid positioning
accuracy is about 3.34 m.

Keywords: DR; MM; indoor positioning system; 3-dimensional dynamic time warping

1. Introduction

Because of the popularity of smart devices, mobile location-based services are required to provide
real-time, highly reliable, and high-precision indoor positioning. Indoor positioning technology has
been widely investigated by researchers [1–3]. The global satellite navigation system cannot solve
indoor positioning problems. Therefore, people are trying to find other techniques to solve them.

Indoor positioning techniques are usually divided into two categories: infrastructure-based
positioning and infrastructure-free positioning. Positioning technique using infrastructure,
especially widely used Wi-Fi positioning, is attracting increased attention. To reduce the time and
labor costs of constructing a Wi-Fi database, a crowdsourcing-based algorithm is presented to estimate
access point localization and propagation parameters [4]. An actual Wi-Fi indoor positioning system
is deployed at the COEX complex in Korea [5]. Test results reveal a positioning accuracy of 5 to
8 m. Because of the multipath and the reflection effects, the quality of the Wi-Fi signals depends on
the distribution and number of access points and the transmission environment. Another practical
problem is that Wi-Fi positioning consumes an inordinate amount of electricity, making it difficult for
smartphones to provide long-term positioning. Therefore, this paper presents an indoor positioning
technology without Wi-Fi.

The infrastructure-free positioning technique is mainly an inertial positioning system,
which obtains a user’s position by integrating acceleration and angular velocity. Compared with
Wi-Fi, an inertial positioning system is free from external interference. However, heading drift is
unavoidable in an inertial positioning system. Combined with wall information, an auxiliary particle
filter is proposed to eliminate the heading drift of the inertial sensor [6]. Furthermore, the literature [7]
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proposes a firefly particle filter to reduce the inertial accumulation error. MM determines a pedestrian’s
location by matching the magnetic field fingerprint in the database. Compared with Wi-Fi, an indoor
magnetic field is stable [8]. The indoor ferromagnetic material [9] interferes with the geomagnetic field,
causing the magnetic field to vary with position. Binghao Li et al. discussed the feasibility of using a
magnetic field for positioning [10]. Based on alternating current magnetic fields, a method for indoor
navigation is proposed [11]. However, some beacons must be deployed, which increases positioning
costs. For MM, magnetic field mismatch is an unavoidable problem. Based on inertial and magnetic
sensors, the MALoc system proposes an actual magnetic field fingerprinting technique [12]. However,
the system positioning error depends on the number of particles in the particle filter and the gyroscope
reading. To take full advantage of the inertial and magnetic sensors, a DR/MM integrated algorithm is
proposed to improve indoor positioning accuracy and robustness. In the integrated positioning system,
we use DR results to constrain the magnetic field matching range. In DR/MM, we creatively propose
3DDTW to calculate the distance. Therefore, the main contributions of this article are as follows:

(1) Integrated indoor positioning system does not require infrastructure to be deployed,
greatly reducing the time and money costs.

(2) DTW is usually calculated the distance between the measured magnetic field and magnetic
fingerprint in the database. For DR/MM, we creatively propose 3DDTW to calculate the
distance. Unlike traditional DTW, 3DDTW extends the original one-dimensional signal to a
two-dimensional signal.

(3) Many practical problems are considered in the DR/MM positioning system. The solutions to
these problems further improve the positioning accuracy. For three different walking experiments,
the average positioning accuracy is about 3.34 m.

The rest of the paper is organized as follows: We review the related work in Section 2. We introduce
the system model in detail in Section 3. Walking experiments to test different scenes are discussed in
Section 4. The conclusion and future work are presented in Section 5.

2. Related Work

In [13], foot-mounted inertial measurement units are developed to locate an indoor pedestrian
location. When a user is walking, ‘Heading Update’ eliminates heading drift in rectangular buildings.
During a non-walking situation, ‘Zero Integrated Heading Rate Update’ reduces heading drift.
‘Height Update’ limits the error growth in height. These constraints appropriately reduce the drift
of low-cost inertial sensors; however, the error of the inertial sensors continues to accumulate over
time. Using an indoor floor map, Fan Li et al. designed an end-to-end positioning system integrating
step detection, stride length estimation and heading inference models [14]. Results show an average
accuracy of 1.5 m with handheld smartphones and 2 m in the pocket. Map information effectively
suppresses cumulative error growth. However, for large buildings, the acquisition of maps is very
time-consuming. An end-to-end positioning system is lost for indoor positioning without maps.
A hybrid system, integrated smartphone inertial sensors and iBeacon, is proposed to locate and
track pedestrian paths in an indoor environment [15]. Step detection, walking direction estimation,
and initial point estimation are studied. Because of the computational burden of a particle filter,
the extended Kalman filter is used to reduce smartphone power consumption. Indoor user activities
seriously affect the quality and reliability of wireless signals. The literature [16] proposes an INS/Wi-Fi
indoor localization system based on the weighted least squares. The precondition of using INS/Wi-Fi
location system is the deployment of Wi-Fi access points in the positioning area, which limits the scope
of use.

The directional drift reduction technique, consisting of a zero angular rate update, a heuristic
heading reduction, and an electronic compass, reduces heading drift and obtains better solutions
for estimating human trajectory in indoor complex environments [17]. Experimental results reveal a
relative error of 1 percent during walking. This technique can be used only on sensors attached to the
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foot. In [18], the data from the gyroscope and the magnetometer are fused for indoor intelligent mobile
robot localization. A fuzzy compensation algorithm is used to eliminate regular error. The Kalman
filter is used to eliminate irregular error. A reliability-augmented particle filter is used to deal
with magnetic field data and inertial data from smartphones [19]. A self-heuristic particle filter
and a dynamic step length estimation algorithm are proposed to improve the localization accuracy
and robustness. In addition, a hybrid measurement model further improves indoor localization
performance. The particle filter requires a lengthy time to calculate, which poses a challenge to
real-time positioning. Another problem is that the system requires wireless positioning to provide
a rough range when the particle filter suffers from “Kidnapped Robot Problem”. An integrated
Wi-Fi, magnetic field matching, and pedestrian dead-reckoning (DR) systems are designed for indoor
positioning [20]. Wi-Fi reduces magnetic field mismatch by limiting the range of magnetic field
matching. Pedestrian DR is used to correct Wi-Fi and magnetic matching mismatches. The integrated
positioning system achieves an average positioning accuracy of 3 to 4 m in the two environments.
When scanning wireless signals, smartphones consume a large quantity of power, thereby posing a
major challenge for long-term continuous positioning.

A Kalman filter with magnetic field observations is presented to correct the cumulative error of
the inertial navigation [21]. The difference between the geomagnetic model value and the measured
magnetic field value is taken as an observation of the Kalman filter. However, the indoor magnetic
field is subject to large disturbances, which is difficult to have a reasonable model to describe the
magnetic field changes. The Kalman filter is designed to fuse the gyroscope and the magnetic field
to obtain a more precise direction [22]. It is obvious that the indoor magnetic field fluctuates greatly
and is prone to large errors. In [23], based on two rotational invariance features such as magnetic
field norm and vertical projection, the probability model of the Euclidean distance is used to estimate
the position of the user. Reducing the dimensions of the magnetic field reduces the magnetic field
characteristics. In [24], INS and MM techniques are designed to improve indoor positioning accuracy.
A variety of constraints—a threshold-based method, an adaptive Kalman filter-based method, DTW,
and weighted k-nearest neighbor—are designed to reduce magnetic field mismatch. The mismatch
detection mechanism reduces INS/MM errors by 45.9 to 67.9 percent. Different environments and
different users require different empirical parameters, which results in the performance of the algorithm
depending on the empirical parameters.

Based on the shortcomings of the above work, we propose a new technology (3DDTW).
3DDTW extends the dimensions of traditional DTW. Subsequently, the weighted least squares is
proposed to further reduce the positioning error. Three walking experiments verify the effectiveness of
the proposed algorithm.

3. System Model

Figure 1 shows the overall structure of system model including DR module, DR/MM module.
In DR module, the user’s attitude angle is estimated by integrating gyroscope reading. Step length
and step counting are calculated from the accelerometer and gravitational acceleration. DR module
calculates the user’s position. In DR/MM module, the magnetic field is converted from the body
coordinate system to the navigation coordinate system. Then, we use 3DDTW to calculate the distance
between the measured magnetic field and the fingerprint. Finally, the weighted least squares further
improves indoor positioning accuracy.
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Figure 1. The structure of system model.

3.1. Dead-Reckonging

3.1.1. Attitude Angle Estimation Model

We use gyro reading to estimate the attitude of smartphone. Direct cosine matrix (DCM),
quaternion, and Euler angle are the main techniques. The quaternion vector q = [q1, q2, q3, q4] is
updated using the angular rate measurements from gyroscope reading. Then, the updated quaternion
is used to get an attitude of the navigation system in terms of Euler angle. In [25], the relationship
between DCM and quaternion is expressed as

Cn
b =

 q2
1 − q2

2 − q2
3 + q2

4 2q1q2 − 2q3q4 2q1q3 + 2q2q4

2q1q2 + 2q3q4 −q2
1 + q2

2 − q2
3 + q2

4 2q2q3 − 2q1q4

2q1q3 − 2q2q4 2q2q3 + 2q1q4 −q2
1 − q2

2 + q2
3 + q2

4

 (1)

The attitude angle[ϑ, φ, ψ] in terms of DCM can be calculated as follows [25]

ϑ = tan−1 −Cn
b (3, 1)√

(Cn
b (3, 2))2 + (Cn

b (3, 3))2

φ = tan−1 Cn
b (3, 2)

Cn
b (3, 3)

(2)

ψ = tan−1 Cn
b (2, 1)

Cn
b (1, 1)

where cn
b (m, k) is the mth row and the kth column element in the matrix (cn

b ). Roll, pitch and yaw from
the smartphone are ϑ, φ and ψ.

3.1.2. Step Length Model

Each user’s step length is affected by mood, height, body weight, age, environment, and walking
time. Therefore, a fixed step length is not appropriate. Different users have different step lengths.
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The estimated step length needs one or more training values to calibrate in the training step length
model [26]. A linear step length model is developed using walking frequency and acceleration
variance [27,28]. Another nonlinear step length model is one in which the vertical acceleration is
segmented and analyzed to estimate step length. An empirical relation between vertical acceleration
and step length is given by [29] as follows

SL = K 4
√

amax − amin (3)

where, during one step, amax and amin are the maximum and minimum vertical acceleration,
respectively. K is a calibration parameter, which adjusts step length estimation to a specific user.
Different users require different empirical parameters, and this is the main disadvantage. The reliability
of the model depends on the calibration parameters.

Step length is calculated using the triangle model [30]. The distance of the smartphone from the
ground is L when the user is stationary. The distance of the smartphone from the ground is (L-H)
when the user is walking. The vertical displacement of the smartphone (H) is calculated as follows

H =
∫ t2

t1

∫ t2

t1

azdtdt (4)

where the start and end times of each step are t1 and t2; the vertical acceleration is az. Based on the
Pythagorean theorem, step length is calculated according to [30] as follows

SL = 2
√

L2 − (L− H)2 (5)

3.1.3. Step Counting Model

The vertical acceleration has a certain periodicity during walking. In general, the number of steps
is estimated by detecting the peak of the vertical acceleration. Two peak points are treated as one step.
Vertical acceleration is calculated as follows

az = −
(a− g) · g
|g| (6)

where acceleration and gravitational acceleration are a and g. When a vertical acceleration is greater
than the previous value and less than the latter value, a peak is detected. Due to noise, one shortcoming
is that many false peaks are detected, which lead to overload statistics. False peaks are removed using
a variance technique. Therefore, two detection techniques, defined as follows, are designed to estimate
the exact number of steps

R1(k) =

{
1 az(k) > az(k− 1) & az(k) > az(k + 1)
0 other

(7)

R2(k) =

{
1 az_var(k) > THD
0 other

(8)

where the vertical acceleration variance is az_var. A threshold (THD) is a constant. In this paper,
detection results, expressed as follows, are the logical results of the two detection conditions.

R = R1 ∩ R2 (9)

where R indicates that the vertical displacement of a user during walking is unlikely to be too small.
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3.1.4. DR-Based Position Path

The heading from the attitude angle, step length and step counting determine the user’s path.
DR updates the new position [xk+1, yk+1]

T based on a previous position [xk, yk]
T , step length and

attitude, as Equation (10) expressed.[
xk+1
yk+1

]
=

[
xk
yk

]
+ SL ·

[
cos ψ

sin ψ

]
(10)

3.2. Dead-Reckoning and Magnetic Matching (DR/MM)

For the DR/MM positioning system, the first step is to construct a magnetic fingerprint database.
The collection mode of magnetic field fingerprint is referenced in literature [16]. To collect magnetic
field fingerprints, users, carrying smartphones, walk from the starting point to the end point.
The fingerprints are stored in the database as < posii, mii >. The subscript ii represents the iith

fingerprint in the database. The second step is to calculate the user’s position by DR. DR constrains
the range of MM. Fifteen meters is used as the range of the MM. The third step is to use the measured
magnetic field to match the fingerprints. The proposed DTW (3DDTW) is designed to calculate the
distance between the measured magnetic field and the magnetic fingerprints. Finally, the weighted
least squares is used to improve indoor localization accuracy and robustness.

3.2.1. Dynamic Time Warping (DTW) for DR/MM

The magnetic field corresponding to each step is treated as a measured value. Each fingerprint
represents a path from the beginning to the end. To extract the position corresponding to a measured
value, each fingerprint is cut into many small fingerprints. The distance between measured magnetic
field and small fingerprint is calculated using DTW [31]. For the magnetic fingerprint, the DTW
distance (D) is expressed as Equation (11).

d(i, j) = (mmea(i)−mdb(j))2

D(i, j) = d(i, j) + min([D(i− 1, j), D(i− 1, j− 1), D(i, j− 1)])
(11)

where Mmea(i) and Mdb(j) are the ith measured magnetic field and the jth fingerprint in the database,
respectively. d denotes the square of Euclidean distance among pairs of values in Mmea and Mdb;

3.2.2. 3-Dimensional Dynamic Time Warping (3DDTW) for DR/MM

Traditional DTW requires that the input signal be a one-dimensional signal. A simple strategy is to
use the amplitude of the magnetic field as the input signal. It is obvious that the one-dimensional signal
reduces the three-dimensional magnetic field characteristics, which is not conducive to fingerprint
matching. Directly using a magnetic field from a smartphone as a fingerprint is clearly unreasonable
because the attitudes from the fingerprint construction phase and the magnetic field matching phase
are difficult to maintain the same [32]. An effective method is to transform the magnetic field in the
body frame into the navigation frame, as Equation (12) denotes. mnx

mny

mnz

 = Cn
b

 mbx
mby
mbz

 (12)

where the three-dimensional magnetic field reading in the navigation frame and the body frame are
[mnx, mny, mnz]T and [mbx, mby, mbz]

T , respectively.
Unlike traditional DTW, 3DDTW extends the original one-dimensional signal to a two-dimensional

signal. In Figure 2, the left side represents the measured magnetic field (mmea); the bottom surface
represents the fingerprint (mdb). D represents the 3DDTW distance between the measured magnetic
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field and fingerprint in the database. Based on the idea of dynamic programming, the 3DDTRW
distance at the current moment is equal to the newly added distance plus the distance from the
previous moment. Therefore, the 3DDTW process is divided into two steps. The first step is to calculate
the newly added distance between the measured magnetic field (mmea(k, i)) and the fingerprint
(mdb(k, j)), as Equation (13) expressed.

d(i, j, k) = (mmea(k, i)−mdb(k, j))2 (13)

In the three-dimensional coordinate system, the 3DDTW distances at the previous moment
are D(i − 1, j, k), D(i, j − 1, k), D(i, j, k − 1), D(i − 1, j − 1, k), D(i, j − 1, k − 1), D(i − 1, j, k − 1),
D(i− 1, j− 1, k− 1), respectively. To search for the best alignment between two signals, the second
step is calculated as Equation (14) expressed

D(i, j, k) = d(i, j, k) + min[D(i− 1, j, k), D(i, j− 1, k), D(i, j, k− 1), D(i− 1, j− 1, k),

D(i, j− 1, k− 1), D(i− 1, j, k− 1), D(i− 1, j− 1, k− 1)]
(14)

Algorithm 1 shows the 3DDTW calculation process. In MM, the traditional DTW calculates the
distance between the two magnetic signals by means of dimensionality reduction. It is obvious that
the dimension reduction method reduces the characteristics of the magnetic field. 3DDTW calculates
between two magnetic field signals by extending the dimension, which enhances the robustness of
indoor positioning.

Algorithm 1 3DDTW

Input: The measured signal mmea with p rows and n columns, fingerprint signal mdb with p rows
and m columns.
1. Let d denote the distance among pairs of values in mmea and mdb.
2. for i = 1 to n do
3. for j = 1 to m do
4. for k = 1 to p do
5. d(i, j, k) = (mmea(k, i)−mdb(k, j))2

6. End for
7. End for
8. End for
9. Let D denote 3DDTW fingerprint distance from mmea and mdb.
10.D(1, 1, 1)=d(1, 1, 1)
11. for i = 2 to n do
12. for j = 2 to m do
13. for k = 2 to p do
14. D(1, 1, k) = d(1, 1, k) + D(1, 1, k− 1)
15. D(i, 1, 1) = d(i, 1, 1) + D(i− 1, 1, 1)
16. D(1, j, 1) = d(1, j, 1) + D(1, j− 1, 1)
17. D(1, j, k) = d(1, j, k) + min[D(1, j− 1, k), D(1, j, k− 1), D(1, j− 1, k− 1)]
18. D(i, 1, k) = d(i, 1, k) + min[D(i− 1, 1, k), D(i, 1, k− 1), D(i− 1, 1, k− 1)]
19. D(i, j, 1) = d(i, j, 1) + min[D(i− 1, j, 1), D(i, j− 1, 1), D(i− 1, j− 1, 1)]
20. D(i, j, k) = d(i, j, k) +min[D(i− 1, j, k), D(i, j− 1, k), D(i, j, k− 1), D(i− 1, j− 1, k), D(i, j−
1, k− 1), D(i− 1, j, k− 1), D(i− 1, j− 1, k− 1)]
21. End for
22. End for
23. End for
24.Output: The 3DDTW distance D.
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Figure 2. 3DDTW distance calculation diagram.

3.2.3. Weighted Least Squares for DR/MM

The weighted least squares is an effective technique to improve positioning accuracy. Referring to
the weighted least squares of Reference [16], we use similar technique to improve indoor
positioning accuracy. The 3DDTW distances (D = [D1, D2, · · · , Dr]) and corresponding positions
([x̃1, ỹ1]

T , [x̃2, ỹ2]
T , · · · , [x̃r, ỹr]T) are selected to estimate a user’s location. Based on the idea of linear

weighting, a user’s position is estimated as follows[
x̂
ŷ

]
= ω1

[
x̃1

ỹ1

]
+ ω2

[
x̃2

ỹ2

]
+ · · ·+ ωi

[
x̃i
ỹi

]
+ · · ·+ ωr

[
x̃r

ỹr

]
(15)

1 = ω1 + ω2 + · · ·+ ωr (16)

where ωi represents a weighting factor.
we construct the weighted least squares objective function is designed as follows

F =

(
ω1

∣∣∣∣∣
∣∣∣∣∣
[

x
y

]
−
[

x̃1

ỹ1

]∣∣∣∣∣
∣∣∣∣∣
)2

+

(
ω2

∣∣∣∣∣
∣∣∣∣∣
[

x
y

]
−
[

x̃2

ỹ2

]∣∣∣∣∣
∣∣∣∣∣
)2

+ · · ·+
(

ωr

∣∣∣∣∣
∣∣∣∣∣
[

x
y

]
−
[

x̃r

ỹr

]∣∣∣∣∣
∣∣∣∣∣
)2

min (17)

where || · || is the Euclidean distance; [x, y]T is the real position.
We assume that the position error and the 3DDTW distance construct a linear relationship,

as Equation (18) expressed
∆zi = σDi (18)

where the position error ∆zi is expressed as
∣∣∣∣[x, y]T − [x̃i, ỹi]

T
∣∣∣∣; σ represents a configuration factor.

Bring Equation (18) into Equation (17), using the Lagrange function [33], the expressions of ωi is
calculated as follows

ωi =

1
D2

i
1

D2
1
+ · · ·+ 1

D2
r

(19)

4. Experiments and Discussions

We use Mi5 smartphone to build magnetic fingerprint database. Nexus5 smartphone is used to
perform walking experiments. When the user walks, the smartphone maintains four motion gestures,
including calling, dangling, handheld, and pocket. Walking experiments in three different scenarios
were carried out in Xiamen University, as shown in Figure 3. The first experimental scenario consists
of metal doors, metal windows, and a small number of students walking. The second experimental
scenario consists of bookshelves, concrete columns, and many students. The third experimental
scene consists of a metal fence and many metal doors. The magnetic field mean of three different
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environments are 123 µT, 113.75 µT and 117.74 µT, respectively. Experimental results from three
different walking trajectories are presented in this section.

Figure 3. Different scenarios.

4.1. Walking Experiment in Teaching Building

A walking positioning experiment was performed with the smartphone maintaining four motion
gestures. The user walked about 90 m. The DR cannot eliminate heading drift, which results in
error accumulation. Therefore, as seen in Figure 4, the cumulative errors from DR increase over
time in the four motion gestures. Figure 5 shows that mismatching is a major problem in MM even
though k-nearest neighbor is used to reduce the positioning error. Magnetic field mismatches lead
to excessive positioning results in some areas. The DR and MM positioning results are diverged
from the true trajectories on some occasions. As seen in Figure 6, integrated DR/MM technology
reduces the mismatch by limiting the matching range. 3DDTW enhances the performance of magnetic
field matching by extending the dimensions of the input signal. Weighted least squares further
reduces positioning errors by linear weighting. Thus, integrated DR/MM technology improves
positioning accuracy.

DR

(a)

DR

(b)

DR

(c)

DR

(d)

Figure 4. Positioning results for DR in teaching building: (a) calling; (b) dangling; (c) handheld;
and (d) pocket.
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MM

(a)

MM

(b)

MM

(c)

MM

(d)

Figure 5. Positioning results for MM in teaching building: (a) calling; (b) dangling; (c) handheld;
and (d) pocket.

DR/MM

(a)

DR/MM

(b)

DR/MM

(c)

DR/MM

(d)

Figure 6. Positioning results for DR/MM in teaching building: (a) calling; (b) dangling; (c) handheld;
and (d) pocket.

The position errors and the cumulative distribution function (CDF) curves are shown in
Figures 7 and 8. It can be seen from Figure 7 that in the initial stage, the inertial navigation positioning
result is better than fusion positioning results in the four gestures. The main reason is that the inertial
navigation system error has a cumulative effect, which is small at the beginning stage and increases
with increase of walking time. Since the fluctuation of the magnetic field depends on the change of the
environment, in the global matching range, the mismatch of the magnetic field reaches a large error,
as shown by the black line in Figure 7. In most cases, integrated positioning system performance is
superior to DR and MM in four gestures. The fusion positioning system uses the inertial navigation
results to constrain the magnetic field matching range, while 3DDTW and weighted least squares
improve the magnetic field matching performance. At less than 3 m, probability for DR, MM and
DR/MM are as follows: 13.74%, 12.21% and 53.43%, respectively in calling gesture (see Figure 8a);
21.22%, 4.47% and 44.13%, respectively in dangling gesture (see Figure 8b); 16.41%, 1% and 49.75%,
respectively in handheld gesture (see Figure 8c); 23.94%, 3.52% and 42.96%, respectively in pocket
gesture (see Figure 8d). The positioning results indicate DR/MM integrated algorithm is robust to
different motion gestures.

The average error, root mean square error (RMSE), maximum error, and circular error probability
(CEP) for the four motion gestures are shown in Table 1. As expected, the smallest average positioning
error in the four motion gestures, which is 3.09 m, belongs to DR/MM, and the average positioning
errors for DR, and MM are 6.95 and 15.43 m, respectively. In comparison with DR, the average
error, RMSE, maximum error, CEP (75%) and CEP (95%) for DR/MM are reduced by 47.28%,
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49.21%, 50.32%, 42.12%, and 54.34%, respectively. In comparison with MM, the average error, RMSE,
maximum error, CEP (75%) and CEP (95%) for DR/MM are reduced by 77.94%, 77.3%, 78.79%, 76.05%,
and 78.45%, respectively.

0 50 100 150
Time (s)

0

5

10

15

20

 P
os

iti
on

 e
rr

or
 (

m
)

DR
MM
DR/MM

(a)

0 50 100 150
Time (s)

0

5

10

15

20

 P
os

iti
on

 e
rr

or
 (

m
)

DR
MM
DR/MM

(b)

0 50 100 150
Time (s)

0

5

10

15

20

 P
os

iti
on

 e
rr

or
 (

m
)

DR
MM
DR/MM

(c)

0 50 100 150
Time (s)

0

5

10

15

20

 P
os

iti
on

 e
rr

or
 (

m
)

DR
MM
DR/MM

(d)

Figure 7. Position errors with different gestures in teaching building: (a) calling; (b) dangling;
(c) handheld; and (d) pocket.
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Figure 8. CDFs with different gestures in teaching building: (a) calling; (b) dangling; (c) handheld;
and (d) pocket.
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Table 1. Position errors for DR, MM and DR/MM (m) in teaching building.

Motion Gestures Error The Average Error RMSE Maximum Error CEP (75%) CEP (95%)

Calling DR 9.23 10.14 15.53 11.91 15.05
MM 13.58 16.34 32.39 21.33 30.62
DR/MM 2.65 3.04 5.49 3.89 4.85

Dangling DR 4.45 4.8 6.65 5.84 6.24
MM 16.08 18.46 33.66 22.23 33.09
DR/MM 3.55 4.1 8.32 5.46 6.57

Handheld DR 7.69 8.5 13.25 10.48 12.53
MM 16.69 18.32 31.77 23.28 30.3
DR/MM 2.76 3.15 5.8 3.89 5.4

Pocket DR 6.43 7.62 13.87 8.38 13.49
MM 15.37 17.05 32.48 20.25 28.59
DR/MM 3.39 3.87 6.89 4.85 6.16

General DR 6.95 7.77 12.33 9.15 11.83
MM 15.43 17.54 32.58 21.77 30.65
DR/MM 3.09 3.54 6.63 4.52 5.75

4.2. Walking Experiment in Study Room

A study room experiment was carried out to verify the effectiveness of our proposed algorithms.
The walking distance was about 140 m. The positioning results of the four motion gestures for a
smartphone are shown in Figure 9. The average errors in the four gestures for the walking experiment
are 2.34, 3.48, 3.05 and 3.6 m, respectively. Reference [10] describes how to use the magnetic field alone
to MM for indoor positioning. In the offline phase, the localization area is divided into many grids,
and a magnetic field is acquired at each grid point. In the positioning phase, the collected magnetic
field is used to match the magnetic fingerprint to obtain the user’s position. Reference [34] introduces a
smart indoor positioning system (SmartPDR), which uses the magnetic field and gyroscope to estimate
a user direction. In [30,35], Kalman Filter (KF) is used to reduce static moment error, but the cumulative
error continues to expand over time. Figure 10 shows CDFs of four algorithms. At less than 3 m,
the probabilities for MM, SmartPDR, KF, and 3DDTW are as follows: (a) for calling: 4.74%, 2.31%,
8.06%, and 65.88%, respectively; (b) for dangling: 9.22%, 6.7%, 25.53%, and 47.52%, respectively;
(c) for handheld: 2.05%, 4.24%, 7.53%, and 46.23%, respectively; (d) for pocket: 9.43%, 5.97%, 14.75%,
and 40.98%, respectively. 3DDTW obtains satisfactory positioning performance under four gestures.

(a) (b) (c) (d)

Figure 9. Positioning results for DR/MM in study room: (a) calling; (b) dangling; (c) handheld;
and (d) pocket.
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For MM, SmartPDR, KF, and 3DDTW, the average error, RMSE, maximum error, CEP (75%),
and CEP (95%) are shown in Table 2. Compared with MM, SmartPDR, and KF, the errors of 3DDTW
are reduced as follows: 66.13%, 80.68%, and 69.9% for the average error, respectively; 65.4%, 80.93%,
and 71.26% for RMSE, respectively; 64.17%, 83.8%, and 72.87% for maximum error, respectively;
62.7%, 78.94%, and 69.53% for CEP (75%), respectively; 67.05%, 84.41%, and 75.09% for CEP (95%),
respectively; The best positioning technology belongs to 3DDTW.
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Figure 10. CDFs for MM, SmartPDR, KF, 3DDTW in study room: (a) calling; (b) dangling; (c) handheld;
and (d) pocket.

Table 2. Position errors for MM, SmartPDR, KF, and 3DDTW (m) in study room.

Motion Gestures Error The Average Error RMSE Maximum Error CEP (75%) CEP (95%)

Calling MM 12.64 13.83 25.52 16.54 22.12
SmartPDR 20.38 22.03 45.01 24.19 37.04
KF 11.17 13.17 27.34 16.66 25.15
3DDTW 2.34 2.7 5.24 3.4 4.62

Dangling MM 14.43 16 27.47 19.45 26.06
SmartPDR 15.66 18.68 39.29 20.3 36.95
KF 9.66 12.23 28.13 15.18 25.06
3DDTW 3.48 4.16 9.12 5.21 7.4

Handheld MM 15.72 16.99 26.79 20.33 26.12
SmartPDR 17.53 20.61 43.83 23.81 43.05
KF 13.64 15.83 28.11 19.5 27.08
3DDTW 3.05 3.44 6.75 4.33 5.41

Pocket MM 10.63 11.88 21.88 14.05 20.24
SmartPDR 18.63 21.55 48.41 24.88 42.78
KF 11.96 14.3 28.9 17.2 26.78
3DDTW 3.6 4.11 7.84 5.24 6.67

General MM 13.36 14.68 25.42 17.59 23.64
SmartPDR 18.05 20.72 44.14 23.3 39.96
KF 11.61 13.88 28.12 17.14 26.02
3DDTW 3.12 3.6 7.23 4.55 6.03

4.3. Walking Experiment in Office Building

A more complicated walking trajectory experiment was performed in office building. The walking
distance was about 390 m. The pictures in Figure 11 illustrate the positioning results of four different
gestures (calling, dangling, handheld and pocket) for office building; the pictures in Figure 12 show the
corresponding position errors. As shown in Figure 11, the integrated positioning system still achieves
satisfactory positioning results under a complicated walking path. In Figure 12, most of position errors
in the four motion gestures are less than 10 m. The average errors in the four gestures for the walking
experiment are 2.8, 3.47, 3.1 and 5.91 m, respectively. Figure 12 shows that the positioning errors from
these four gestures are relatively stable. Experimental results show that the DR/MM hybrid algorithm
improves positioning accuracy and robustness.
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(a) (b) (c) (d)

Figure 11. Positioning results for DR/MM in office building: (a) calling; (b) dangling; (c) handheld;
and (d) pocket.
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Figure 12. Position errors with different gestures in office building: (a) calling; (b) dangling;
(c) handheld; and (d) pocket.

Table 3 shows the position errors for DR/MM in the office building. The pocket gesture error in
the table is large, mainly due to the large jitter of smartphone. In general, the fusion algorithm proposed
in this paper still obtains better positioning performance in the complex office building environment.



Electronics 2019, 8, 185 15 of 17

Table 3. Position errors for DR/MM (m) in office building.

Motion Gestures The Average Error RMSE Maximum Error CEP (75%) CEP (95%)

Calling 2.8 3.26 7.42 4.12 5.6
Dangling 3.47 4.12 9.79 4.93 7.5
Handheld 3.1 3.63 8.61 4.35 6.48

Pocket 5.91 6.62 11.96 8.28 10.57
General 3.82 4.41 9.45 5.42 7.54

5. Conclusions and Future Work

The above three walking experiments prove that our proposed algorithm effectively improves
indoor positioning accuracy. First, we introduce attitude angle estimation, step length, and step
counting models. Subsequently, DR estimates the user’s position based on acceleration and angular
velocity. Second, the magnetic field in the body coordinate system is converted to the navigation
coordinate system. Based on the traditional DTW, we propose an improved DTW (3DDTW) that
extends a one-dimensional input signal into a two-dimensional input signal. 3DDTW is used to
calculate the distance between the measured magnetic field and the fingerprint, which reduces the
mismatch of the magnetic field fingerprint. Finally, a weighted least squares is used to further reduce
indoor positioning error. The average errors from three walking experiments are 3.09, 3.12 and 3.82 m.
The experimental results show that the integrated algorithm is stable, and it can adapt to different
magnetic environment and different walking trajectories.

However, there are still some issues that need to be addressed further. Due to the changes of
environment and time, the magnetic fingerprint database needs to be updated in real time. In addition,
how to focus on the integration of more sensors of smartphones to improve positioning accuracy and
robustness warrants further consideration.
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The following abbreviations are used in this manuscript:

DR Dead-Reckoning
MM Magnetic Matching
DTW Dynamic Time Warping
3DDTW 3-Dimensional Dynamic Time Warping
DCM Direct Cosin Matrix
CDF Cumulative Distribution Function
RMSE Root Mean Square Error
CEP Circular Error Probability
KF Kalman filter
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